Что значит описать событие в теории вероятностей

Учебник по теории вероятностей

1.2. Классическое определение вероятности

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным, если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу, если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Полезные материалы

Онлайн-калькуляторы

Большой пласт задач, решаемых с помощью формулы (1) относится к теме гипергеометрической вероятности. Ниже по ссылкам вы можете найти описание популярных задач и онлайн-калькуляторы для их решений:

Обучающие статьи с примерами

Примеры решений на классическую вероятность

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаев m=n=10. Следовательно, Р(А)=1. Событие А достоверное.

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов: Что значит описать событие в теории вероятностей.
Число случаев, когда среди этих двух шаров будут два белых, равно Что значит описать событие в теории вероятностей.
Искомая вероятность
Что значит описать событие в теории вероятностей.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m=0, n=15. Следовательно, искомая вероятность р=0. Событие, заключающееся в вынимании синего шара, невозможное.

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение. Количество элементарных исходов (количество карт) n=36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А, m=9. Следовательно,
Что значит описать событие в теории вероятностей.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.

Решение. Общее число возможных исходов равно числу способов, которыми можно отобрать 7 человек из 10, т.е.
Что значит описать событие в теории вероятностей.

Найдем число исходов, благоприятствующих интересующему нас событию: трех женщин можно выбрать из четырех Что значит описать событие в теории вероятностейспособами; при этом остальные четыре человека должны быть мужчинами, их можно отобрать Что значит описать событие в теории вероятностейспособами. Следовательно, число благоприятствующих исходов равно Что значит описать событие в теории вероятностей.

Искомая вероятность
Что значит описать событие в теории вероятностей.

Источник

Теория вероятностей, формулы и примеры

Что значит описать событие в теории вероятностей

Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.

Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.

Что значит описать событие в теории вероятностей

Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».

Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.

Ну, скажем, смотрим на тучи и понимаем, что дождь — вполне себе вероятное событие. А если светит яркое солнце, то дождь — маловероятное или невероятное событие.

Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:

Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.

Формулы по теории вероятности

Теория вероятности изучает события и их вероятности. Если событие сложное, то его можно разбить на простые составные части — так легче и быстрее найти их вероятности. Рассмотрим основные формулы теории вероятности.

Случайные события. Основные формулы комбинаторики

Что значит описать событие в теории вероятностей

Классическое определение вероятности

Вероятностью события A в некотором испытании называют отношение:

P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A

Таким образом, вероятность любого события удовлетворяет двойному неравенству:

Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?

Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:

Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.

Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?

Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).

Что значит описать событие в теории вероятностей

Геометрическое определение вероятности

Геометрическая вероятность события А определяется отношением:

P(A)= m(A)/m(G), где m(G) и m(A) — геометрические меры (длины, площади или объемы) всего пространства элементарных исходов G и события А соответственно

Чаще всего, в одномерном случае речь идет о длинах отрезков, в двумерном — о площадях фигур, а в трехмерном — об объемах тел.

Пример. Какова вероятность встречи с другом, если вы договорились встретиться в парке в промежутке с 12.00 до 13.00 и ждете друг друга 5 минут?

У нас есть отличные курсы по математике для учеников с 1 по 11 классы — приглашаем на вводный урок!

Сложение и умножение вероятностей

Теорема о сложении вероятностей звучит так: вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:

P(A + B) = P(A) + P(B)

Эта теорема справедлива для любого числа несовместных событий:

Что значит описать событие в теории вероятностей

Если случайные события A1, A2. An образуют полную группу несовместных событий, то справедливо равенство:

Произведением событий А и В называется событие АВ, которое наступает тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.

Вторая теорема о сложении вероятностей: вероятность суммы совместных событий вычисляется по формуле:

P(A + B) = P(A) + P(B) − P(AB)

События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Теорема об умножении вероятностей: вероятность произведения независимых событий А и В вычисляется по формуле:

P(AB) = P(A) * P(B)

Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8.

Найдем вероятности того, что формула содержится:

А — формула содержится в первом справочнике;

В — формула содержится во втором справочнике;

С — формула содержится в третьем справочнике.

Воспользуемся теоремами сложения и умножения вероятностей.

Ответ: 1 — 0,188; 2 — 0,452; 3 — 0,336.

Формула полной вероятности и формула Байеса

Что значит описать событие в теории вероятностей

По теореме умножения вероятностей:

Что значит описать событие в теории вероятностей

Что значит описать событие в теории вероятностей

Аналогично, для остальных гипотез:

Что значит описать событие в теории вероятностей

Эта формула называется формулой Байеса. Вероятности гипотез называются апостериорными вероятностями, тогда как — априорными вероятностями.

Пример. Одного из трех стрелков вызывают на линию огня, он производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5; для третьего — 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Формула Бернулли

При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.

Примеры повторных испытаний:

Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.

Биномиальное распределение — распределение числа успехов (появлений события).

Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.

Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:
Что значит описать событие в теории вероятностей

Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец🙂

Наивероятнейшее число успехов

Биномиальное распределение ( по схеме Бернулли) помогает узнать, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) выглядит так:

Пример. В очень большом секретном чатике сидит 730 человек. Вероятность того, что день рождения наугад взятого участника чата приходится на определенный день года — равна 1/365 для каждого из 365 дней. Найдем наиболее вероятное число счастливчиков, которые родились 1 января.

Формула Пуассона

При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно. Например, 0.97 999 вычислить весьма затруднительно.

В этом случае для вычисления вероятности того, что в n испытаниях событие произойдет k раз, используют формулу Пуассона:

Что значит описать событие в теории вероятностей

Здесь λ = np обозначает среднее число появлений события в n испытаниях.

Эта формула дает удовлетворительное приближение для p ≤ 0,1 и np ≤10.

События, для которых применима формула Пуассона, называют редкими, так как вероятность, что они произойдут — очень мала (обычно порядка 0,001-0,0001).

При больших np рекомендуют применять формулы Лапласа, которую рассмотрим чуть позже.

Пример. В айфоне 1000 разных элементов, которые работают независимо друг от друга. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.

P1000(3) = λ 3 /3! * e −λ = 2 3 /3! * e −2 ≈ 0,18.

Ответ: ориентировочно 0,18.

Теоремы Муавра-Лапласа

Кроме того, пусть Pn(k1;k2) — вероятность того, что число появлений события А находится между k1 и k2.

Локальная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то

Что значит описать событие в теории вероятностей

Что значит описать событие в теории вероятностей

Интегральная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то

Что значит описать событие в теории вероятностей

Что значит описать событие в теории вероятностей

Функции Гаусса и Лапласа обладают свойствами, которые пригодятся, чтобы правильно пользоваться таблицей значений этих функций:

Теоремы Лапласа дают удовлетворительное приближение при npq ≥ 9. Причем чем ближе значения q, p к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность по сравнению с исходной формулой Бернулли.

Источник

Теории вероятностей: готовимся к собеседованию и разрешаем «парадоксы»

Что значит описать событие в теории вероятностей

Каждый год я участвую примерно в сотне собеседований в образовательных проектах JetBrains: собеседую абитуриентов в Computer Science Center и корпоративную магистратуру ИТМО (кстати, набор на программу идёт прямо сейчас). Все собеседования устроены по одному шаблону: мы просим на месте порешать задачи и задаём базовые вопросы по дисциплинам, которые студенты изучали в университетах. Большинство вопросов, которые мы задаём, довольно простые — нужно дать определение некоторого понятия, сформулировать свойство или теорему. К сожалению, у значительной доли студентов все эти определения выветриваются сразу после экзаменов в университетах. Казалось бы, что тут удивительного? В современном мире любое определение можно за пару секунд нагуглить, если это нужно. Но невозможность восстановить базовое определение свидетельствует о непонимании сути предмета.

Если непонимание алгебры или математического анализа может мало влиять на вашу жизнь, то непонимание теории вероятностей делает из вас лёгкую мишень для обмана и манипулирования. Суждения о вероятностях различных событий настолько глубоко вошли в нашу повседневную жизнь, что умение правильно рассуждать и отличать правду от невежества или манипуляции является необходимым. В этом небольшом обзоре мы поговорим о базовых понятиях теории вероятностей, научимся правильно формулировать утверждения про простые случайные процессы и разберём несколько парадоксов. Часть материала позаимствована из брошюры А. Шеня «Вероятность: примеры и задачи», которую я очень рекомендую для самостоятельного изучения.

Перед тем, как говорить об определениях, нам нужно договориться о том, откуда же в нашем мире берётся случайность. Например, почему мы считаем, что подбрасывание монеты — это случайный процесс? С точки зрения классической физики, описывающей процессы в макромире, всё детерминировано, поэтому по параметрам подброса монеты можно однозначно определить, какой стороной она упадёт. Однако на практике оказывается, что измерить и учесть все силы, которые действуют на монетку фактически, невозможно, и поэтому результат этого эксперимента принято считать случайным. Важно понимать, что этот вопрос не является вопросом теории вероятностей. Теория вероятностей работает с моделями — для неё монетка, у которой орёл и решка выпадают одинаково часто, и монетка, у которой орлов в два раза больше, чем решек, — это просто две разные модели. Вопрос о том, какая из моделей больше соответствует наблюдаемой действительности — это вопрос нашего опыта (опыт показывает, что частота орла и решки примерно одинаковая). Таким образом, первым делом мы должны договориться о модели.

Определения

Для определения модели, которая позволит нам говорить о вероятностях, нужно описать вероятностное пространство.

Вероятностное пространство в самом простом конечном случае состоит из множества элементарных исходов Что значит описать событие в теории вероятностейи набора неотрицательных чисел Что значит описать событие в теории вероятностей, таких что их сумма равна Что значит описать событие в теории вероятностей. Довольно часто все исходы считаются равновероятными, т.е. Что значит описать событие в теории вероятностей. В более сложном бесконечном случае нужно отдельно выделять множество интересующих нас событий и задавать вероятности событий при помощи функции, называемой вероятностной мерой. Событием называется множество, состоящее из элементарных событий, т.е. любое подмножество Что значит описать событие в теории вероятностей. Вероятность события Что значит описать событие в теории вероятностей, обозначается Что значит описать событие в теории вероятностей, — это сумма всех таких Что значит описать событие в теории вероятностей, что Что значит описать событие в теории вероятностей. В частности, вероятность пустого события Что значит описать событие в теории вероятностейравна нулю, а события Что значит описать событие в теории вероятностейравна 1. В случае, когда все исходы считаются равновероятными, вероятность события просто равна отношению количества исходов, содержащихся в событии, к общему количеству элементарных исходов, т.е. Что значит описать событие в теории вероятностей.

Вероятность любого события заключена между 0 и 1. Если вероятность события нулевая, то такое событие называется невозможным, если же вероятность события равна единице, то такое событие называется достоверным.

Важно, что без определения вероятностного пространства нельзя (в математическом смысле) говорить о вероятности чего-либо.

Замечание

На основе определения вероятностного пространства легко провести разделение между теорией вероятностей и статистикой: теория вероятностей предсказывает частоты на основе знания вероятностного пространства, а статистика решает обратную задачу — на основе наблюдаемых частот определяет параметры неизвестного вероятностного пространства.

Пример: подбрасывание монетки

Будем считать, что монетка чеканная «правильная» или «симметричная», т.е. она одинаково часто выпадает орлом и решкой, а на ребро никогда не встаёт. Тогда множество элементарных исходов состоит из двух элементов, Что значит описать событие в теории вероятностей. Так как мы договорились, что монетка «правильная», то разумно считать, что Что значит описать событие в теории вероятностей. Теперь давайте перечислим все возможные события и их вероятности.

Пример: подбрасывание игрального кубика

Как и в случае с монеткой мы будем предполагать, что игральный кубик выпадает всеми гранями одинаково часто. Тогда множество элементарных исходов состоит из шести элементов, Что значит описать событие в теории вероятностей, все их вероятности равны Что значит описать событие в теории вероятностей. Количество различных событий в этом эксперименте равно Что значит описать событие в теории вероятностей(это количество всех подмножеств множества из 6 элементов). Удивительным образом вопрос «сколько существует различных событий в эксперименте с подбрасывание игрального кубика?», по моим наблюдения, ставит в тупик 9 из 10 абитуриентов.
Давайте рассмотрим некоторые примеры событий.

Пример: два подбрасывания монетки

Что значит описать событие в теории вероятностей

Симметриченость монетки позволяет нам заключить, что все элементарные исходы равновероятны, т.е. Что значит описать событие в теории вероятностей.
Примеры событий.

Пример: выбираем случайное число из календаря 2020 года

Множество элементарных исходов Что значит описать событие в теории вероятностей. Как выбрать вероятности? Это зависит от того, как устроен эксперимент. Например, мы можем вырвать случайный лист отрывного календаря и посмотреть число на нем. Наиболее точной моделью, описывающей этот эксперимент, было бы вероятностное пространство с Что значит описать событие в теории вероятностейисходами, где одинаковые числа разных месяцев различаются. И тогда вероятность того, что выпадет число 1, была бы суммой вероятностей элементарных исходов, соответствующих первым числам разных месяцев, т.е. Что значит описать событие в теории вероятностей. Но мы можем для удобства рассмотреть более простое множество элементарных исходов Что значит описать событие в теории вероятностейс 31 исходом, но с разными вероятностями: Что значит описать событие в теории вероятностей, Что значит описать событие в теории вероятностей, Что значит описать событие в теории вероятностей.

Пример события: «выпавшее число месяца делится на 10». Это соответствует событию
Что значит описать событие в теории вероятностей.

Замечание

Как только мы определили вероятностное пространство (т.е. определились с множеством Что значит описать событие в теории вероятностейи вероятностями, которые мы приписываем элементарным исходам), то вопрос о вероятности некоторого события становится чисто арифметическим. Другими словами, как только мы выбрали некоторую математическую модель, которая с нашей точки зрения описывает физический процесс, то вероятности всех событий однозначно определены.

Задачи для самопроверки

В каждой задаче следует сначала описать вероятностное пространство, а уже только потом производить вычисления.

Пример вероятностного пространства, не соответствующего физическому миру

Рассмотрим следующий эксперимент: подбрасываем две монетки и смотрим на то, какими сторонами они выпали. Можно было бы сказать, что в данной задаче всего три исхода: две решки, два орла и орёл и решка. Если предполагать, что все исходы равновозможны, то получается, что вероятность выпадения двух орлов равна 1/3. Математика не запрещает нам рассматривать такое вероятностное пространство, но экспериментальная проверка подсказывает, что в физическом мире ответ скорее ближе к 1/4. Поэтому не стоит по умолчанию предполагать все исходы равновозможными, иначе мы получим 1/2 в ответ на вопрос о вероятности встречи динозавра.

Формула суммы вероятностей

Будем называть два события несовместными, если их пересечение равно пустому множеству. Т.е., нет исходов, которые соответствовали бы обоим событиям. Пример: события «на игральном кубике выпало чётное число» и «на игральном кубике выпала единица или тройка» несовместны.

Несовместные события обладают следующим свойством. Пусть Что значит описать событие в теории вероятностейи Что значит описать событие в теории вероятностей— два несовместных события. Вероятность того, что произойдёт хотя бы одно из них, равна сумме вероятностей Что значит описать событие в теории вероятностейи Что значит описать событие в теории вероятностей, другими словами Что значит описать событие в теории вероятностей, событие Что значит описать событие в теории вероятностейтакже называют суммой событий Что значит описать событие в теории вероятностейи Что значит описать событие в теории вероятностей и обозначают Что значит описать событие в теории вероятностей. Это свойство не выполняется для произвольных событий. Например, события «на игральном кубике выпало чётное число» и «на игральном кубике выпало число больше четырёх» не несовместны и сумма их вероятностей (5/6) больше вероятности их суммы (4/6).

Рассмотрим следующую задачу. В мешке лежат шарики трёх цветов: белые, жёлтые и чёрные. Причём известно, что белых Что значит описать событие в теории вероятностейот общего числа, а жёлтых — Что значит описать событие в теории вероятностей. Какова вероятность того, что случайно вытащенный шар будет светлым? Аккуратный подсчёт показывает, что если в мешке Что значит описать событие в теории вероятностейшаров, то рассматриваемому событию соответствует Что значит описать событие в теории вероятностейшаров, т.е. Что значит описать событие в теории вероятностейот общего числа шаров. События «вытащен белый шар» и «вытащен жёлтый шар» несовместны, поэтому вероятность, что шар будет светлым равна сумме вероятностей этих событий.

События называются противоположными, если всегда происходит ровно одно из них. Из этого определения можно заключить, что во-первых, эти события несовместны, а во-вторых, их суммарная вероятность равна 1. Событие, противоположное событию Что значит описать событие в теории вероятностей, выражается, как Что значит описать событие в теории вероятностей(если все элементарные исходы имеют положительную вероятность, то это единственное такое событие).

Задача для самопроверки

Наудачу выбирается число Что значит описать событие в теории вероятностейот 1 до 100. Рассмотрим следующие события:

Формула включений и исключений

Что значит описать событие в теории вероятностей

Что значит описать событие в теории вероятностей

где Что значит описать событие в теории вероятностей— это пересечение событий Что значит описать событие в теории вероятностейи Что значит описать событие в теории вероятностей, т.е. это событие состоящее из тех элементарных исходов, которые входят одновременно и в Что значит описать событие в теории вероятностей, и в Что значит описать событие в теории вероятностей(такое событие также называют произведением событий Что значит описать событие в теории вероятностейи Что значит описать событие в теории вероятностей и обозначают Что значит описать событие в теории вероятностей).

Задача для самопроверки

Известно, что ученики класса, имеющие двойки по алгебре, составляют 25%, а ученики, имеющие двойки по геометрии, составляют 15%. Сколько учеников имеют двойки и по алгебре, и по геометрии, если ученики, не имеющие двоек ни по одному из предметов, составляют 70%?

Условная вероятность

Что значит описать событие в теории вероятностей

Какова вероятность, что случайно выбранный школьник знает немецкий при условии, что он знает французский?

Из формулы условной вероятности можно получить формулу для вероятности произведения двух событий.

Что значит описать событие в теории вероятностей

Словами: чтобы найти вероятность того, что произойдут оба события Что значит описать событие в теории вероятностейи Что значит описать событие в теории вероятностей, надо умножить вероятность события Что значит описать событие в теории вероятностейна условную вероятность события Что значит описать событие в теории вероятностейпри известном Что значит описать событие в теории вероятностей.

Задача для самопроверки

В классе 50% мальчиков; среди мальчиков 60% любит мороженое. Какова доля мальчиков, любящих мороженое, среди учеников класса? Как это переформулировать на языке теории вероятностей?

Независимость

Что значит описать событие в теории вероятностей

(В этом определении предполагаются, что обе вероятности событий Что значит описать событие в теории вероятностейи Что значит описать событие в теории вероятностейстрого больше нуля.)

Альтернативное определение можно получить, если воспользоваться определением условной вероятности: два события называются независимыми, если вероятность их произведения равна произведению их вероятностей.

Что значит описать событие в теории вероятностей

Задачи для самопроверки

Что значит описать событие в теории вероятностей

И подставив это в определение получаем формулу Байеса

Что значит описать событие в теории вероятностей

которая позволяет менять местами событие и условие под знаком вероятности. Думаю, что про применение формулы Баейса нужно писать отдельный пост, например, такой.

На этом мы закончим с определениями и перед тем, как перейти к парадоксам, давайте обсудим, а в каких случаях мы можем говорить о вероятности.

Когда мы можем говорить о вероятности?

Предлагаю рассмотреть несколько вопросов, которые проиллюстрируют важность формулировок.

Какова вероятность того, что гуляя по улице вы встретите динозавра?

Я думаю, что всем ясно, что это не 1/2. Но всё же, как правильно ответить на этот вопрос? Проблема этого вопроса в том, что он сформулирован некорректно — из него нельзя однозначным образом определить вероятностное пространство, а следовательно и о вероятности говорить нельзя. Можно предложить какую-нибудь другую формулировку вопроса, в которой это будет очевидно. Например, начиная с завтрашнего дня на каждой улице города каждую минуту с вероятностью 0.00001 материализуется динозавр и существует в течение часа, никуда не уходя. В данной формулировке понятен случайный процесс и можно оценить вероятность встречи, если определить, как устроена прогулка, сколько длится и сколько улиц она затрагивает.

Что значит описать событие в теории вероятностей

Вы подбросили монетку и не подглядывая накрыли её рукой. Какова вероятность того, что монетка повёрнута орлом вверх?

Очень хочется сказать, что в данном случае уж точно вероятность — 1/2. Однако, строго говоря, никакого случайного процесса уже нет. Монетка уже упала какой-то стороной. От того, что вы чего-то не знаете, не значит, что это что-то случайное. Например, если вы не знаете решение уравнения — это не значит, что его решением с одинаковой вероятностью может быть любое число. Поэтому в данном случае описать вероятностное пространство не получится. Можно переформулировать вопрос, например, так: «Какова вероятность, что вы угадаете сторону монетки, если наугад равновероятно выберите орёл или решку?». В такой формулировке уже ясно, что является случайным процессом (выбор орла или решки), как определить вероятностное пространство и получить ответ 1/2. При этом, в такой формулировке уже совершенно неважно, была монетка «честной» или нет.

Замечание. Нашу уверенность в чём-то тоже можно описывать в терминах теории вероятностей — это делается в рамках Байесовской интерпретации теории вероятностей. Эта интерпретации позволяет использовать аппарат теории вероятностей для оценки нашей уверенности в истинности каких-то утверждений (не обязательно случайных) основываясь на информации, которая нам известна. Однако стоит заметить, что в этом случае понятие вероятности становится субъективным — у одного и того же события с точки зрения разных наблюдателей может быть разная вероятность. Например, в покере вы можете считать вероятность выпадения пиковой дамы положительной (так как вы не видите её на столе и в своей руке), а ваш противник, у которого в руке уже есть пиковая дама, будет оценивать вероятность её выпадения как нулевую. При этом можно придумать и такой вариант, в котором обе оценки окажутся отличными от «реальной», объктивной, вероятности. В этом нет противоречия, т.к. в это три различные величины (игроки обладают разной информацией, а объективная вероятность в данном случае соответствует полной информации).

Вы проснулись утром. Какова вероятность того, что сегодня воскресенье?

Думаю, что вы уже поняли, что ответ 1/7 — неправильный, а точнее, вопрос некорректный. Не понятно, что является случайный процессом. Для того, чтобы получить 1/7 нужно уточнить вопрос, например, так: вы засыпаете в воскресенье вечером и случайным образом просыпаетесь в любое утро на следующей неделе, какова вероятность, что вы проснётесь в воскресенье? Но даже с этим уточнением, если спросить вас о дне недели уже после того, как вы проснулись (после того, как случайный выбор был сделан), то такой вопрос останется некорректным — иначе придётся предполагать, что вы находитесь в суперпозиции всех дней недели до тех пор, пока не посмотрите на календарь.

Что значит описать событие в теории вероятностей

Я написал на доске некоторое (конкретное) число и утверждаю, что дважды успешно проверил его на простоту вероятностным алгоритмом, который ошибается с вероятность менее 1%. С какой вероятностью это число простое?

Хотелось бы сказать, что это число простое с вероятностью более 99.99%. Однако, с математической точки зрения число может быть либо простым, либо нет. Поэтому так говорить некорректно. После того, как алгоритм завершил работу, ничего случайного в этой постановке задачи уже нет, следовательно нет и вероятности. Правильно было бы сказать, что вы уверены на 99.99%, что это число простое, но и это вы можете заявить только в том случае, если доверяете мне на 100% 🙂

Парадоксы

В этом разделе мы попробуем разобрать несколько известных «парадоксов» теории вероятностей и понять, что в них либо нет противоречий, либо вопросы поставлены некорректно.

Парадокс Монти-Холла

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас — не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Как подсказывает Википедия, для того, чтобы задача была определена корректно, нам требуется уточнить, что участнику игры заранее известны следующие правила:

Что значит описать событие в теории вероятностей

Для того, чтобы ответить на заданный вопрос, давайте разберёмся, что тут является случайным процессом. По уточнению видно, что случайный процесс упоминается только в пунктах 1 и 4: «автомобиль равновероятно размещён за любой из трёх дверей» и «если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью». Вопрос, на который мы должны научиться отвечать, звучит так: «Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор». Т.е. нас спрашивают о том, какая из двух стратегий даёт большую вероятность выигрыша. Замечу, что условие номер 4 никак не влияет на факт выигрыша игрока, поэтому нет смысла включать его в вероятностное пространство. Поэтому предлагается выбрать вероятностное пространство с множеством элементарных исходов Что значит описать событие в теории вероятностей, соответствующим номеру двери, за которым находится автомобиль, и вероятностями Что значит описать событие в теории вероятностей. Теперь рассмотрим две стратегии игрока: «оставить выбранную дверь», обозначим Что значит описать событие в теории вероятностей, и «сменить дверь», обозначим Что значит описать событие в теории вероятностей.

Мы не знаем, как игрок делает выбор первой двери, но нам и не нужно это знать. Достаточно проверить, как работает стратегия при всех выборах первой двери. Обозначим через Что значит описать событие в теории вероятностейдверь, которую игрок выбрал изначально, а через Что значит описать событие в теории вероятностей— дверь, за которой спрятан автомобиль. Тогда для любого Что значит описать событие в теории вероятностейсобытие «игрок выиграл при использовании стратегии Что значит описать событие в теории вероятностей» соответствует тому, что он угалад правильную дверь с первой попытки. Говоря формально, нас интересует событие Что значит описать событие в теории вероятностей, т.е. Что значит описать событие в теории вероятностей, и его вероятность Что значит описать событие в теории вероятностей. Событие «игрок выиграл при использовании стратегии Что значит описать событие в теории вероятностей» соответствует противоположному событию Что значит описать событие в теории вероятностей, т.е. Что значит описать событие в теории вероятностей, и его вероятность Что значит описать событие в теории вероятностей. Осталось ещё раз отметить, что, если этот анализ верен для любого выбора Что значит описать событие в теории вероятностей, поэтому верен и при любой стратегии выбора первой двери. Кроме того, заметим, что мы никак не использовали условие 4.

Как видите, никаких неоднозначностей тут нет, парадоксом эта задача называется только потому, что ответ может не соответствовать интуиции. Но так в математике случается довольно часто.

Парадокс мальчика и девочки

Впервые задача была сформулирована в 1959 году, когда Мартин Гарднер опубликовал один из самых ранних вариантов этого парадокса в журнале Scientific American под названием «The Two Children Problem», где привёл следующую формулировку:

Вероятностное пространоство задано Что значит описать событие в теории вероятностейи все вероятности равны Что значит описать событие в теории вероятностей. В первом случае нам известно, что выполнено событие Что значит описать событие в теории вероятностей. Поэтому при условии Что значит описать событие в теории вероятностейвероятность двух девочек равна 1/2.

Во втором случае всё сложнее, т.к. не понятно, как мы узнали, что у мистера Смита один из детей мальчик. Можно предположить два варианта:

Парадокс Спящей Красавицы

Испытуемой («Спящей Красавице») делается укол снотворного. Бросается симметричная монетка. В случае выпадения орла её будят, и эксперимент на этом заканчивается. В случае выпадения решки её будят, делают второй укол (после чего она забывает о побудке) и будят на следующий день, не бросая монеты (в таком случае эксперимент идёт два дня подряд). Вся эта процедура Красавице известна, однако у неё нет информации, в какой день её разбудили.

Представьте себя на месте Спящей Красавицы. Вас разбудили. Какова вероятность того, что монетка упала решкой?

Предлагается рассмотреть два альтернативных решения с разными результатами.

Что значит описать событие в теории вероятностей

Решение 1

У вас нет никакой информации о результате выпадения монеты и предыдущих побудках. Поскольку известно, что монетка честная, можно предположить, что вероятность выпадения решки равна Что значит описать событие в теории вероятностей.

Решение 2

Проведём эксперимент 1000 раз. Спящую Красавицу будят в среднем 500 раз с орлом и 1000 раз с решкой (т.к. при выпадении решки Спящую Красавицу спрашивают 2 раза). Поэтому вероятность выпадения решки равна Что значит описать событие в теории вероятностей.

Кажется, что оба решения могут претендовать на звание правильного. Однако, при попытке определить вероятностное пространство нас ожидают серьёзные трудности. Что же является случайным процессом? Дело в том, что когда Спящая Красавица просыпается, никакого случайного процесса уже нет. Выбор уже сделан. Ей не известен результат этого выбора, но ничего случайного уже нет. Это возвращает нас к примеру с динозавром. Если вы не знаете, есть ли за углом динозавр, то это не значит, что он там есть с вероятностью 1/2. Поэтому «Решение 1» отвечает не на вопрос про вероятность, а на вопрос про степень уверенности Спящей Красавицы. А «Решение 2» предлагает рассмотреть совершенно другой эксперимент, в котором задаётся в общем-то совершенно другой вопрос, на который предлагается ответить внешнему наблюдателю до начала эксперимента.

Для того, чтобы придать этому вопросу математический смысл и получить желаемый ответ 2/3, придётся воспользоваться каким-нибудь философским приёмом, вроде «подселения душ». Например, так: вы заходите в аппарат переселения душ, после этого подбрасывается монетка для Спящей Красавицы, которая создаёт две параллельные вселенные: одну, где монетка выпала орлом, и другую, где выпала решкой. Суммарно в пространстве-времени этих двух альтернативных вселенных есть три различных пробуждения Спящей Красавицы. Аппарат по переселению душ с вероятностью 1/3 подселяет вашу душу в тело Спящей Красавицы незадолго до одного из этих пробуждений. Какова вероятность, что вы проснетесь в параллельной вселенной, где выпала решка?

Как видите, для придания математического смысла этому вопросу, придётся хорошенько пофантазировать, но этим занимаются не математики, а философы (подробнее в этом посте). Утверждать, что «оба решения правильные», некорректно с математической точки зрения.

Задача для самопроверки

Объясните, почему в задаче о детях моряка, с которой начинается этот пост, вопрос поставлен некорректно (т.е. ни 1/2, ни 1/3 не являются правильным ответом).

Бесконечный случай

Когда мы переходим к бесконечному случаю, т.е. рассматриваем эксперименты с бесконечным числом элементарных исходов, то всё становится значительно сложнее. Я не буду вдаваться в детали и даже не буду определять вероятностное пространство для бесконечного случая, т.к. это требует более сложной математики. Однако, для иллюстрации отмечу, что в бесконечном случае могут быть такие (плохие) множества элементарных исходов, которые не имеют вероятности (неизмеримые множества). При этом для всех хороших (измеримых) событий вероятность определена однозначно. Поэтому и те «парадоксы», которые возникают в бесконечном случае, тоже возникают из-за неоднозначности выбора вероятностного пространства. Хорошим наглядным примером служит парадокс Бертрана, показывающий, как казалось бы эквивалентные (на самом деле нет) вероятностные пространства приводят к разным результатам.

Вместо заключения

Даже если вы не собираетесь никуда поступать или проходить собеседования на технические позиции в IT-компании, то вы всё равно можете захотеть освежить знания по математике, которые могут пригодиться в программировании. Могу посоветовать онлайн-курс СS центра по теории вероятностей, который читает А.И. Храбров.

Что значит описать событие в теории вероятностей

БОНУС

Приглашаю всех послушать лекция Александра Шеня «Генераторы «случайных чисел»: теория и практика» в это воскресенье 26 апреля в 14:00 в Computer Science клубе. Лекция будет читаться в zoom-е, для участия нужно записаться на курс или подписаться на рассылку.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *