движение электрона в однородном магнитном поле
Движение электрона в однородном и неоднородном магнитном поле.
В магнитном поле с индукцией на движущийся электрон действует сила
Лоренца . При произвольной ориентации векторов эта сила равна векторному произведению:
где – вектор скорости электрона.
Напряжённость магнитного поля — векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M. Обычно, обозначается символом Н. В системе СИ измеряется в амперах на метр (А/м). В вакууме напряжённость магнитного поля (Н) совпадает с вектором магнитной индукции (B) с точностью до коэффициента, в СИ.
Вектор силы Лоренца всегда направлен перпендикулярно вектору скорости, следовательно, величина скорости электрона, а значит и его энергия, в присутствии магнитного поля не меняются. Магнитное поле влияет только на траекторию движения заряженной частицы.
Рассмотрим частицу, скорость которой перпендикулярна вектору магнитной индукции. В этом случае движение является равномерным движением по окружности. Приравняем силу Лоренца и силу, действующую на частицу, движущийся по окружности радиусом B r :
Отсюда следует выражение для радиуса окружности, который называется ларморовским радиусом:
Рисунок 12 Траектории движения электрона и иона в магнитном поле. Скорости
частиц перпендикулярны силовым линиям магнитного поля.
Таким образом, если энергии электрона и иона равны, то радиус, по которому движется электрон значительно меньше, чем радиус иона, а направления вращения противоположны.
Частота вращения частицы по окружности:
Рисунок 13 Траектория движения заряженной частицы, влетающей под углом в магнитное поле.
Время одного оборота:
Если частица влетает в область магнитного поля под произвольным углом
, надо разложить вектор скорости на компоненты
и.
. Очевидно, что в этом случае движение происходит по винтообразной траектории. Компонента
обеспечивает круговое движение, а
равномерное прямолинейное движение в направлении
, с шагом
.
Однородное продольное магнитное поле при движении в нем параксиального пучка электронов способно создать электронное изображение некоторого объекта. Такое поле называют «длинной магнитной линзой».
Неоднородное аксиально-симметричное магнитное поле образует симметричную собирающую линзу, которая называется «короткой» или «тонкой магнитной линзой». На практике такая короткая линза может быть создана круглой катушкой, по виткам которой протекает ток. Качественно механизм фокусировки в магнитной линзе можно объяснить следующим образом. Пусть электрон влетает в линзу слева направо параллельно оси. В первый момент попадания электрона в поле линзы на него будет действовать только составляющая поля , которая вызовет вращение электрона по азимуту
.
Рис. 14. Тонкая магнитная линза
На рисунке это вращение направлено вперед, из плоскости чертежа. После появления азимутальной составляющей скорости , возникнет движение электрона в радиальном направлении, т.е. начнется фокусирующее действие магнитного поля за счет
. После перехода электрона во вторую половину линзы вращательная скорость начнет уменьшаться. В результате прохождения электрона через линзу его траектория окажется повернутой относительно исходной плоскости и пересечет ось линзы за счет действия фокусирующей силы.
Все три процесса совершаются в высоком вакууме. Пример схемы мощной электронной пушки:
Рис. 14. Схема мощной электронной пушки
Чертёж электроннолучевой сварочной установки:
Рис. 15 Разрез электронной пушки.
Плавление, испарение и удаление обрабатываемого материала происходит в результате высокой концентрации энергии. Тепло в заготовке обусловлено торможением электронов при встрече с поверхностью заготовки и превращением кинетической энергии движения электронов в тепловую.
Электронный луч характеризуется ускоряющим напряжением , током луча
и эффективным диаметром пятна фокусировки луча
в месте встречи луча с мишенью (заготовкой). Мощность луча
. Часть мощности, поглощаемая мишенью, определяется коэффициентом поглощения
, обычно 0,6-0,9. Средняя поверхностная плотность мощности (поток):
. Поток в центре источника:
, где
— коэффициент сосредоточенности источника. Энергия электрона при встрече с мишенью:
[эВ]
. Скорость электрона в месте встречи:
,
— масса электрона. В технологических установках
скорости света. Поглощённые электроны отдают энергию электронам мишени, а они затем атомам кристаллической решётки. Кинетическую энергию электронов бывает удобно характеризовать температурой. Как известно, средняя энергия связана с температурой электронов следующим образом:
Где постоянная Больцмана,
Если .
1. Определение электронного луча, устройство электронной пушки.
2. Движение электронов в электронной пушке.
3. Вакуум – определение, высокий, средний и низкий вакуум.
4. Основные виды заряженных частиц и их характеристики.
5. Основные характеристики электрических и магнитных полей и способы их описания.
6. Движение заряженных частиц в однородном и неоднородном электрическом поле, единицы измерения энергии.
7. Принципы электронной оптики.
8. Сходства и различия электронной оптики и обычной.
9. Электростатические линзы.
10. Движение заряженных частиц в однородных магнитных полях.
11. Фокусирующее действие неоднородного магнитного поя.
12. Конструкции магнитных линз.
13. Явления термоэлектронной эмиссии и работа выхода электрона.
14. Закон Ленгмюра и формула Дешмана – Стюарта.
15. Основные параметры электронного луча.
16. Энергия и скорость электронов при встрече с мишенью
17. Геометрические параметры электронного луча, наименьший диаметр луча.
Движение электрона в однородном магнитном поле
В некоторых электронных приборах используется влияние магнитного поля на движущиеся в нем электроны.
В § 3-2, в было получено выражение (3-6) для силы, с которой однородное магнитное поле действует на электрон, движущийся перпендикулярно направлению поля. Величина этой силы пропорциональна произведению магнитной индукции В, заряда электрона и скорости его движения v в направлении, перпендикулярпом направлению поля, т. е.
Там же было установлено, что направление этой силы определяется по правилу левой руки.
Из выражения силы (3-6) следует, что при сила
, т. е. магнитное поле на неподвижный электрон не действует. Так как направление силы F перпендикулярно направлению скорости движения электрона, то работа, совершаемая ею, равна нулю. Таким образом, энергия электрона и величина его скорости остаются неизменными, а изменяется только направление движения электрона.
Если на электрон действует только магнитное поле, то он будет перемещаться по окружности радиуса (рис. 13-4), расположенной в плоскости, перпендикулярной направлению ноля.
Сила F является центростремительной и уравновешивается центробежной силой электрона .
Так как эти силы равны, то можно написать
откуда определяется радиус, окружности
Отношение массы электрона к его заряду постоянно, следовательно, радиус окружности пропорционален скорости движения электрона и обратно пропорционален магнитной индукции поля.
Рис. 13-4. Движение электрона в магнитном поле при начальной скорости v в плоскости, перпендикулярной вектору магнитной индукции поля.
Рис. 13-5. Движение электрона в магнитном поле при начальной скорости, направленной под острым углом к вектору магнитной индукции поля.
Если начальная скорость электрона не перпендикулярна направлению поля, то ее следует разложить на две составляющие: нормальную, т. е. перпендикулярную к направлению поля и продольную, т. е. совпадающую по направлению с полем
(рис. 13-5).
Первая составляющая скорости обусловливает движение электрона по окружности в плоскости, перпендикулярной к направлению поля, вторая составляющая
обусловливает равномерное и прямолинейное движение электрона в направлении поля, таким образом, движение электрона происходит по винтовой линии (рис. 13-5).
Движение электрона в однородном магнитном поле
Ольга Александровна Косарева
Шпаргалка по общей электротехники и электроники
1. ИСТОРИЯ ЭЛЕКТРОНИКИ
Фундамент для возникновения и развития электроники был заложен работами физиков в XVIII и XIX вв. Первые в мире исследования электрических разрядов в воздухе были осуществлены в XVIII в. в России академиками Ломоносовым и Рихманом и независимо от них американским ученым Франклином. Важным событием явилось открытие электрической дуги академиком Петровым в 1802 г. Исследования процессов прохождения электрического тока в разреженных газах проводили в прошлом веке в Англии Крукс, Томсон, Тоунсенд, Астон, в Германии Гейслер, Гитторф, Плюккер и др. В 1873 г. Лодыгин изобрел первый в мире электровакуумный прибор – лампу накаливания. Независимо от него несколько позже такую же лампу создал и усовершенствовал американский изобретатель Эдисон. Электрическая дуга впервые была применена для целей освещения Яблочковым в 1876 г. В 1887 г. немецкий физик Герц открыл фотоэлектрический эффект.
Термоэлектронная эмиссии была открыта в 1884 г. Эдисоном. В 1901 г. Ричардсон провел детальное исследование термоэлектронной эмиссии. Первая электронно-лучевая трубка с холодным катодом была создана в 1897 г. Брауном (Германия). Использование электронных приборов в радиотехнике началось с того, что в 1904 г. английский ученый Флеминг применил двухэлектродную лампу с накаленным катодом для выпрямления высокочастотных колебаний в радиоприемнике. В 1907 г. американский инженер Ли-де-Форест ввел в лампу управления сетку, т. е. создал первый триод. В том же году профессор Петербургского технологического института Розинг предложил применить электронно-лучевую трубку для приема телевизионных изображений и в последующие годы осуществил экспериментальное подтверждение своих идей. В 1909-191 1 гг. в России Коваленков создал первые триоды для усиления дальней телефонной связи. Важное значение имело изобретение подогревного катода Чернышевым в 1921 г. В 1926 г. Хелл в США усовершенствовал лампы с экранирующей сеткой, а в 1930 г. он предложил пентод, ставший одной из наиболее распространенных ламп. В 1930 г. Кубецкий изобрел фотоэлектронные умножители, в конструкции которых значительный вклад внесли Векшин-ский и Тимофеев. Первое предложение о специальных передающих телевизионных трубках сделали независимо друг от друга в 1930–1931 гг. Константинов и Катаев. Подобные же трубки, названные иконоскопами, построил в США Зворыкин.
Изобретение таких трубок открыло новые широкие возможности для развития телевидения. Несколько позднее в 1933 г. Шмаков и Тимофеев предложили новые более чувствительные передающие трубки (супериконоскопы или суперэмитроны), позволившие вести телевизионные передачи без сильного искусственного освещения. Русский радиофизик Рожановский в 1932 г. предложил создать новые приборы с модуляцией электронного потока по скорости. По его идеям Арсеньева и Хейль в 1939 г. построили первые такие приборы для усиления и генерации колебаний СВЧ, названные пролетными клистронами. В 1940 г. Коваленко изобрел более простой отражательный клистрон, который широко используется для генерирования колебаний СВЧ.
Большое значение для техники дециметровых волн имели работы Девяткова, Данильцева, Хохлова и Гуревича, которые в 1938–1941 гг. сконструировали специальные триоды с плосковыми дисковыми электродами. По этому принципу в Германии были выпущены металлокерамические и в США ма-ячковые лампы.
2. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ
По сравнению с электронными лампами у полупроводниковых приборов имеются существенные достоинства:
1) малый вес и малые размеры;
2) отсутствие затрат энергии на накал;
3) более высокая надежность в работе и большой срок службы (до десятка тысяч часов);
4) большая механическая прочность (стойкость к тряске, ударам и другим видам механических перегрузок);
5) различные устройства (выпрямители, усилители, генераторы) с полупроводниковыми приборами имеют высокий КПД, так как потери энергии в самих приборах незначительны;
6) маломощные устройства с транзисторами могут работать при очень низких питающих напряжениях;
7) принципы устройства и работы полупроводниковых приборов использованы для создания нового важного направления развития электроники – полупроводниковой микроэлектроники.
Вместе с тем полупроводниковые приборы в настоящее время обладают следующими недостатками:
1) параметры и характеристики отдельных экземпляров приборов данного типа имеют значительный разброс;
2) свойства и параметры приборов сильно зависят от температуры;
3) наблюдается изменение свойств приборов с течением времени (старение);
4) их собственные шумы в ряде случаев больше, нежели у электронных приборов;
5) большинство типов транзисторов непригодно для работы на частотах выше десятков мегагерц;
6) входное сопротивление у большинства транзисторов значительно меньше, чем у электронных ламп;
7) транзисторы пока еще не изготавливают для таких больших мощностей, как электровакуумные приборы;
8) работа большинства полупроводниковых приборов резко ухудшается под действием радиоактивного излучения.
Транзисторы успешно применяются в усилителях, приемниках, передатчиках, генераторах, телевизорах, измерительных приборах, импульсных схемах, электронных счетных машинах и др. Использование полупроводниковых приборов дает огромную экономию в расходовании электрической энергии источников питания и позволяет во много раз уменьшить размеры аппаратуры.
Ведутся исследования по улучшению полупроводниковых приборов по применению для них новых материалов. Созданы полупроводниковые выпрямители на токи в тысячи ампер. Применение кремния вместо германия позволяет эксплуатировать приборы при температуре до 125″ С и выше. Созданы транзисторы для частот до сотен мегагерц и более, а также новые типы полупроводниковых приборов для сверхвысоких частот. Замена электронных ламп полупроводниковыми приборами успешно осуществлена во многих радиотехнических устройствах. Промышленность выпускает большое количество полупроводниковых диодов и транзисторов различных типов.
3. ДВИЖЕНИЕ ЭЛЕКТРОНОВ В ОДНОРОДНОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ
Взаимодействие электронов с электрическим полем является основным процессом в электровакуумных и полупроводниковых приборах.
Если разность потенциалов между электродами U, а расстояние между ними d, то напряженность поля равна: Е= U/d. Для однородного электрического поля величина Е является постоянной.
Пусть из электрода, имеющего более низкий потенциал, например из катода, вылетает электрон с кинетической энергией W0 и начальной скоростью v0, направленной вдоль силовых линий поля. Поле действует на электрон и ускоряет его движение к электроду, имеющему более высокий потенциал, например к аноду. То есть электрон притягивается к электроду с более высоким потенциалом. В данном случае поле называется ускоряющим.
В ускоряющем поле происходит увеличение кинетической энергии электрона за счет работы поля по перемещению электрона. В соответствии с законом сохранения энергии увеличение кинетической энергии электрона W-W0 равно работе поля, которая определяется произведением перемещаемого заряда е на пройденную им разность потенциалов U: W-W! = mv 2 /2 – mv 2 0/2 = eU. Если начальная скорость электрона равна нулю, то W0 = mv 2 0/2 = 0 и W=mv 2 /2 = eU, т. е. кинетическая энергия электрона равна работе поля. Скорость электрона в ускоряющем поле зависит от пройденной разности по’тенциалов.
Движение электронов в однородном магнитном поле
Рассмотрим движение электрона в однородном магнитном поле. Если неоднородность поля незначительна, или если нет необходимости в получении точных количественных оценок, то для изучения движения в неоднородном поле также можно пользоваться более простыми законами, полученными для однородного поля.
Пусть электрон влетает в однородное магнитное поле с начальной скоростью V0, направленной перпендикулярно магнитным силовым линиям, рис. 5. В этом случае на электрон действует сила Лоренца F, которая перпендикулярна вектору V0 и вектору магнитной индукции В, а численно равна:
.
При V0=0 сила F также равна нулю (на неподвижный электрон магнитное поле не действует). Сила F искривляет траекторию электрона в дугу окружности. Так как сила F действует под прямым углом к скорости V0, она не совершает работы. Энергия электрона и его скорость не изменяются. Изменяется лишь направление движения.
Направление движения электрона определяется следующему мнемоническому правилу: поворот электрона совпадает с вращательным движением винта, который ввинчивается в направлении магнитных силовых линий. Это правило часто называют правилом буравчика.
Известно, что движение тела по окружности с постоянной скоростью происходит под действием направленной к центру (центростремительной) силы. В нашем случае в качестве центростремительной выступает сила Лоренца F. Из механики известно, что центростремительная сила может быть рассчитана по формуле:
,
где r – радиус окружности вращения электрона. Приравняв центростремительную силу, получаемую из последнего выражения к выражению для силы Лоренца, получим:
.
Откуда найдем радиус:
.
Чем больше скорость электрона, тем больше и радиус окружности, описываемой им в магнитном поле. Выйдя за пределы магнитного поля, электрон летит равномерно и прямолинейно по инерции. Если же радиус окружности мал, то электрон может описывать в магнитном поле замкнутые окружности.
Результирующее движение электрона происходит по винтовой линии (по спирали). В зависимости о значений B, Vx и Vy, эта спираль более или менее растянута. Радиус спирали легко определить по последней формуле, подставив в нее скорость Vy.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет