Что значит резисторы закорочены
Анализ неисправности компонентов
Работа технического специалиста часто включает в себя «поиск и устранение неисправностей» (troubleshooting, обнаружение и устранение проблемы) в неисправных схемах. Хорошее устранение неисправностей – это требующие больших усилий и вознаграждаемые усилия, требующие глубокого понимания основных концепций, способности формулировать гипотезы (предполагаемые объяснения, почему схема не работает), способности оценивать ценность различных гипотез на основе их вероятности (насколько одна конкретная причина может быть вероятнее другой), а также творческое начало в применении решения для исправления проблемы.
Несмотря на то, что эти навыки можно преобразовать в научную методологию, большинство опытных специалистов по устранению неполадок согласятся, что устранение неисправностей требует особого искусства, и что для полного развития этого искусства могут потребоваться годы опыта.
Обязательный навык – это интуитивное понимание того, как неисправности компонентов влияют на цепи в различных конфигурациях. Мы рассмотрим некоторые влияния неисправностей компонентов как в последовательных, так и в параллельных цепях здесь, а затем в большей степени в конце главы «Последовательно-параллельные комбинированные цепи».
Анализ неисправностей в простой последовательной цепи
Рисунок 1 – Простая последовательная схема
Когда все компоненты в этой цепи функционируют надлежащим образом, мы можем математически определить все токи и падения напряжения:
Рисунок 2 – Таблица параметров последовательной цепи
Закороченные компоненты в последовательной цепи
Теперь предположим, что R2 выходит из строя, создавая короткое замыкание. Короткое замыкание означает, что резистор теперь работает как простой кусок провода с небольшим сопротивлением или без него. Схема будет вести себя так, как если бы к R2 была подключена «перемычка» (если вам интересно, «перемычка» – это общий термин для временного подключения проводов в цепи). Что вызывает короткое замыкание в R2, в этом примере для нас не важно; нам интересно только его влияние на схему:
Рисунок 3 – Закороченный компонент в последовательной цепи
Если R2 закорочен либо перемычкой, либо из-за неисправности внутренней части резистора, общее сопротивление цепи уменьшится. Поскольку выходное напряжение батареи является постоянным (по крайней мере, в нашем идеальном моделировании), уменьшение общего сопротивления цепи означает, что общий ток цепи должен увеличиться:
Рисунок 4 – Таблица параметров последовательной цепи в случае закороченного компонента
Когда ток в цепи увеличивается с 20 мА до 60 мА, также увеличивается падение напряжения на R1 и R3 (которые не изменили сопротивления), поскольку на этих двух резисторах падают все 9 вольт. R2, обойденный очень низким сопротивлением перемычки, эффективно исключается из схемы, сопротивление между его выводами снижается до нуля. Таким образом, падение напряжения на R2 даже при увеличенном общем токе равно нулю вольт.
Оборванные компоненты в последовательной цепи
И напротив, если R2 выйдет из строя, создав «разрыв» (сопротивление возрастет почти до бесконечности), это также вызовет сильные изменения в остальной части схемы:
Рисунок 5 – Оборванный компонент в последовательной цепи Рисунок 6 – Таблица параметров последовательной цепи в случае оборванного компонента
Когда резистор R2 имеет бесконечное сопротивление, а общее сопротивление является суммой всех отдельных сопротивлений в последовательной цепи, общий ток уменьшается до нуля. При нулевом токе цепи отсутствует ток, вызывающий падение напряжения на R1 или R3. На выводах R2, наоборот, появится полное напряжение питания цепи.
Анализ неисправностей в простой параллельной цепи
Мы можем применить тот же метод анализа до/после и к параллельным цепям. Сначала мы определяем, как должна вести себя исправная параллельная цепь.
Рисунок 7 – Простая параллельная схема Рисунок 8 – Таблица параметров параллельной цепи
Оборванные компоненты в параллельной цепи
Предположим, что в этой параллельной цепи R2 «оборван», последствия будут следующими:
Рисунок 9 – Оборванный компонент в параллельной цепи Рисунок 10 – Таблица параметров параллельной цепи в случае оборванного компонента
Обратите внимание, что в этой параллельной цепи оборванная ветвь влияет только на ток через эту ветвь и общий ток цепи. Общее напряжение, одинаково распределяемое между всеми компонентами в параллельной цепи, будет одинаковым для всех резисторов. Из-за того, что источник напряжения имеет тенденцию поддерживать неизменное напряжение, его напряжение не изменится и, будучи подключенным параллельно со всеми резисторами, он будет поддерживать все напряжения на резисторах такими же, как и раньше: 9 вольт. Поскольку это напряжение является единственным общим параметром в параллельной цепи, а другие резисторы не изменили значения сопротивлений, их токи остаются неизменными.
Применительно к домашнему освещению
Вот что происходит в схеме домашнего освещения: все лампы получают рабочее напряжение от силовой проводки, проложенной параллельно. Включение и выключение одной лампы (одна ветвь в этой параллельной цепи разрывается и восстанавливается) не влияет на работу других ламп в комнате, только на ток в этой одной лампе (цепь ветви) и на общий ток, питающий все лампы в комнате.
Рисунок 11 – Домашнее освещение
Закороченные компоненты в параллельной цепи
В идеальном случае (с идеальными источниками напряжения и соединительным проводом с нулевым сопротивлением) закороченные резисторы в простой параллельной цепи также не будут влиять на то, что происходит в других ветвях цепи. В реальной жизни эффект не совсем такой, и мы увидим почему на следующем примере:
Рисунок 12 – Закороченный компонент в параллельной цепи Рисунок 13 – Таблица параметров параллельной цепи в случае закороченного компонента
Закороченный резистор (сопротивление 0 Ом) теоретически будет потреблять бесконечный ток от любого конечного источника напряжения (I = E/0). В этом случае нулевое сопротивление R2 также уменьшает общее сопротивление цепи до нуля ом, увеличивая общий ток до бесконечности. Однако пока источник напряжения остается стабильным на уровне 9 вольт, токи других ветвей (IR1 и IR3) останутся неизменными.
Предположения о неидеальности
Однако критическое допущение в этой «идеальной» схеме состоит в том, что источник питания будет поддерживать неизменное номинальное напряжение при подаче бесконечного значения тока на короткозамкнутую нагрузку. Это просто нереально. Даже если короткое замыкание имеет небольшое сопротивление (в отличие от абсолютно нулевого сопротивления), ни один реальный источник напряжения не может выдерживать огромную перегрузку по току и одновременно поддерживать стабильное напряжение.
Это в первую очередь связано с внутренним сопротивлением, присущим всем источникам электроэнергии, которое связано с физическими свойствами материалов, из которых они построены:
Рисунок 14 – Неидеальный источник напряжения
Эти внутренние сопротивления, какими бы маленькими они ни были, превращают нашу простую параллельную схему в последовательно-параллельную комбинированную схему. Обычно внутреннее сопротивление источников напряжения достаточно мало, чтобы им можно было спокойно пренебречь, но когда возникают большие токи, появляющиеся из-за короткого замыкания компонентов, влияние внутреннего сопротивления источника становится очень заметным.
В этом случае закороченный R2 приведет к тому, что почти всё напряжение упадет на внутреннем сопротивлении батареи, при этом почти не останется напряжения на резисторах R1, R2 и R3:
Рисунок 15 – Закороченный компонент в параллельной цепи при неидеальных условиях Рисунок 16 – Таблица параметров параллельной цепи в случае закороченного компонента при неидеальных условиях
Достаточно сказать, что преднамеренное прямое короткое замыкание на клеммах любого источника напряжения – плохая идея. Даже если возникающий в результате сильный ток (тепло, вспышки, искры) не причинит вреда людям, находящимся поблизости, источник напряжения, скорее всего, будет поврежден, если только он не был специально разработан для защиты от коротких замыканий, чего нет у большинства источников напряжения.
В конечном итоге, в этой книге я проведу вас через анализ цепей без использования каких-либо значений, то есть через анализ последствий неисправностей компонентов в цепи, не зная точно, сколько вольт выдает батарея, сколько ом сопротивления в ней, в каждом резисторе и т.д. Этот раздел служит вводным шагом к такому анализу.
В то время как обычное применение закона Ома и правил последовательных и параллельных цепей выполняется с числовыми значениями («количественно»), этот новый вид анализа без точных чисел я называю качественным анализом. Другими словами, мы будем анализировать качества эффектов в цепи, а не их точные количества. Результатом для вас станет гораздо более глубокое интуитивное понимание работы электрических схем.
Что значит резисторы закорочены
Анализ цепей с неисправными компонентами
Любому радиолюбителю очень важно интуитивное понимание того, как неисправные компоненты влияют на различные конфигурации цепей. В данной статье мы исследуем только некоторые эффекты воздействия неисправных компонентов на последовательные и параллельные цепи, более подробно эта тема будет раскрыта позднее, в статьях про последовательно-параллельные цепи.
Давайте начнем с простой последовательной цепи:
Если все компоненты функционируют должным образом, то мы математически можем определить все токи и напряжения этой схемы:
При закороченном резисторе R2 общее сопротивление цепи уменьшится. Так как напряжение, производимое батареей, является величиной постоянной, снижение общего сопротивления вызовет увеличение общей силы тока.
Поскольку сила тока в цепи увеличилась с 20 до 60 миллиампер, увеличится и напряжение на резисторах R1 и R3 (которые не изменили своего сопротивления). Резистор R2, закороченный перемычкой, фактически устраняется из цепи, так как его сопротивление равно нулю. Напряжение на этом резисторе так же будет иметь нулевое значение.
Если резистор R2 будет не замкнут а «оборван», то его сопротивление увеличится до бесконечности:
Аналогичный метод анализа можно применить и к параллельной цепи. Для начала мы проанализируем «исправную» параллельную цепь:
Если предположить, что резистор R2 в этой цепи «оборван», то последствия будут следующими:
Такая ситуация аналогична домашней системе освещения, в которой все лампочки получают рабочее напряжение от силовых проводов, смонтированных параллельным способом. Включение и выключение лампочки в одной комнате этой системы (включается и выключается одна ветвь параллельной цепи) не влияет на работу ламп в других комнатах. Данное действие затрагивает только ток этой лампы, и общий ток системы освещения:
Теперь давайте рассмотрим короткое замыкание одного из резисторов в простой параллельной цепи. В идеальном случае (с идеальным источником напряжения и нулевым сопротивление соединительных проводов), короткозамкнутый резистор в одной из ветвей этой цепи не повлияет на другие ее ветви. Но это в идеале, в реальности же эффект будет не совсем таким, а почему, мы увидим в следующих примерах:
Короткозамкнутый резистор (сопротивление которого равно 0 Ом) теоретически потребляет бесконечный ток от любого источника напряжения (I = U/0). В нашем случае нулевое сопротивление резистора R2 уменьшает общее сопротивление цепи до нуля, увеличивая тем самым общую силу тока до бесконечности. Пока источник напряжения поддерживает свою величину на уровне 9 вольт, токи оставшихся двух ветвей цепи (R1 и R3) не изменятся.
Отличительной особенностью этой «идеальной» схемы является то, что при подаче бесконечного количества электронов (тока) на короткозамкнутую нагрузку, напряжение ее источника питания остается неизменным. В реальной жизни такое невозможно. Даже если короткозамкнутый резистор имеет небольшое сопротивление (не нулевое), никакой реальный источник напряжения не сможет одновременно выдержать огромные перегрузки по току и поддержать постоянную величину напряжения. Причиной всему этому служит внутреннее сопротивление, которое является неотъемлемой частью всех без исключения источников электрической энергии:
Внутренние сопротивления источников питания превращают простые параллельные цепи в последовательно-параллельные. Такие сопротивления как правило очень малы чтобы оказывать заметное влияние на работу схемы, но при больших токах, которые возникают вследствие замыкания компонентов, их влияние многократно увеличивается. В нашем случае, короткое замыкание резистора R2 приведет к тому, что практически все напряжение сосредоточится на внутреннем сопротивлении источника, а резисторы R1, R2 и R3 останутся почти без напряжения:
В последующих статьях мы подведем вас к анализу схем с неизвестными величинами, т. е. к анализу последствий отказов компонентов схем, в которых вам неизвестны значения напряжений источников питания, сопротивлений резисторов и т.д. Данная статья служит первым шагом к такому анализу.
Короткое замыкание
Что такое короткое замыкание
Короткое замыкание (КЗ, англ. short curcuit) — незапланированное соединение точек цепи с различными потенциалами друг с другом или с другими электрическими цепями через пренебрежимо малое сопротивление. При этом образуется сверхток, значения которого на порядки превышают предусмотренные нормальными условиями работы.
Определение КЗ из «Элементарного учебника физики» Ландсберга
В результате короткого замыкания выходит из строя электрооборудование, происходят возгорания. О самых разрушительных последствиях коротких замыканий мы регулярно узнаем из новостных рубрик «Чрезвычайные происшествия». Что же именно происходит при КЗ? В результате чего они появляются? Какими могут быть последствия? Давайте рассмотрим подробнее эти и другие вопросы в приведенной ниже статье.
Как образуется короткое замыкание
Как мы помним из учебника физики за 8 класс, закон Ома для участка цепи определяется по формуле:
I — сила тока в цепи, А
R — сопротивление, Ом
Давайте рассмотрим вот такую схему
Если мы подключим настольную лампу EL к источнику тока Bat и замкнем ключ SA, то вольфрамовая нить лампы начнет разогреваться под тепловым воздействием тока. В этом случае значительная часть электрической энергии преобразуется в световую и тепловую.
А теперь покончим с лирическими отступлениями и замкнем два провода, которые идут на лампочку, через толстый провод AВ
Что будет дальше, если мы замкнем контакты ключа SA?
В результате ток пойдет по укороченному пути, минуя нагрузку. Короткий путь в данном случае и есть провод AB. Сопротивление провода АВ близко к нулю. В результате наша схема преобразуется в делитель тока. Согласно правилу делителя тока, если нагрузки соединены параллельно, то через нагрузку с меньшим сопротивлением побежит большая сила тока, а через нагрузку с большим значением сопротивления — меньшая сила тока. Так как провод АВ обладает почти нулевым сопротивлением, то через него потечет большая сила тока, согласно опять же закону Ома:
Как я уже сказал, в режиме КЗ сила тока достигает критических значений, превышающих допустимые для данной цепи.
Закон Джоуля-Ленца
Согласно закону Джоуля-Ленца, тепловое действие тока прямо пропорционально квадрату силы тока на данном участке электрической цепи
I — сила тока в этой цепи, А
Rн — сопротивление нагрузки, Ом
Это означает, что на проводе AB будет выделяться бешеное количество теплоты. Провод резко нагреется от температуры, а потом и сгорит. Все зависит от мощности источника питания.
То есть, если ток при коротком замыкании возрастет в 20 раз, то количество выделяющейся при этом теплоты — примерно в 400 раз! Вот почему бывшая еще мгновение назад мирной электроэнергия превращается в настоящее стихийное бедствие: горит проводка, расплавленный металл проводов поджигает находящиеся рядом предметы, возникают пожары.
Существуют еще запланированные и контролируемые КЗ, а также специальное замыкающее оборудование. Например, сварочные аппараты работают как раз на контролируемом КЗ, где требуется большая сила тока для плавки металла.
Основные причины короткого замыкания
Все многообразие причин возникновения коротких замыканий можно свести к следующим:
Нарушение изоляции вызывается как естественным износом, так и внешним вмешательством. Естественное старение элементов электросети ускоряется за счет длительного теплового воздействия тока (тепловое старение изоляции), агрессивных химических сред.
Внешние воздействия могут быть вызваны грызунами, насекомыми и другими животными. Сюда же относится и человеческий фактор. Это может быть «кривой» электромонтаж, либо несоблюдение техники электробезопасности.
Намного чаще короткое замыкание вызывается перегрузкой сети из-за подключения большого количества потребителей тока. Так, если совокупная мощность одновременно включенных в бытовую сеть электроприборов превышает допустимую нагрузку на проводку, с большой вероятностью произойдет короткое замыкание, так как сила тока в такой цепи начинает превышать допустимое значение. Такое явление можно часто наблюдать в домах со старой проводкой, где провода чаще всего алюминиевые и не рассчитаны на современные мощные электроприборы.
Ток короткого замыкания
Сверхток, образующийся в результате КЗ, называется током короткого замыкания. Как только произошло короткое замыкание в цепи, ток короткого замыкания достигает максимальных значений. После того, как провода начнут греться и плавиться, ток короткого замыкания идет на спад, так как сопротивление проводов в при нагреве возрастает.
Для источников ЭДС ток короткого замыкания может быть вычислен по формуле
Iкз — это ток короткого замыкания, А
E — ЭДС источника питания, В
Rвнутр. — внутреннее сопротивление источника ЭДС, Ом
Более подробно про ЭДС и внутреннее сопротивление читайте здесь.
Ниже на рисунке как раз изображен такой источник ЭДС в виде автомобильного аккумулятора с замкнутыми клеммами
Внутреннее сопротивление автомобильного аккумулятора может достигать значений в доли Ома. Теперь представьте, какой ток короткого замыкания будет течь через проводник, если закоротить им клеммы аккумулятора. Внутреннее сопротивление аккумулятора зависит от многих факторов. Возьмем среднее значение Rвнутр = 0,1 Ом. Тогда ток короткого замыкания будет равен Iкз =E/Rвнутр. = 12/0,1=120 Ампер. Это очень большое значение.
Виды коротких замыканий
В цепи постоянного тока
В цепи переменного тока
Трехфазное замыкание
Это когда три фазных провода коротнули между собой.
Трехфазное на землю
Здесь все три фазы соединены между собой, да еще и замкнуты на землю
Двухфазное
В этом случае любые две фазы замкнуты между собой
Двухфазное на землю
Любые две фазы замкнуты между собой, да еще и замкнуты на землю
Однофазное на землю
Однофазное на ноль
Эти две ситуации чаще всего бывают в ваших квартирах и домах, так как к простым потребителям идет два провода: фаза и ноль.
В трехфазных сетях наиболее часто происходит однофазное замыкание на землю — 60-70% всех коротких замыканий. Двухфазные КЗ составляют 20-25%. Двойное замыкание фаз на землю происходит в электросетях с изолированной нейтралью и составляет 10-15% всех случаев. До 3-5% занимают трехфазные КЗ, при которых происходит нарушение изоляции между всеми тремя фазами.
В электрических двигателях короткое замыкание чаще всего возникает между обмотками двигателя и его корпусом.
Последствия короткого замыкания
Во время КЗ температура в зоне контакта возрастает до нескольких тысяч градусов. Помимо воспламенения изоляции, расплавления и механических повреждений выключателей и розеток и возгорания проводки, следствием замыкания может стать выход из строя компьютерного и телекоммуникационного оборудования и линий связи, которые находятся рядом, вследствие сильного электромагнитного воздействия.
Но падение напряжения и выход из строя оборудования — не самое опасное последствие. Нередко короткие замыкания становятся причиной разрушительных пожаров, зачастую с человеческими жертвами и огромными экономическими потерями.
Из-за удаленности и большого сопротивления до места замыкания защитное оборудование может не сработать. Бывают ситуации, когда ток недостаточен для срабатывания защиты и отключения напряжения, но в месте КЗ его вполне хватает для расплавления проводов и возникновения источников возгорания. Поэтому, токи коротких замыканий очень важны для расчетов аварийных режимов работы.
Меры, исключающие короткое замыкание
Еще на заре развития электротехники появились плавкие предохранители. Принцип действия подобной защиты очень прост: под влиянием теплового действия тока предохранитель разрушается, тем самым размыкая цепь. Предохранители наиболее часто используются в бытовых электросетях и бытовых электроприборах, электрическом оборудовании транспортных средств и промышленном электрооборудовании до 1000 В. Встречаются они и в цепях с высоковольтным оборудованием.
Вот такие предохранители используются в цепях с малыми токами
вот такие плавкие предохранители вы можете увидеть в автомобилях
А вот эти большие предохранители используются в промышленности, и они уже рассчитаны на очень большие значения токов
Более сложную конструкцию имеют автоматические выключатели, оснащенные электромагнитными и/или тепловыми датчиками. Ниже на фото однофазный автоматический выключатель, а справа — трехфазный
Их принцип действия основан на размыкании цепи при превышении допустимых значений силы тока.
В быту мы чаще всего сталкиваемся со следующими устройствами защиты электросети:
Все вышеперечисленное защитное оборудование относится к устройствам вторичной защиты, действующим по инерционному принципу. На вводе бытовых электросетей наиболее часто устанавливаются автоматические защитные устройства, действующие по адаптивному принципу. Такие устройства можно увидеть возле счетчиков электроэнергии квартир, коттеджей, офисов.
В высоковольтных сетях защита чаще обеспечивается:
Большинства коротких замыканий можно избежать, если устранить основные причины их возникновения: своевременно ремонтировать или заменять изношенное оборудование, исключить вредные воздействия человека. Не допускать неправильных действий при монтажных и ремонтных работах, соблюдать СНИПы и правила техники безопасности.