Что значит фсу в алгебре
Формулы сокращенного умножения: таблица, примеры использования
Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.
В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.
Формулы сокращенного умножения. Таблица
Впервые тема ФСУ рассматривается в рамках курса «Алгебра» за 7 класс. Приведем ниже 7 основных формул.
Формулы сокращенного умножения
Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.
Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.
Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.
Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.
При решении практических примеров часто используют формулы сокращенного умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители.
Дополнительные формулы сокращенного умножения
Не будем ограничиваться курсом 7 класса по алгебре и добавим в нашу таблицу ФСУ еще несколько формул.
Во-первых, рассмотрим формулу бинома Ньютона.
Но что, если слагаемых в сумме, которую нужно возвести в степень, больше, чем два? Полезной будет формула квадрата суммы трех, четырех и более слагаемых.
Как читать эту формулу? Квадрат суммы n слагаемых равен сумме квадратов всех слагаемых и удвоенных произведений всех возможных пар этих слагаемых.
Для четных показателей 2m:
Для нечетных показателей 2m+1:
Как читать формулы сокращенного умножения?
Дадим соответствующие формулировки для каждой формулы, но сначала разберемся с принципом чтения формул. Удобнее всего делать это на примере. Возьмем самую первую формулу квадрата суммы двух чисел.
Говорят: квадрат суммы двух выражений a и b равен сумме квадрата первого выражения, удвоенного произведения выражений и квадрата второго выражения.
квадрат разности двух выражений a и b равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражения.
С учетом этого, формулы суммы и разности кубов прочитаются так:
Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.
Разность кубов двух выражений равна произведению разности этих выражений на неполный квадрат их суммы.
Доказательство ФСУ
Доказать ФСУ довольно просто. Основываясь на свойствах умножения, проведем умножение частей формул в скобках.
Для примера рассмотрим формулу квадрата разности.
Чтобы возвести выражение во вторую степень нужно это выражение умножить само на себя.
Формула доказана. Остальные ФСУ доказываются аналогично.
Примеры применения ФСУ
Применим формулу суммы квадратов и получим:
Сокращаем и получаем:
Казалось бы, сложное вычисление проведено быстро всего лишь с использованием формул сокращенного умножения и таблицы умножения.
Формулы сокращенного умножения с примерами
Формулами сокращенного умножения (ФСУ) называют несколько наиболее часто встречающихся в практике случаев умножения многочленов.
Квадрат суммы
А если мы опустим промежуточные вычисления и запишем только начальное и конечное выражения, получим окончательную формулу:
Квадрат суммы: \((a+b)^2=a^2+2ab+b^2\)
Большинство учеников учат ее наизусть. А вы теперь знаете, как эту формулу вывести, и если вдруг забудете – всегда можете это сделать.
Хорошо, но как ей пользоваться и зачем эта формула нужна? Квадрат суммы позволяет быстро писать результат возведения суммы двух слагаемых в квадрат. Давайте посмотрим на примере.
Обратите внимание, насколько быстрее и меньшими усилиями получен результат во втором случае. А когда вы эту и другие формулы освоите до автоматизма – будет еще быстрее: вы сможете просто сразу же писать ответ. Поэтому они и называются формулы СОКРАЩЕННОГО умножения. Так что, знать их и научиться применять – точно стоит.
На всякий случай отметим, что в качестве \(a\) и \(b\) могут быть любые выражения – принцип остается тем же. Например:
Раскроем скобки, воспользовавшись формулой квадрата суммы.
…и приведем подобные слагаемые.
Важно! Необходимо научиться пользоваться формулами не только в «прямом», но и в «обратном» направлении.
Пример. Вычислите значение выражения \((368)^2+2·368·132+(132)^2\) без калькулятора.
Мда… возводить в квадрат трехзначные числа, перемножить их же, а потом все это складывать – удовольствие ниже среднего. Давайте искать другой путь: обратите внимание, что данное нам числовое выражение очень похоже на правую часть формулы. Применим ее в обратную сторону: \(a^2+2ab+b^2=(a+b)^2\)
Вот теперь вычислять гораздо приятнее!
Квадрат разности
Выше мы нашли формулу для суммы одночленов. Давайте теперь найдем формулу для разности, то есть, для \((a-b)^2\):
В более краткой записи имеем:
Квадрат разности: \((a-b)^2=a^2-2ab+b^2\)
Применяется она также, как и предыдущая.
Пример. Упростите выражение \((2a-3)^2-4(a^2-a)\) и найдите его значение при \(a=\frac<17><8>\).
Теперь приведем подобные слагаемые.
Вот теперь подставляем и наслаждаемся простотой вычислений.
Разность квадратов
Итак, мы разобрались с ситуациями произведения двух скобок с плюсом в них и двух скобок с минусом. Остался случай произведения одинаковых скобок с разными знаками. Смотрим, что получится:
Разность квадратов \(a^2-b^2=(a+b)(a-b)\)
Да, я знаю, что рука так и тянется сократить иксы и девятку с тройкой – однако так делать ни в коем случае нельзя, ведь и в числителе, и в знаменателе стоит минус!
Попробуем воспользоваться формулой.
Вот теперь все плюсы и минусы попрятались в скобки, и значит без проблем можем сокращать одинаковые скобки.
Воспользуемся формулами степеней: \((a^n )^m=a^
Ну, а теперь пользуемся формулой \(a^2-b^2=(a+b)(a-b)\), где \(a=5x^2\) и \(b=m^5 t^3\).
Это три основные формулы, знать которые нужно обязательно! Есть еще формулы с кубами (см. выше), их тоже желательно помнить либо уметь быстро вывести. Отметим также, что в практике часто встречаются сразу несколько таких формул в одной задаче – это нормально. Просто приучайтесь замечать формулы и аккуратно применяйте их, и все будет хорошо.
На первый взгляд тут тихий ужас и сделать с ним ничего нельзя (вариант «лечь и помереть» всерьез не рассматриваем).
Однако давайте попробуем поменять два последних слагаемых числителя местами и добавим скобки (просто для наглядности).
Теперь немного преобразуем слагаемые в скобке:
\(4xy\) запишем как \(2·x·2y\),
а \(4y^2\) как \((2y)^2\).
Теперь приглядимся – и заметим, что в скобке у нас получилась формула квадрата разности, у которой \(a=x\), \(b=2y\). Сворачиваем по ней к виду скобки в квадрате. И одновременно представляем девятку как \(3\) в квадрате.
Еще раз внимательно смотрим на числитель… думаем… думаем… и замечаем формулу разности квадратов, у которой \(a=(x-2y)\), \(b=3\). Раскладываем по ней к произведению двух скобок.
И вот теперь сокращаем вторую скобку числителя и весь знаменатель.
Сокращенное умножение: правила, формулы
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Формулы сокращенного умножения
Вместо букв a, b могут быть любые числа, переменные или даже целые выражения. Для быстрого решения задач лучше выучить основные 7 формул сокращенного умножения (ФСУ) наизусть. Да, алгебра такая, нужно быть готовым много запоминать.
Ниже удобная табличка, которую можно распечатать и использовать, как закладку для быстрого запоминания формул.
Как читать формулы сокращенного умножения
Учимся проговаривать формулы сокращенного выражения:
Обучение на курсах по математике — дорога к хорошим оценкам в школе и высокому баллу на экзамене.
Доказательство формул сокращенного умножения
Остальные ФСУ можно доказать аналогичным методом.
Дополнительные формулы сокращенного умножения
К таблице основных ФСУ следует добавить еще несколько важных тождеств, которые пригодятся для решения задач.
Бином Ньютона
Формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных. Записывается вот так:
Пример вычисления биномиальных коэффициентов, которые стоят в строке под номером n в треугольнике Паскаля:
ФСУ для квадрата и куба суммы и разности — являются частными случаями формулы бинома Ньютона при n = 2 и n = 3.
Формула возведения в квадрат суммы трех, четырех и более слагаемых
Пригодится, если слагаемых в сумме, которую нужно возвести в степень, больше, чем два.
Читается так: квадрат суммы n слагаемых равен сумме квадратов всех этих слагаемых и удвоенных произведений всех возможных пар этих слагаемых.
Формула разности n-ых степеней двух слагаемых
a n − b n = (a − b) * (a n-1 + a n-2 * b + a n-3 * b 2 + … + a * b n-2 + b n-1 ).
Для четных показателей можно записать так:
a 2*m − b 2*m = (a 2 − b 2 ) *(a 2*m−2 + a 2*m−4 * b 2 + a 2*m−6 * b 4 + … + b 2*m−2 ).
Для нечетных показателей:
a 2*m+1 − b 2*·m+1 = (a − b) * (a 2*m + a 2*m−1 * b + a 2*m−2 * b 2 + … + b 2*m ).
Частными случаями являются формулы разности квадратов и кубов при n = 2 и n = 3. Для разности кубов b можно также заменить на −b.
Решение задач
Давайте потренируемся и рассмотрим примеры с дробями.
Задание 1
Как решаем: воспользуемся формулой квадрата суммы: (55 + 10) 2 = 55 2 + 2 * 55 * 10 + 10 2 = 3025 + 1100 + 100 = 4225.
Задание 2
Что сделать: упростить выражение 64 * с 3 – 8.
Как решаем: применим разность кубов: 64 * с 3 – 8 = (4 * с) 3 – 2 3 = (4 * с – 2)((4 * с) 2 + 4 * с * 2 + 2 2 ) = (4 * с – 2)(16 * с 2 + 8 * с + 4).
Задание 3
Как решаем:
Многочленов бояться не стоит, просто совершайте последовательно каждое действие. С формулами решать задачки быстрее и удобнее — сохраняйте шпаргалку, запоминайте и радуйте своих учителей 🙂
Формулы сокращённого умножения (ФСУ): таблица и применение
Одной из первых тем, изучаемых в курсе алгебры, являются формулы сокращённого умножения. В 7 классе они применяются в самых простых ситуациях, где требуется распознать в выражении одну из формул и выполнить разложение многочлена на множители или, наоборот, быстро возвести сумму или разность в квадрат или куб. В дальнейшем ФСУ используют для быстрого решения неравенств и уравнений и даже для вычисления некоторых числовых выражений без калькулятора.
Как выглядит список формул
Существует 7 основных формул, позволяющих быстро осуществить перемножение многочленов в скобках.
Иногда в этот список также включается разложение для четвёртой степени, которое следует из представленных тождеств и имеет вид:
Все равенства имеют пару (сумма — разность), кроме разности квадратов. Для суммы квадратов формула не приводится.
Остальные равенства легко запоминаются:
Следует помнить, что ФСУ работают в любом случае и для любых величин a и b: это могут быть как произвольные числа, так и целые выражения.
В ситуации, если вдруг не получается вспомнить, какой знак стоит в формуле перед тем или иным слагаемым, можно раскрыть скобки и получить тот же результат, что и после использования формулы. Например, если проблема возникла при применении ФСУ куба разности, нужно записать исходное выражение и поочерёдно выполнить умножение:
(a — b)³ = (a — b)(a — b)(a — b) = (a² ab — ab + b²)(a — b) = a³ a²b — a²b + ab² a²b + ab² + ab² b³ = a³ 3a²b + 3ab² b³.
В результате после приведения всех подобных членов был получен такой же многочлен, как и в таблице. Такие же манипуляции можно проводить и со всеми остальными ФСУ.
Применение ФСУ для решения уравнений
К примеру, нужно решить уравнение, содержащее многочлен 3 степени:
В школьной программе не рассматриваются универсальные приёмы для решения кубических уравнений, и подобные задания чаще всего решаются более простыми методами (например, разложением на множители). Если заметить, что левая часть тождества напоминает куб суммы, то уравнение можно записать в более простом виде:
Аналогичным способом решаются неравенства. Для примера можно решить неравенство x³ 6x² + 9x >, 0.
В первую очередь необходимо разложить выражение на множители. Вначале нужно вынести за скобку x. После этого следует обратить внимание, что выражение в скобках можно преобразовать в квадрат разности.
Затем необходимо найти точки, в которых выражение принимает нулевые значения, и отметить их на числовой прямой. В конкретном случае это будут 0 и 3. Затем методом интервалов определить, в каких промежутках x будет соответствовать условию неравенства.
ФСУ могут оказаться полезными при выполнении некоторых расчётов без помощи калькулятора:
703² 203² = (703 + 203)(703 — 203) = 906 ∙ 500 = 453000.
Кроме того, раскладывая выражения на множители, можно легко выполнять сокращение дробей и упрощение различных алгебраических выражений.
Примеры задач для 7−8 класса
В заключение разберём и решим два задания на применение формул сокращённого умножения по алгебре. Если вы новичек, то лучше всего начать играть без настоящих ставок. Однако если уже вы решились, то найти интернет казино вулкан с выводом на реальные деньги можно с помощью рейтингов или же обратившись за советом к более опытным гемблерам. В принципе можно попробовать метод проб и ошибок, но это будет сложнее и дольше.
Задача 1. Упростить выражение:
(m + 3)² + (3m + 1)(3m — 1) — 2m (5m + 3).
Решение. В условии задания требуется упростить выражение, т. е. раскрыть скобки, выполнить действия умножения и возведения в степень, а также привести все подобные слагаемые. Условно разделим выражение на три части (по числу слагаемых) и поочерёдно раскроем скобки, применяя ФСУ там, где это возможно.
Подставим полученные результаты в исходное выражение:
(m² + 6m + 9) + (9m² 1) — (10m² + 6m).
С учётом знаков раскроем скобки и приведём подобные слагаемые:
m² + 6m + 9 + 9m² 1 — 10m² 6m = 8.
Задача 2. Решить уравнение, содержащее неизвестное k в 5 степени:
k⁵ + 4k⁴ + 4k³ 4k² 4k = k³.
Решение. В этом случае необходимо воспользоваться ФСУ и методом группировки. Нужно перенести последнее и предпоследнее слагаемое в правую часть тождества.
k⁵ + 4k⁴ + 4k³ = k³ + 4k² + 4k.
Из правой и из левой части выносится общий множитель (k² + 4k +4):
k³(k² + 4k + 4) = k (k² + 4k + 4).
Всё переносится в левую часть уравнения, чтобы в правой остался 0:
k³(k² + 4k + 4) — k (k² + 4k + 4) = 0.
Снова необходимо вынести общий множитель:
Из первого полученного сомножителя можно вынести k. По формуле краткого умножения второй множитель будет тождественно равен (k + 2)²:
Использование формулы разности квадратов:
Поскольку произведение равно 0, если хотя бы один из его множителей нулевой, найти все корни уравнения не составит труда:
На основании наглядных примеров можно понять, как запомнить формулы, их отличия, а также решить несколько практических задач с применением ФСУ. Задачи простые, и при их выполнении не должно возникнуть никаких сложностей.
Формулы сокращенного умножения (ЕГЭ 2022)
Зачем нужны формулы сокращенного умножения?
С их помощью ты сможешь упростить выражение, привести многочлен к стандартному виду (без раскрытия скобок и приведения подобных)
Ты сможешь легко в уме находить квадраты больших чисел и, например, быстро проверить свои расчеты на экзамене.
Иными словами это сильно экономит время при решении самых разных задач!
В общем их стоит выучить. Начнем?
Формулы сокращенного умножения — коротко о главном
Формулы сокращенного умножения – это формулы, зная которые можно избежать выполнения некоторых стандартных действий при упрощении выражений или разложении многочленов на множители.
Формулы сокращенного умножения нужно знать наизусть!
Квадрат суммы
Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения:
Название «Формулы сокращенного умножения» совсем не случайно, потому что эти формулы позволяют сократить время на умножение. Вот смотри…
Возьмем самую простую первую формулу квадрата суммы \( <<\left( a+b \right)>^<2>>\) — и попробуем возвести сумму в скобках в квадрат, то есть, умножить \( \left( a+b \right)\) само на себя:
Приведи подобные слагаемые и ты получишь формулу сокращенного умножения квадрат суммы:
Таким образом выводятся все формулы сокращенного умножения.
Ты можешь выводить их каждый раз самостоятельно, а можешь не тратить на это время и быстро посчитать необходимый пример, зная конечное значение формул.
Конечно, квадрат суммы посчитать вручную не так сложно, но что ты скажешь насчет куба суммы или куба разности?
Куб суммы означает, что необходимо \( \left( a+b \right)\) само умножить на себя три раза:
И это мы расписали перемножение только первой скобки, а тоже самое необходимо сделать со второй и с третьей… Согласись, запутаться очень легко, а, как правило, от того, как ты посчитаешь это простое действие, зависит ответ всего примера.
Таким образом, формулы сокращенного умножения позволяют сократить трудоемкое перемножение членов друг на друга и получить быстрый результат.
Как выводится формула для квадрата суммы, мы описали ранее. Попробуем произвести аналогичные действия с квадратом разности.
Квадрат разности
Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения:
Квадрат разности означает умножить \( \left( a-b \right)\) само на себя. Попробуй вывести формулу для данного выражения самостоятельно, по аналогии с квадратом суммы.
Справился? Посмотрим, как ты раскрыл скобки:
Что мы делаем дальше? Правильно, приводим подобные слагаемые:
Ты наверняка уже заметил некую закономерность? Присмотрись внимательно к формулам квадрат суммы и квадрат разности. В чем их отличие?
Конечно, ты увидел, что если мы возводим в квадрат разность между \( a\) и \( b\), то мы вычитаем их удвоенное произведение, а если возводим в квадрат сумму, то прибавляем.
При возведении разности и суммы в квадрат, не забывай про удвоенное произведение чисел \( a\) и \( b\)!
Это грубейшая и самая распространенная ошибка!
Попробуй таким способом вычислить следующие выражения:
Ответы:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Посчитай самостоятельно выражения:
Ответы:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Подведем небольшой итог и запишем формулы квадрата суммы и разности в одну строку:
Допустим, у нас есть следующее выражение:
Мы знаем, что квадрат суммы (или разности) – это квадрат одного числа \( +\) квадрат другого числа и \( \pm \) удвоенное произведение этих чисел.
Так как во втором слагаемом есть \( b\), значит, это удвоенное произведение одного и другого числа, соответственно:
\( 24b=2\cdot 3b\cdot x\), где \( \displaystyle x\) – второе число, входящее в нашу скобку.
\( x=\frac<24b><6b>=4\). Второе число, входящее в скобку, равно \( \displaystyle 4\).
Проверим. \( \displaystyle 16\) должно быть равно \( <<4>^<2>>\). Действительно, так и есть, значит, мы нашли оба числа, присутствующие в скобках: \( 4\) и \( 3b\). Осталось определить знак, который стоит между ними. Как ты думаешь, что за знак там будет?
Правильно! Так как мы прибавляем удвоенное произведение, то между числами будет стоять знак сложения. Теперь запиши преобразованное выражение. Справился? У тебя должно получиться следующее:
Заметь: перемена мест слагаемых не сказывается на результате (неважно, сложение или вычитание стоит между \( a\) и \( b\)).
Совершенно необязательно, чтобы слагаемые в преобразуемом выражении стояли так, как написано в формуле.
Посмотри на это выражение: \( 12b+9+4<^<2>>\). Попробуй преобразовать его самостоятельно. Получилось?
Потренируйся – преобразуй следующие выражения:
Ответы:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Справился? Закрепим тему.
Выбери из приведенных ниже выражений те, которые можно представить в виде квадрата суммы или разности.
Ответы:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Разность квадратов
Разность квадратов двух выражений равна произведению разности этих выражений и их суммы:
Еще одна формула сокращенного умножения – разность квадратов.
Разность квадратов — это не квадрат разности!
Разность квадратов двух чисел равна произведению суммы этих чисел на их разность
Проверим, верна ли эта формула. Для этого перемножим \( \left( a-b \right)\left( a+b \right)\), как делали при выведении формул квадрата суммы и разности:
Что мы делаем дальше? Правильно! Приводим подобные слагаемые и получаем:
Таким образом, мы только что удостоверились, что формула действительно верная. Данная формула также упрощает сложные вычислительные действия.
Необходимо вычислить: \( <<145>^<2>>-<<45>^<2>>\). Конечно, мы можем возвести в квадрат \( 145\), затем возвести в квадрат \( 45\) и вычесть одно из другого, но формула упрощает нам задачу:
\( <<145>^<2>>-<<45>^<2>>=\left( 145-45 \right)\cdot \left( 145+45 \right)=100\cdot 190=19000\)
Попробуй самостоятельно посчитать следующие выражения:
Получилось? Сверим результаты:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Так же, как и квадрат суммы (разности), формула разности квадратов может применяться не только с числами:
Умение раскладывать разность квадратов поможет нам преобразовывать сложные математические выражения.
Поскольку \( 3= <<\left( \sqrt<3>\right)>^<2>>\), при разложении на квадрат разности правого выражения мы получим
Будь внимателен и смотри, какое конкретное слагаемое возводится в квадрат!
Для закрепления темы преобразуй следующие выражения:
Записал? Сравним полученные выражения:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Теперь, когда ты усвоил квадрат суммы и квадрат разности, а также разность квадратов, попробуем решать примеры на комбинацию этих трех формул.
Квадрат суммы, квадрат разности, разность квадратов — задачи на комбинацию этих формул
Посмотри внимательно, что ты видишь в числителе? Правильно, числитель — это полный квадрат:
Упрощая выражение, помни, что подсказка, в какую сторону двигаться в упрощении, находится в знаменателе (или в числителе).
В нашем случае, когда знаменатель разложен, и больше ничего сделать нельзя, можно понять, что числителем будет либо квадрат суммы, либо квадрат разности.
Так как мы прибавляем \( 6ab\), то становится ясно, что числитель – квадрат суммы.
Попробуй самостоятельно преобразовать следующие выражения:
А теперь сверь результаты:
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Куб суммы и куб разности
Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения:
Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения:
Формулы куба суммы и куба разности выводятся аналогичным образом, как квадрат суммы и квадрат разности: раскрытием скобок при перемножении членов друг на друга.
Если квадрат суммы и квадрат разности запомнить весьма легко, то возникает вопрос «как запомнить кубы?»
Посмотри внимательно на две описываемые формулы в сравнении с возведением аналогичных членов в квадрат:
Какую ты видишь закономерность?
Всё перечисленное, кроме зависимости степеней при умножении членов, изображено на рисунке.