Что значит правильная дробь
Какую дробь называют правильной в математике
Правильная дробь — что это такое в математике
Дробью в математике называют число, в состав которого входит одна либо несколько равных частей (или долей) от единицы.
Виды дробей в зависимости от формы записи:
Здесь число, которое расположено над чертой, является числителем. Под чертой расположен знаменатель. Числитель представляет собой делимое, а знаменатель играет роль делителя.
Правильная дробь — дробь с числителем, модуль которого меньше по сравнению с модулем знаменателя.
Неправильная дробь — дробь с числителем, модуль которого больше, чем модуль знаменателя, либо равен ему.
Любое число, которое является целым и не равно нулю, можно записать, как неправильную обыкновенную дробь. Знаменатель при этом будет равен 1.
Основное свойство дроби можно сформулировать таким образом: когда числитель и знаменатель, которые принадлежат одной дроби, умножают, либо делят на одно и то же число, дробь не поменяется, изменится лишь ее запись. К примеру:
1 5 = 1 × 2 5 × 2 = 2 10
Чем отличается правильная от неправильной и смешанной, как определить
Правильная дробь отличается тем, что имеет числитель, который меньше знаменателя.
В качестве наглядного примера можно записать правильные дроби:
Заметим, что во всех записанных случаях числитель меньше, чем знаменатель.
По сравнению с неправильной дробью правильная дробь всегда меньше 1. Тогда как неправильная дробь больше, либо равна 1.
Сравнение разных типов дробей:
Действия с правильными дробями, как найти
Правильные дроби можно встретить при решении множества задач по математике. Для них предусмотрены все действия, которые выполняют с обыкновенными дробями.
Приведение к общему знаменателю
Перед тем, как сравнить, сложить или вычесть дроби, требуется выполнить их преобразование. В результате арифметических действий дроби должны пробрести одинаковые знаменатели. К примеру, имеется пара дробей:
В результате знаменатели первой и второй дроби становятся одинаковыми и равными M. Допустимо заменить минимальное единое кратное при решении несложных примеров на какое-либо другое общее кратное. К примеру, таким кратным может стать произведение знаменателей.
Сравнение
С целью сравнения пары обыкновенных дробей необходимо выполнить операцию приведения их к единому знаменателю. Далее следует сравнить числители дробей, которые в итоге получились. Если числитель больше, то и дробь считается больше.
Далее необходимо привести дроби к знаменателю, равному 20.
3 4 = 15 20 ; 4 5 = 16 20
Сложение и вычитание
Прибавить одну обыкновенную дробь к другой обыкновенной дроби можно. Но перед этим требуется выполнить приведение этих дробей к единому знаменателю. После такой операции находят сумму числителей, а знаменатели оставляют без изменений.
1 2 + 1 3 = 3 6 + 2 6 = 5 6
НОК знаменателей для 2 и 3 составляет 6. Следует привести дробь 1 2 к знаменателю 6. Чтобы получить такой результат, необходимо выполнить умножение числителя и знаменателя на 3. В результате получим:
Затем требуется привести дробь 1 3 к аналогичному знаменателю. При этом нужно выполнить умножение числителя и знаменателя 2. Получим в итоге:
Похожий алгоритм действий предусмотрен для вычитания дробей. Перед тем, как посчитать их разность, следует привести дроби к общему знаменателю. Далее вычитают числители. Знаменатель при этом не меняется.
1 2 — 1 4 = 2 4 — 1 4 = 1 4
НОК знаменателей 2 и 4 составляет 4. Выполняя приведение дроби 1 2 к знаменателю 4, необходимо найти произведение числителя, знаменателя и числа 2. В результате получим:
Умножение и деление
При умножении двух обыкновенных дробей требуется выполнить умножение их числителей и знаменателей:
Рассмотрим частный случай умножения дроби на натуральное число. Для этого следует найти произведение числителя и данного числа, а знаменатель остается без изменений.
Когда числитель и знаменатель полученной дроби не являются взаимно простыми, необходимо такую дробь сократить:
5 8 · 2 5 = 10 40 = 1 4
В процессе деления одной обыкновенной дроби на другую требуется выполнить умножение первой дроби на дробь, которая является обратной для второй:
Возведение в степень и извлечение корня
Дроби можно возводить в степень. При этом необходимо выполнить арифметическое действие возведения в степень отдельно со знаменателем и числителем этой дроби:
2 3 3 = 2 3 3 3 = 8 27
Из дробей можно извлекать корень. Для того чтобы справиться с подобной задачей, необходимо извлечь заданный корень отдельно из числителя и знаменателя:
Перевод других видов дробей в правильную форму
Для того чтобы перевести неправильную дробь в правильную, либо для выполнения обратного действия, требуется соблюдать определенный порядок. Прямой перевод невозможен. Результатом подобной операции будет являться преобразованная запись, которая содержит в себе целую, а также дробную части. Последовательность действий:
С помощью достаточно простого метода удобно переводить числа из одной формы в какую-либо другую. Данный алгоритм можно записать в виде математического уравнения:
n a ÷ b = ( ( n × b ) + a ) ÷ b
Смешанное отношение представляет собой сумму из целого и части. Для того чтобы понять, как преобразовать дроби, следует выполнить сложение в качестве арифметического действия. В процессе первое слагаемое нужно записать в виде неправильной дроби путем деления целого на 1. Далее целесообразно воспользоваться правилом сложения дробей. Выполняется поиск общего знаменателя, дополнительных множителей, сложение в числителе. Формула имеет такой вид:
n a ÷ b = n ÷ 1 + a ÷ b = ( ( n × b ) + a ) ÷ b
Неправильную дробь превратить в обычную можно с помощью перевода ее в смешанную. В процессе выражение записывают в виде суммы натурального числа и правильной дроби:
Более простой способ преобразования дробей заключается в представлении делимого, как суммы дробей. При этом важно, чтобы при делении одной из них не было остатка:
m ÷ n = ( k + c ) ÷ n = k ÷ n + c ÷ n
Примеры задач с решением
В учебнике 100 листов. Ученик прочел ½ от общего количества страниц. Необходимо определить число листов, которые прочитал ученик.
Ответ: ученик прочитал 50 листов в учебнике.
Имеется емкость из стекла, наполненная водой, весом 550 гр. Половину воды вылили, а масса оставшейся составила 300 гр. Требуется рассчитать начальный вес воды и массу пустой емкости.
Значение массы воды, которую вылили:
250 гр. является половиной от всей воды, тогда вся вода весит:
Ответ: сначала в емкости было 500 гр. воды, массы емкости составляет 50 гр.
В кассе хранится сумма в 450 рублей. Необходимо определить количество денег в кассе после изъятия 1/3 от всей суммы.
Правильные и неправильные дроби.
Виды дробей.
Как вы уже заметили дроби бывают разные. Например, \(\frac<1><2>, \frac<3><5>, \frac<5><7>, \frac<7><7>, \frac<13><5>, …\)
Делятся дроби на два вида правильные дроби и неправильные дроби.
В правильной дроби числитель меньше знаменателя, например, \(\frac<1><2>, \frac<3><5>, \frac<5><7>, …\)
В неправильной дроби числитель больше или равен знаменателю, например, \(\frac<7><7>, \frac<9><4>, \frac<13><5>, …\)
Правильная дробь всегда меньше единицы. Рассмотрим пример:
Единицу мы можем представить как дробь \(1 = \frac<3><3>\)
Знаменатели одинаковые равны числу 3, далее сравниваем числители.
Вопросы по теме “Правильные или неправильные дроби”:
Может ли правильная дробь быть больше 1?
Ответ: нет.
Может ли правильная дробь равна 1?
Ответ: нет.
Может ли неправильная дробь меньше 1?
Ответ: нет.
Пример №1:
Напишите:
а) все правильные дроби со знаменателем 8;
б) все неправильные дроби с числителем 4.
Решение:
а) У правильных дробей знаменатель больше числителя. Нам нужно в числитель поставить числа меньшие 8.
\(\frac<1><8>, \frac<2><8>, \frac<3><8>, \frac<4><8>, \frac<5><8>, \frac<6><8>, \frac<7><8>.\)
б) В неправильной дроби числитель больше знаменателя. Нам нужно в знаменатель поставить числа меньшие 4.
\(\frac<4><4>, \frac<4><3>, \frac<4><2>, \frac<4><1>.\)
Пример №2:
При каких значениях b дробь:
а) \(\frac<12>\) будет правильной;
б) \(\frac<9>\) будет не правильной.
Решение:
а) b может принимать значения 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.
б) b может принимать значения 1, 2, 3, 4, 5, 6, 7, 8, 9.
Задача №1:
Сколько минут в часе? Какую часть часа составляет 11 мин.?
Ответ: В часе 60 минут. Три минуты составят \(\frac<11><60>\) часа.
Обыкновенные дроби
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Доля целого
Доля — это каждая равная часть, из суммы которых состоит целый предмет.
Для примера возьмем два мандарина. Когда мы их почистим, то получим в каждом мандарине разное количество долек или долей. В одном может быть 6, а в другом — целых 9. Размеры долей у каждого мандарина тоже разные.
У каждой доли есть свое название: оно зависит от количества долей в конкретном предмете. Если в мандарите шесть долей — каждая из них будет определяться, как одна шестая от целого.
Понятие доли можно применить не только к предметам, но и величинам. Так, например, картина занимает четверть стены — при этом ее ширина треть метра.
Чтобы быстрее запомнить соотношения частей и целого, можно использовать наглядную табличку:
Понятие дроби
Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которой можно представить число. Есть два формата записи:
Виды дробей:
Какие еще бывают дроби:
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.
Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3\5.
Выделение целой части из неправильной дроби — это запись неправильной дроби в виде суммы натурального числа и правильной дроби. Например, 11/5 = 2 + 1/5.
Как устроена обыкновенная дробь
Обыкновенная дробь — это запись вида m/n, где m и n любые натуральные числа.
Такие дроби записываются с помощью двух натуральных чисел и горизонтальной черты, которая называется чертой дроби. Иногда ставится не горизонтальная черта, а косая.
Числитель обыкновенной дроби m/n — это натуральное число m, которое стоит над чертой. Числитель это делимое — то, что мы делим.
Знаменатель обыкновенной дроби m/n — натуральное число n, которое стоит под чертой. Знаменатель это делитель — то, на сколько делим.
Черта между числителем и знаменателем — символ деления.
Равные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых справедливо равенство: a * d = b * c. Пример равных дробей: 1/2 и 2/4, так как 1 * 4 = 2 * 2.
Неравные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых равенство: a * d = b * c не является верным.
Как устроена десятичная дробь
В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. Выходит, что десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:
Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.
Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.
Свойства дробей
Основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной. Формула выглядит так:
где a, b, k — натуральные числа.
Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:
У нас есть отличные курсы по математике для учеников с 1 по 11 классы, записывайтесь!
Действия с дробями
С дробями можно выполнять те же действия, что и с обычными числами: складывать, вычитать, умножать и делить. А еще дроби можно сокращать и сравнивать между собой. Давайте попробуем.
Сравнение дробей
Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.
Сравним 1/5 и 4/5. Как рассуждаем:
Чтобы сравнить дроби с разными знаменателями, нужно привести дроби к общему знаменателю. А после приведения дробей к общему знаменателю, можно применить правило сравнения дробей с одинаковыми знаменателями.
Пример. Сравнить 2/7 и 1/14.
Важно запомнить: любая неправильная дробь больше любой правильной. Потому что неправильная дробь всегда больше или равна 1, а правильная дробь всегда меньше 1.
Чтобы сравнить дроби с разными числителями и знаменателями, нужно:
Чтобы привести дроби к наименьшему общему знаменателю, нужно:
Сокращение дробей
Сокращение дроби — это деление числителя и знаменателя дроби на одно и то же натуральное число. Сократить дробь значит сделать ее короче и проще для восприятия. Например, дробь 1/3 выглядит намного проще и красивее, чем 27/81.
Сокращение дроби выглядит так: зачеркивают числитель и знаменатель, а рядом записывают результаты деления числителя и знаменателя на одно и то же число.
В этом примере делим обе части дроби на двойку.
Можно никуда не спешить и сокращать дроби последовательно, в несколько действий.
Сложение и вычитание дробей
При сложении и вычитании дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель.
Не забудьте проверить, можно ли сократить дробь и выделить целую часть.
При сложении и вычитании дробей с разными знаменателями нужно найти наименьший общий знаменатель, сложить или вычесть полученные дроби (используем предыдущее правило).
Для этого запишем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.
НОК (15, 18) = 3 * 2 * 3 * 5 = 90
Полученные числа запишем справа сверху над числителем.
Ход решения одной строкой:
Сложение или вычитание смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:
Необходимо приводить к общему, если знаменатели разные. Для этого воспользуемся знаниями из предыдущего примера.
Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.
Умножение и деление дробей
Произведение двух дробей равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей:
Не забываем про сокращение. Это может облегчить вычисления.
Чтобы умножить два смешанных числа, надо:
Чтобы разделить дробь на дробь нужно выполнить следующую последовательность действий:
Другими словами это правило звучит так: чтобы разделить одну дробь на другую, надо первую умножить на обратную от второй.
Числа, произведение которых равно 1, называют взаимно обратными.
Как делить дроби с разными знаменателями? На самом деле одинаковые или разные знаменатели у дробей — неважно, потому что все дроби делятся по правилу, описанному выше.
Для деления смешанных чисел необходимо:
Дроби и действия с дробями
Что такое дроби?
Вспоминаются примеры из начальной школы. Представьте себе пирог вкусный такой, и 4 голодных ребенка.
Как бы им так сделать, чтоб пирога досталось всем? Верно, надо его поделить, поделить один пирог на 4 человека:
На рисунке ты видишь пирог, разрезанный на 4 дольки. Так вот, как раз дробь – это и есть доля от целого.
Сегодня мы разберем подробно, что такое дроби. Как их правильно делить, умножать, вычитать, складывать, преобразовывать…
В общем, сегодня ты узнаешь о дробях ВСЕ, что нужно знать для успешной сдачи ОГЭ или ЕГЭ.
Дроби — коротко о главном
Определения:
Простая дробь (обыкновенная дробь) – запись рационального числа в виде отношения двух чисел \(\displaystyle\frac\).
Делимое \(\displaystyle a\) – числитель дроби, а делитель \(\displaystyle b\) – знаменатель дроби.
Правильная дробь – дробь, у которой числитель меньше знаменателя.
Например: \(\displaystyle\frac<2><5>\), \(\displaystyle\frac<1><7>\) и так далее.
Неправильная дробь –дробь, у которой числитель больше или равен знаменателю.
Например: \(\displaystyle\frac<9><5>\), \(\displaystyle\frac<13><2>\) и так далее.
Смешанная дробь – дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дроби.
Например: \(\displaystyle2\frac<2><5>\)\( \displaystyle \displaystyle=\frac<2\cdot 5><5>+\frac<2><5>=\frac<10><5>+\frac<2><5>=\frac<12><5>\).
Десятичная дробь – обыкновенная дробь со знаменателем \(\displaystyle10\), \(\displaystyle100\), \(\displaystyle1000\) и так далее, (т.е. \(\displaystyle<<10>^
>\), где \(\displaystyle n\) — натуральное число).
Например: \(\displaystyle\frac<9><100>\) в виде десятичной дроби записывается как \(\displaystyle0,09\),
\(\displaystyle\frac<225><1000>\) записывается как \(\displaystyle0,225\).
Основное свойство дроби:
Если числитель и знаменатель дроби умножить или разделить на одно и то же число, дробь не изменится, несмотря на то, что выглядеть она будет по-другому.
Действия с дробями:
Сложение/вычитание дробей
Умножение дробей
Деление дробей
Сокращение дроби
Приведение дробей к наименьшему общему знаменателю
Например: \(\displaystyle\frac<1><3>\) и \(\displaystyle\frac<3><4>\). Наименьший общий знаменатель — \(\displaystyle12\).
Дополнительный множитель первой дроби — \(\displaystyle12:3=4\), дополнительный множитель второй дроби — \(\displaystyle12:4=3\).
Следовательно: для первой дроби: \(\displaystyle\frac<1\cdot 4><3\cdot 4>=\frac<4><12>\), для второй дроби: \(\displaystyle\frac<3\cdot 3><4\cdot 3>=\frac<9><12>\).
Преобразования неправильной дроби в смешанную дробь
Например: \(\displaystyle\frac<17><4>\) = \(\displaystyle4\frac<1><4>\).
Сравнение дробей:
Простые дроби
В данном случае от целого куска в сторонке отделенная одна доля, одна из четырех, одна четвертая.
Это простая дробь.
Простые дроби принято записывать одним из следующих способов: \(\displaystyle \frac<1><4>\), \(\displaystyle <1>/<4>\;.\)
Ты не поверишь, все эти записи означают одно и то же – одна четвертая. А что останется если забрать эту \(\displaystyle 1/4?\) Было \(\displaystyle 4\) из \(\displaystyle 4\), или \(\displaystyle 4/4\), забрали \(\displaystyle 1/4\).
Верно, останется \(\displaystyle 3\) дольки, \(\displaystyle 3\) из \(\displaystyle 4\). Запишем, как полагается, \(\displaystyle 3/4\).
Можно даже вот так: \(\displaystyle 4/4-1/4=3/4\)
То, что находится выше черты – это числитель (ну или слева от черты в такой записи как тут), то, что ниже – знаменатель.
Можно запомнить так: Ч – чердак. Числитель сверху 🙂
Примеры простых дробей: \(\displaystyle 1/5,\text< >2/4,\text< >3/10,\text< >17/3.\)
Правильные и неправильные простые дроби
В этом ряду все дроби правильные, в них числитель меньше знаменателя. Кроме одной. Да-да, ты не ошибся, бывает и такое, что числитель больше знаменателя, как в этой дроби, например: \(\displaystyle 17/3\).
Если числитель больше знаменателя, то дробь называется неправильной.
Вне зависимости от того правильная дробь или неправильная, она будет простой.
Давай остановимся на неправильной дроби \(\displaystyle 17/3\). Что же это она неправильная?
Вспоминай пример с пирогом, там была \(\displaystyle 1/4\) – одна часть из четырех, а тут что получается? \(\displaystyle 17\) частей из \(\displaystyle 3\)?
Бред какой-то! У нас в знаменателе число, которое означает, что весь пирог состоит из стольки частей! Берем \(\displaystyle 4\) части и поучаем целый ровненький пирог. Но числитель говорит, что на данный момент у нас есть лишь одна из этих частей.
А \(\displaystyle 17/3\)?
Что же, у нас есть \(\displaystyle 17\) частей, а для целого пирога в данном случае надо \(\displaystyle 3\) части. Ну так давай соберем из кусочков целые пироги и отдельно их поставим.
Как узнать сколько пирогов мы можем получить из \(\displaystyle 17\) частей? Верно, надо на \(\displaystyle 3\) как раз и поделить.
Если попробовать составить \(\displaystyle 6\) пирогов, т.е. \(\displaystyle 3\cdot 6=18\), надо \(\displaystyle 18\) частей. Не хватает. А \(\displaystyle 3\cdot 5=15\), о, хватило! Получается \(\displaystyle 5\) целых пирогов собрали, положили в сторону. Осталось \(\displaystyle 17-3\cdot 5=2,2\), \( \displaystyle 2\) куска.
А для целого пирога надо \( \displaystyle 3\) части. В итоге у нас \( \displaystyle 5\) целых и \( \displaystyle 2/3\) (две третьих) пирога.
Много места занимает такое обозначение. А что если убрать лишние слова и оставить только \( \displaystyle 5\frac<2><3>\) (пять целых и две третьих).
Смешанная дробь
То, что у нас получилось (\( \displaystyle 5\frac<2><3>\)), называют смешанная дробь – дробь, записанная в виде целого числа и правильной дроби и понимается как сумма этого числа и дроби.
То, что между \( \displaystyle 5\) пирогами и \( \displaystyle 2/3\) пирога нет никакого знака не говорит о том, что там знак умножения, как если бы мы писали \( \displaystyle 2x\).
Запомни, между целой и дробной частями можно поставить знак плюс, вот так: \( \displaystyle 5\frac<2><3>=5+\frac<2><3>\).
Так же можно проделать и обратное действие, т.е. преобразование из смешанной дроби в неправильную дробь.
Ты же знаешь, как это сделать?
Преобразование из смешанной дроби в неправильную дробь.
В результате получим исходное \( \displaystyle 17/3\).