Гсоп что это такое

Гсоп что это такое

Гсоп что это такоеГсоп что это такоеГсоп что это такое

Гсоп что это такое

При проектировании вентиляции и отопления зданий необходимо рассчитывать ГСОП?

Как рассчитать ГСОП подробно написано в СП 50.13330.2012 «ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ»:

3. Производственные с сухим и нормальным режимами *

Здания и помещения, коэффициенты а и bГрадусо-сутки отопитель- ного периода, °С·сут/год
СтенПокрытий и перекры- тий над проездамиПерекрытий чердачных над неотапли- ваемыми подпольями и подваламиОкон и балконных дверей, витрин и витражейФонарей
1234567
1. Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития20002,13,22,80,30,3
40002,84,23,70,450,35
60003,55,24,60,60,4
80004,26,25,50,70,45
100004,97,26,40,750,5
120005,68,27,30,80,55
a0,000350,00050,000450,000025
b1,42,21,90,25
2. Общественные, кроме указанных выше, административные и бытовые, производственные и другие здания и помещения с влажным или мокрым режимом20001,82,42,00,30,3
40002,43,22,70,40,35
60003,04,03,40,50,4
80003,64,84,10,60,45
100004,25,64,80,70,5
120004,86,45,50,80,55
a0,00030,00040,000350,000050,000025
b1,21,61,30,20,25
20001,42,01,40,250,2
40001,82,51,80,30,25
60002,23,02,20,350,3
80002,63,52,60,40,35
100003,04,03,00,450,4
120003,44,53,40,50,45
а0,00020,000250,00020,0000250,000025
b1,01,51,00,20,15
Примечания:

1. Значения Rо тр для величин ГСОП, отличающихся от табличных, следует определять по формуле: Rо тр =» a·ГСОП + b,

2. Нормируемое значение приведенного сопротивления теплопередаче глухой части балконных дверей должно быть не менее чем в 1,5 раза выше нормируемого значения приведенного сопротивления теплопередаче светопрозрачной части этих конструкций.

В случаях, когда средняя наружная или внутренняя температура для отдельных помещений отличается от принятых в расчете ГСОП, базовые значения требуемого сопротивления теплопередаче наружных ограждающих конструкций, определенные по таблице 3 умножаются на коэффициент пt, который рассчитывается по формуле

Гсоп что это такое(5.3)

В случаях реконструкции зданий, для которых по архитектурным или историческим причинам невозможно утепление стен снаружи, нормируемое значение сопротивления теплопередаче стен допускается определять по формуле

Гсоп что это такое(5.4)

Нормируемое значение сопротивления теплопередаче входных дверей и ворот должно быть не менее 0,6 стен зданий, определяемого по формуле (5.4).

Если температура воздуха двух соседних помещений отличается больше, чем на 8 °С, то минимально допустимое приведенное сопротивление теплопередаче ограждающих конструкций, разделяющих эти помещения (кроме светопрозрачных), следует определять по формуле (5.4) принимая за величину tн расчетную температуру воздуха в более холодном помещении.

Расчетную температуру воздуха в теплом чердаке, техническом подполье, остекленной лоджии или балконе при проектировании допускается принимать на основе расчета теплового баланса.

Внутренняя поверхность ограждения

Источник: СВОД ПРАВИЛ 50.13330.2012 «ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ». Актуализированная редакция СНиП 23-02-2003

Источник

Градусо-сутки отопительного периода как инструмент сравнения уровня энергоэффективности зданий в России и в других странах

Градусо-сутки отопительного периода (ГСОП) характеризуют суровость зимы какого-либо региона (чем выше ГСОП, тем холодней). Без их учета невозможно проводить сопоставление уровня энергетической эффективности зданий, построенных в разных климатических районах. Однако методики определения ГСОП в России и других странах неодинаковы.

Гсоп что это такое

Градусо-сутки отопительного периода в России

В России значение ГСОП численно равно произведению разности среднесуточной температуры наружного воздуха за отопительный период (ОП) tн.ОП и расчетной температуры внутреннего воздуха в здании tв.р на длительность ОП в сутках: ГСОП = (tн.ОПtв.р)•zОП.

Значение температуры в 8 °C с учетом необеспеченности систем отопления средствами авторегулирования принято из экономических соображений. Полагается, что разность между расчетной температурой внутреннего воздуха 2 20 °C и температурой на улице 8 °C будет компенсирована внутренними (бытовыми) теплопоступлениями, частично за счет внешних теплопоступлений с солнечной радиацией и аккумулирующей способности здания и находящейся в нем мебели.

ГСОП используются в следующих целях:

Градусо-сутки отопительного периода для США и стран Европы

За рубежом градусо-сутки отопительного периода обозначаются HDD (heating degree days) и определяются в США умножением абсолютного значения разности среднесуточной температуры наружного воздуха Tm за дни, когда она ниже базовой температуры Tb = 65 °F (18,3 °C), и этой базовой температуры на количество таких дней в году. Градусо-сутки охладительного периода обозначаются СDD (cooling degree days) и рассчитываются по той же формуле для дней, среднесуточная температура наружного воздуха которых выше этой базовой температуры:

Гсоп что это такое

В Великобритании и большинстве стран Европейского союза используют ту же формулу, однако в качестве порогового значения среднесуточной температуры наружного воздуха, ниже которой дни относятся к ОП, принимается температура в 15,5 °C, но в качестве базовой температуры внутреннего воздуха принимается 18 °C. Поскольку дней со среднесуточной температурой наружного воздуха ниже 18 °C, но выше 15,5 °C не так много, европейцы, анализируя показатели из США, в расчетах округляют Tb в пересчете с градусов Фаренгейта на градусы Цельсия до 18 °C, и тогда значения HDD, определенные по методикам США и ЕС, практически совпадают.

Сопоставление различных методик определения ГСОП

Следует осторожно пользоваться программами расчета градусо-суток, которые, как правило, не расшифровывают исходные данные алгоритма расчета. Например, первая же программа, открывающаяся в Интернете на сайте www.degreedays.net, по которой можно определить HDD или СDD для любого города, по умолчанию предлагает базовое значение температуры 15,5 °C. Это наводит на мысль, что в нее заложена европейская методика определения HDD.

Однако последующий анализ, который не обязательно будет делать каждый, кто использует эту программу, показывает, что 15,5 °C – это и базовая и пороговая температура, и разными, как это принято в Европе, в этой программе их сделать нельзя. В результате по этой программе для Москвы получается усредненное HDD = 3 937 °C•сут., в то время как при пороговой температуре 15,5 °C, но при Tb = 18 °C будет HDD = 4 547 °C•сут., что совпадает с определенным по российской методике 2012 года значением ГСОП = (20 + 2,2)•205 = 4 551 °C•сут.

Для более достоверного сопоставления методик определения ГСОП приводим результаты расчета ГСОП по методикам США и ЕС, которые сравниваются с расчетами по методике СНиП 23-02–2003 за периоды климатических наблюдений до 1980 года и с добавлением до 2010 года 3 для двух городов, характерных для европейской (Москва) и азиатской (Новосибирск) частей России (табл. 1). Анализируя данные (табл. 1), можно увидеть, что показатели ГСОП, определенные по методике ЕС, близки к показателям ГСОП Москвы и Новосибирска, определенным по СНиП 23-02–2003 для базовой температуры внутреннего воздуха 20 °C. Отклонения (табл. 1, выделено жирным шрифтом) не превышают ±2 %, что вполне допустимо в сравнении с точностью измерения теплопотребления сертифицированным прибором учета ±4 %.

Расчет ГСОП для Москвы и Новосибирска по методикам, используемым в США и в странах ЕС, в сравнении с методикой, принятой в России

Гсоп что это такое

Это отличается от принятого сопоставления в [1], где значение ГСОП в России определялось по климатическим наблюдениям только 2012 года и базовая внутренняя температура принималась 18 °С. Также в [1] оценка удельного расхода тепловой энергии на отопление зданий в России производится по статистическим данным. Однако в стране еще не налажено систематическое измерение фактического теплопотребления зданиями, а потому непонятна достоверность данных [1].

Анализ фактического теплопотребления на отопление МКД Москвы в сопоставлении с требуемым

В Москве более чем для 2 000 объектов нами была выполнена обработка данных расхода тепловой энергии на отопление многоквартирных домов (МКД) типовых серий по результатам измерения теплосчетчиками, пересчитанными на нормализованный ОП с базовой температурой в квартирах 20 °С (табл. 2). Рассматривались здания, введенные в эксплуатацию как с 1962 по 1999 годы (до дополнительного утепления), так и после 2000 года с утеплением согласно требованиям СНиП II 3–79*.

Таблица 2
Сопоставление фактически измеренного и требуемого удельных расходов тепловой энергии на отопление для жилых домов* типовых серий за отопительный период

* Жирным шрифтом выделены здания, выполненные с утеплением наружной оболочки.
** Обработка данных измерений, полученных другим источником исследования.
*** Здание серии П-44/16 согласно московскому строительному каталогу имеет 17 этажей.

Измерение фактического теплопотребления домов с улучшенной теплоизоляцией не показало ожидаемой экономии энергии. К сожалению, это не вызывает удивления. Так и должно было случиться из-за пересмотра требований СНиП отопления в 1995 году в сторону увеличения тепловой нагрузки на отопление, пренебрежения влиянием бытовых тепловыделений в квартирах при расчете теплопотерь помещениями, игнорирования этих обстоятельств при разработке режимов эксплуатации систем отопления и неэффективности приборов индивидуального авторегулирования теплоотдачи отопительных приборов. Но это поправимо: в [2] приводятся доказательства, что имеющимися средствами при наличии автоматического узла управления системой отопления (АУУ) или ИТП можно добиться ожидаемого энергосбережения без дополнительных капиталовложений.

Сравнение тепловой энергоэффективности зданий разных стран

Отнесение удельного годового теплопотребления на отопление МКД к ГСОП Москвы = (20 + 3,1)•214 = 4 943 °С•сут. (действовал до утверждения СП 131.13330.2012) позволяет сопоставить полученный показатель тепловой энергоэффективности МКД, построенных в Москве до 2000 года θэн/эф = 190/4 943 = 0,038 кВт•ч/(м 2 •°С•сут.). Данный результат, как ни странно, близок к такому же показателю для России в целом из [1] θэн/эф [1] = 0,04 кВт•ч/(м 2 •°С•сут.), но не корреспондируется с аналогичными показателями других стран.

Таким образом, показатели, приведенные в [1, табл. 2б], не подтверждают тезис о сравнительно небольшом отставании России в энергоэффективности жилого фонда МКД по сравнению со странами Северной Европы и Америки.

Более того, отсутствует перспектива ликвидации этого отставания, поскольку в 2000-х годах в упомянутых зарубежных странах прошли 2–3 волны повышения требований к энергетической эффективности строящихся и капитально ремонтируемых зданий, в том числе за счет повышения тепловой защиты наружных ограждений. Мы же топчемся на месте, пытаясь обосновать экономическую нецелесообразность таких решений. В отношении малоэтажных и одноквартирных зданий оказалось еще хуже – по постановлению правительства РФ № 145 4 от 5 марта 2007 года эти здания выпали из-под контроля экспертизы и стройнадзора, что, безусловно, неправильно и позволяет застройщику игнорировать применение энерго­сберегающих решений при их строительстве.

Повышение энергоэффективности российского жилого фонда

Для ликвидации этого отставания специалистами НП «АВОК» предложен ряд мероприятий в области нормирования, проектирования и экспертизы для обеспечения строительства энергоэффективных зданий [3, 4], которые следуют из обязательств выполнения Постановления Правительства России от 25 января 2011 года № 18 «Об утверждении Правил установления требований энергетической эффективности для зданий». Выполнение этих мероприятий позволит нашей стране к 2020 году ликвидировать отставание от передовых стран Европы в области энергетической эффективности строящихся зданий. Но остается проблема с существующими зданиями, на отопление которых тратится неизмеримо большее количество энергии, чем на новое строительство.

В настоящее время при проведении капитального ремонта существующих зданий внедрение энергоэффективных материалов и технологий сдерживается некоторым удорожанием строительства. Однако, как показывают расчеты, это удорожание в разы компенсируется экономией, полученной в период жизненного цикла эксплуатации домов [5, 6].

Критерий стоимости жизненного цикла товара или созданного в результате выполнения работы объекта включает в себя расходы на проектирование, монтаж, последующее обслуживание, эксплуатацию в течение срока службы, ремонт, утилизацию созданного в результате выполнения работы объекта. Несмотря на возможное увеличение первоначальной стоимости капремонта, за счет существенного сокращения операционных расходов на стадии эксплуатации здания, которые в среднем составляют 75 % от общего жизненного цикла жилого дома, расширяются горизонты реализации энергосберегающих решений.

Литература

1 По предыдущему СНиП 23-01-99 с 1966 по 1980 годы.

2 Принимается по СП 60.13330.2012 «Отопление, вентиляция и кондиционирование. Актуализированная редакция СНиП 41-01–2003». До изменений 1997 года предыдущей редакции СНиП 2.04.05–91* было 18°C. Такая же температура была указана в Приложении 1 СНиП 2.04.07–86* «Тепловые сети» с изменениями 12 октября 2001 года до появления новой редакции СНиП 41-02–2003.

3 Из СП 131.13330.2012 (действует с 1 января 2013 года).

4 Постановление Правительства РФ от 5 марта 2007 года № 145 «О порядке организации и проведения государственной экспертизы проектной документации и результатов инженерных изысканий».

Источник

Гсоп что это такое

ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ

THERMAL PERFORMANCE OF THE BUILDINGS

Дата введения 2013-07-01

Предисловие

Сведения о своде правил

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

3 ПОДГОТОВЛЕН к утверждению Департаментом архитектуры, строительства и градостроительной политики

5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)

ВНЕСЕНА опечатка, опубликованная в официальном издании (М.: Минрегион России, 2012 год)

Опечатка внесена изготовителем базы данных

Изменение N 1 внесено изготовителем базы данных по тексту М.: Стандартинформ, 2018

Введение

Настоящий свод правил разработан с целью повышения уровня безопасности людей в зданиях и сооружениях и сохранности материальных ценностей в соответствии с Федеральным законом от 30 декабря 2009 г. N 384-ФЗ «Технический регламент о безопасности зданий и сооружений», повышения уровня гармонизации нормативных требований с европейскими и международными нормативными документами, применения единых методов определения эксплуатационных характеристик и методов оценки.

В разработке настоящего документа принимали участие: канд. техн. наук Н.П.Умнякова, д-р техн. наук В.Г.Гагарин, кандидаты техн. наук В.В.Козлов, И.Н.Бутовский (НИИСФ РААСН), канд. техн. наук Е.Г.Малявина (МГСУ), канд. техн. наук О.А.Ларин (ОАО «КТБ ЖБ»), канд. техн. наук B.C.Беляев (ОАО ЦНИИЭП жилища).

Изменение N 1 к СП 50.13330.2012 подготовлено авторским коллективом НИИСФ РААСН (д-р техн. наук В.Г.Гагарин, канд. техн. наук В.В.Козлов, канд. техн. наук А.Ю.Неклюдов, канд. техн. наук П.П.Пастушков, канд. техн. наук Д.Ю.Желдаков, канд. техн. наук Н.П.Умнякова).

1 Область применения

Нормы не распространяются на тепловую защиту:

жилых и общественных зданий, отапливаемых периодически (менее трех дней в неделю) или сезонно (непрерывно менее трех месяцев в году);

временных зданий, находящихся в эксплуатации не более двух отопительных сезонов;

теплиц, парников и зданий холодильников;

зданий, строений, сооружений, которые в соответствии с законодательством Российской Федерации отнесены к объектам культурного наследия (памятникам истории и культуры);

Настоящие нормы при строительстве и реконструкции существующих зданий, имеющих архитектурно-историческое значение, применяются в каждом конкретном случае с учетом их исторической ценности на основании решений органов власти и согласования с органами государственного контроля в области охраны памятников истории и культуры.

2 Нормативные ссылки

В настоящем своде правил использованы нормативные ссылки на следующие документы:

ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 8736-2014 Песок для строительных работ. Технические условия

ГОСТ 10832-2009 Песок и щебень перлитовые вспученные. Технические условия

ГОСТ 24816-2014 Материалы строительные. Метод определения равновесной сорбционной влажности

ГОСТ 25820-2014 Бетоны легкие. Технические условия

ГОСТ 26253-2014 Здания и сооружения. Метод определения теплоустойчивости ограждающих конструкций

ГОСТ 30494-2011 Здания жилые и общественные. Параметры микроклимата в помещениях

ГОСТ 32496-2013 Заполнители пористые для легких бетонов. Технические условия

ГОСТ Р 33929-2016* Полистиролбетон. Технические условия

СП 60.13330.2016 «СНиП 41-01-2003 Отопление, вентиляция и кондиционирование воздуха»

СП 106.13330.2012 «СНиП 2.10.03-84 Животноводческие, птицеводческие и звероводческие здания и помещения» (с изменением N 1)

СП 109.13330.2012 «СНиП 2.11.02-87 Холодильники» (с изменениями N 1, 2)

СП 118.13330.2012 «СНиП 31-06-2009 Общественные здания и сооружения» (с изменениями N 1, 2)

СП 131.13330.2012 «СНиП 23-01-99* Строительная климатология» (с изменениями N 1, 2)

СП 230.1325800.2015 Конструкции ограждающие зданий. Характеристики теплотехнических неоднородностей (с изменением N 1)

СП 345.1325800.2017 Здания жилые и общественные. Правила проектирования тепловой защиты

СанПиН 2.1.2.2645-10 Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях

СанПиН 2.2.4.548-96 Гигиенические требования к микроклимату производственных помещений

3 Термины и определения

В настоящем своде правил применены следующие термины с соответствующими определениями:

3.1 влажностное состояние ограждающей конструкции: Состояние ограждающей конструкции, характеризующееся влажностью материалов, из которых она состоит.

3.2 влажностный режим помещения: Совокупность состояний влажности воздуха в помещении.

3.3 воздухопроницаемость ограждающей конструкции: Физическое явление, заключающееся в фильтрации воздуха в ограждающей конструкции, вызванной перепадом давления воздуха. Физическая величина, численно равная массе воздуха усредненной по площади поверхности ограждающей конструкции, прошедшего через единицу площади поверхности ограждающей конструкции при наличии перепада давления воздуха.

3.4 защита от переувлажнения ограждающей конструкции: Мероприятия, обеспечивающие влажностное состояние ограждающей конструкции, при котором влажность материалов, ее составляющих, не превышает нормируемых значений.

3.5 зона влажности района строительства: Характеристика района территории Российской Федерации, на котором осуществляется строительство, с точки зрения влажности воздуха и выпадения осадков.

3.6 класс энергосбережения: Характеристика энергосбережения здания, представленная интервалом значений удельной характеристики расхода тепловой энергии на отопление и вентиляцию здания, измеряемая в процентах от базового нормируемого значения.

3.7 коэффициент остекленности фасада здания: Отношение площадей светопроемов к суммарной площади наружных ограждающих конструкций фасада здания, включая светопроемы.

3.8 коэффициент теплотехнической однородности фрагмента ограждающей конструкции: Безразмерный показатель, численно равный отношению значения приведенного сопротивления теплопередаче к условному сопротивлению теплопередаче фрагмента ограждающей конструкции.

микроклимат помещения: Состояние внутренней среды помещения, оказывающее воздействие на человека, характеризуемое показателями температуры воздуха и ограждающих конструкций, влажностью и подвижностью воздуха.

оптимальные параметры микроклимата помещений: Сочетание значений показателей микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают нормальное тепловое состояние организма при минимальном напряжении механизмов терморегуляции и ощущение комфорта не менее чем у 80% людей, находящихся в помещении.

3.12 показатель компактности здания: Отношение общей площади внутренней поверхности наружных ограждающих конструкций здания к заключенному в них отапливаемому объему.

3.13 приведенное сопротивление теплопередаче фрагмента ограждающей конструкции: Физическая величина, характеризующая усредненную по площади плотность потока теплоты через фрагмент теплозащитной оболочки здания в стационарных условиях теплопередачи, численно равная отношению разности температур по разные стороны фрагмента к усредненной по площади плотности потока теплоты через фрагмент.

3.14 продолжительность отопительного периода: Расчетный период времени работы системы отопления здания, представляющий собой среднее статистическое число суток в году, когда средняя суточная температура наружного воздуха устойчиво равна и ниже 8°С или 10°С в зависимости от вида здания.

3.15 расход тепловой энергии на отопление и вентиляцию за отопительный период: Суммарное количество тепловой энергии, необходимое для отопления и вентиляции объекта в течение отопительного периода.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Серия дома (годы строительства)Количество обсл-
дованных зданий
Удельный расход тепловой энергии на отопление здания, кВт•ч/м 2Отношение qот.факт.год /qот.тр.год
qот.факт.годqот.тр.год
II-49/9 (1962–1980)9641901871,02
II-49/9 (20082009) после капремонта7163861,90
II 18-01/12 (1966–1973)9731941851,05
II 18-01/12 (20082009) после капремонта31164951,73
П-30/12 и 14 (1980–1984)141891801,05
П-46/9 и 14 (1988–1999)181811880,96
П-46М/7 и 12 (2001–2002)8152971,57
КОПЭ/18 и 22 (1988–1998)201921950,98
КОПЭ/18 и 22 (1984–1998)**91911950,98
КОПЭ 2000 (20022009)**31591061,50
П-3/10-17 (1990–1995)161501570,96
П-3М/16,17 (1999)41401590,88
П-3М/12-17 (2001–2002)8142861,65
П-3/16 (1976–1982)**31861571,18
П-3М/14-17 (2005–2009)**5164861,91
П-44/16 (1980–1981)151791890,95
П-44/16*** (1986–1990)71611670,96
П-44/10-17 (1991–1996)111501580,95
П-44Т/10-17 (2001–2002)231561051,49
П-44/16*** (1982–1986)**61801890,95
П-44/16*** (1987–1990)**31921671,15
П-44/17 (1993–1995)**41861581,18
П-44Т/10-17 (2001–2002)**91811051,72
Средневзвешенное значение до 2000 года2 077190