Что относится к видам ускорения в биомеханике

Биомеханика «Предмет, задачи спортивной биомеханики»

Лекция № 1 Тема 1.1. Предмет, задачи спортивной биомеханики. История развития биомеханики.(2 ч.)

Д/З Подготовка сообщения «Вклад Российских и зарубежных ученых в развитие биомеханики».(2ч)

Биомеханика – это наука о законах механического движения в живых организмах.

Биомеханика спорта – изучает движения человека в процессе физических упражнений.

Она рассматривает двигательные действия спортсмена как системы взаимо связаных активных движений, при этом исследует механические и биологические причины движений и зависящие от них особенности двигательных действий в различных условиях.

Цель, задачи биомеханики двигательных действий

Цель биомеханики двигательных действий состоит с одной стороны, в повышении эффективности двигательных действий человека, а с другой – в предупреждении травм при выполнении двигательных действий и уменьшении их последствий

1. Повышение эффективности двигательных действий человека.

2. Предупреждение травм при выполнении двигательных действий и уменьшение их последствий.

Задачи биомеханики спорта делятся на общие и частные, и задачи которые относятся к определенной цели. Целевые задачи представлены на слайде.

1. Общие – раскрывают физико математические закономерности движений

2. Частные – изучает технику выполнения двигательных действий в различных видах спорта

Метод работы биомеханики спорта

1. Системный анализ это разложение одного целого на отдельные части

2. Системный синтез это способ выявления взаимосвязи частей в системе, закономерностей их воздействия.

Понятия системный анализ и синтез представлены на слайде, их нужно записать в тетрадь

А сейчас мы с вами посмотрим наглядно, чем занимается биомеханика и какие задачи ставят современные ученые перед собой(11:24)

История развития биомеханики

Биомеханика — одна из самых старых ветвей биологии. Ее истоками были работы Аристотеля и Галена, посвященные анализу движений животных и человека. Но только благодаря работам одного из самых блистательных людей эпохи Возрождения — Леонардо да Винчи (1452—1519) — биомеханика сделала свой следующий шаг. Леонардо особенно интересовался строением человеческого тела (анатомией) в связи с движением. Он описал механику тела при переходе из положения сидя к положению стоя, при ходьбе вверх и вниз, при прыжках и, по-видимому, впервые дал описание походок.

А сейчас посмотрим подробный вклад Леонардо да Винчи (видеоролик) ( 14 мин)

Р. Декарт (1596—1650) создал основу рефлекторной теории, показав, что причиной движений может быть конкретный фактор внешней среды, воздействующий на органы чувств. Этим объяс­нялось происхождение непроизвольных движений.

В дальнейшем большое влияние на развитие биомеханики ока­зал итальянец Д. Борелли (1608—1679) — врач, математик, физик. В своей книге «О движении животных» по сути он положил начало биомеханике как отрасли науки. Он рассматривал организм человека как машину и стремился объяснить дыхание, движение крови и работу мышц с позиций механики.

Первые шаги в подробном изучении биомеханики движений были сделаны лишь в конце XIX столетия немецкими учеными Брауном и Фишером (V. Braune, О. Fischer), которые разработали совершенную методику регистрации движений, детально изучили динамическую сторону перемещений конечностей и общего цент­ра тяжести (ОЦТ) человека при нормальной ходьбе.

К.Х. Кекчеев (1923) изучал биомеханику патологических похо­док, используя методику Брауна и Фишера.

П.Ф. Лесгафтом (1837—1909) создана биомеханика физических упражнений, разработанная на основе динамической анатомии. В 1877 г. П.Ф. Лесгафт начал читать лекции по этому предмету на курсах по физическому воспитанию. В Институте физического образования им. П.Ф. Лесгафта этот курс входил в предмет «физическое образование», а в 1927 г. был выделен в самостоятельный предмет под названием «теория движения» ив 1931 г. переименован в курс «Биомеханика физических упражнений».

Большой вклад в познание взаимодействия уровней регуляции движений внес Н.А. Бернштейн (1880— 1968). Им дано теоретическое обоснование процессов управления движениями с позиций общей теории больших систем. Исследования Н.А. Бернштейна позволили установить чрезвычайно важный принцип управления движениями, общепризнанный в настоящее время. Нейрофизиоло­гические концепции Н.А. Бернштейна послужили основой форми­рования современной теории биомеханики движений человека.

Идеи Н.М. Сеченова о рефлекторной природе управления движе­ниями путем использования чувствительных сигналов, получили раз­витие в теории Н.А. Бернштейна о кольцевом характере процессов управления.

М.Ф. Иваницкий (1895—1969) разработал функциональную (динамическую) анатомию применительно к задачам физкультуры и спорта, т. е. определил связь анатомии с физкультурой.

В 1939 году вышло первое учебное пособие Е.А. Котиковой «Биомеханика физических упражнений» в СССР, в городе Ленинграде, а в 1958 году во всех институтах ФК биомеханика стала обязательной учебной дисциплиной.

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Курс лекций по биомеханике. Курс лекций Содержание Биомеханика как учебная и научная

Внешние относительно системы силы — мера воздействия на нее

объектов окружающей среды.

Внешние силы обладают особенностями, значение которых важно для понимания динамики. Они могут быть мысленно приложены к цент­ру тяжести системы как изменяющие его движение, могут изменять и ее кинетический момент, что невозможно для внутренних сил. В этом главный смысл разделения сил на эти группы (внешние и внутренние силы).

В числе внешних для тела человека сил будут рассмотрены: дистантные силы (тяжести) и контактные (силы веса и инерции внешних тел, сопротивления среды, реакции опоры, трения и упругой дефор­мации).

3.1. Сила тяжести и вес

Сила тяжести тела — это мера притяжения тела к Земле с учетом уменьшения силы притяжения вследствие суточного вращения Земли. Сила тяжести тела равна геометрической (векторной) сумме гравитационной и инерционной (центробежной) сил и при­ложена как равнодействующая всех сил тяжести частиц тела к его центру тяжести.

Все тела на Земле находятся в поле земного тяготения. Тело массы т притягивается Землей массы М с силою F по линии, соединяю­щей их центры масс.

Сила тяготения зависит только от масс и расстояния

.Для определения величины силы тяжести применяется стати­ческое измерение — по действию тела на площадку пру­жинных весов. Под действием силы тяжести тело само оказывает дав­ление на опору (нижнюю или верхнюю) — проявляется вес тела.

Вес тела (статический) — это мера его воздействия в покое на покоящуюся же связь (опору, подвес), как на препятствие, ме­шающее падению.

Рычажные весы с гирями не улавливают различие в весе, связанное с местоположением пункта взвешивания, поскольку вес гирь изме­няется так же, как вес тела.

Вес тела равен его силе тяжести, но вес сила контактная, при­ложенная не к телу, а к опоре тела, сила же тяжести—дистантная сила, которая приложена к самому телу.

Для определения величины силы применяется также динами­ческое измерение — по ускорению свободно падающего тела (для технических расчетов принимают 981 см/сек), В разных пунктах Земли это ускорение различно, но в некоторых практических задачах это различие можно не учитывать. Для приближенных расче­тов (в учебных заданиях) его считают равным 9,8 или даже 10,0 м/сек.

Сила тяжести тела человека и вес удержи­ваемых им тел вызваны земным тяготением и поэтому служат для человека внешними силами.

Поскольку вес (как и сила тяжести) изменяется от ускорения тела, различают статический вес (тело покоится) и динамический вес.Последний есть геометрическая сумма статического веса и силы инер­ции при ускорении по вертикали. Например, при приседании или оттал­кивании силы инерции направлены против ускорения. Они или увели­чивают или уменьшают динамический вес тела (его общую силу дав­ления на опору).

На горизонтальной плоскости сила тяжести (G) вызывает опорную реакцию (R); обе силы взаимно уравновешены. На нак­лонной плоскости составляющие силы тяжести соответ­ственно вызывают опорную реакцию RN и силу трения Т. Вне опоры сила тяжести вызывает у всех звеньев свободно падающего тела одинаковое ускорение, поэтому на взаимное расположение и относительное движение частей тела сила тяжести в полете не влияет. Поскольку тело не действует на опору, то нет веса — тело находится в состоянии невесомости.

Итак, сила тяжести тела действует: а) на опо­ру в покое — как статический вес; б) на опору пpи вертикальном ускорении—как динами­ческий вес и в) вне опоры — как причина уско­рения свободно падающего тела.

В положении на опоре силы тяжести либо проходят через оси суста­вов тела и тянут части тела вниз, либо действуют на плече силы тяжести (d) и обладают моментом относительно оси суста­ва — ai(,(g). Так же действуют на тело человека своим весом и внеш­ние тела, удерживаемые или приводимые в движение человеком. Стало быть, при опоре вес звеньев тела и отягощений всегда влияет на рас­положение и движение звеньев тела. Изменять статический вес внеш­них тел и своих частей тела человек не может, но и з м е н я т ь мо­менты сил тяжести, а также динамический вес можно и иногда нужно — в зависимости от задачи движения и конк­ретных условий.

3.2. Силы инерции внешних тел

Сила инерции внешнего тела в инерциальной системе отсчета (реальная сила) — это мера действия на тело человека со стороны тела, ускоряемого им. Она равна произведению массы внешнего тела на его ускорение, направлена в сторону, противоположную ускорению, и приложена к рабочей точке тела человека (место его контакта с ускоряемым телом или опорой).

При движениях человек, изменяя скорость внешних тел, сооб­щает им ускорение. Как противодействие ускоряющей силе действия человека возникает внешняя сила инерции ускоряемых тел. Сила инерции внешнего тела, действующая на тело человека,— это реакция, испытываемая телом человека со стороны ускоряемого тела, которому он, и только он, сообщает ускорение. При толкании штанги возникает ее ускорение от груди и рук (а), направленное вверх (рис. 30, а). Сила инерции штанги, приложенная к груди и рукам, обус­ловлена ускоряющей силой F^, равна ей по величине и направлена противоположно (вниз); она складывается с весом штанги. Если атлет замедляет движение штанги, направленное вниз (опуская ее на по­мост), то ускорение штанги также направлено вверх. Сила же инерции штанги, как и ее вес, направлена вниз и приложена к рукам атлета (см. рис. 30,6).

Все это — примеры реальной (ньютоновой) силы инерции, отсчи­тываемой в инерциалыюй системе отсчета и приложенной к уско­ряющему телу со стороны ускоряемого в поступательном движении.

При искривлении траектории внешнего тела силой человека во вращательном движении центробежная сила, как сила инерции вращаемого тела (равная по модулю центростремительной тяге спортсмена), направлена по радиусу от центра и приложена к рабочей точке тела человека (см. рис. 30, в).

Что относится к видам ускорения в биомеханике
Рис. 30. Сила инерции:

Во вращательном движении полная сила инерции тела составляет­ся из тангенциальной составляющей при угловом ускорении) и нормальной — при центростремительном ускорении).

3.3.Силы сопротивления среды

Давление в газе или жидкости — это мера силы механического воздействия между элементами данной среды и элементами среды и другими телами. Оно равняется отношению силы к той площади, через которую осуществляется воздействие. Для всякой площадки в среде направление силы действия одного элемента среды на другой только нормальное (перпендикулярное площадке).

В каждой точке среды величина давления одинакова для всех нап­равлений, к которым это давление отнесено. Давление во всех точках среды, лежащих в одной горизонтальной плоскости, одно и то же. Давления по вертикали (в случае покоя среды) распре­деляются так, что разность дав­лений (F 2 —F1) равна весу вер­тикального столба среды (G).

Что относится к видам ускорения в биомеханике

a—статическая (выталкивающая. Q); б, в— динамические; б-лобового сопротивления,

Человек всегда находится и передвигается в какой-либо среде—либо воздушной, либо водной. Он вступает в механиче­ское взаимодействие со средой. ‘Силы ее действия могут проявляться статически (аэро-и гидростатика), например вытал­кивающая сила (по закону Ар­химеда), или динамиче­ски (аэро- и гидродинамика), например подъемная сила в потоке воздуха или воды.

Выталкивающая сила — это мера действия среды на погружен­ное в нее тело. Выталкивающая сила равна геометрической (век­торной) сумме сил, действующих на все элементы поверхности тела; она всегда равна по модулю весу вытесненного объема жид­кости или газа и направлена вверх.

Если тело весит больше, чем вытесненная им вода, то оно будет тонуть; при обратном соотношении будет всплывать.

Когда тело движется в среде, возникают дополнительные силы, за­висящие в основном от величины его скорости относительно среды (от­носительной скорости), формы тела, его ориентации по направлению относительного движения и свойств среды.

Движение тела в среде (или среды относительно тела) характеризует­ся линиями тока. Это линии, в каждой точке которых скорость частиц среды касательна. Скорости касательны и к линиям тока, и к траекториям частиц. Но линии тока характеризуют направления ско­рости разных частиц в данный момент времени, а траектории — направления скорости одних и тех же час­тиц в различные моменты времени. Только при по­стоянном распределении скоростей линии тока и траектории частиц сов­падают. Тело полностью обтекаемо, если линии тока рас­положены одинаково сверху и снизу тела, а также спереди и сзади. Правда, давление на тело с разных сторон различно. По закону Бернулли, где скорость потока возрастает, давление уменьшается, и наоборот. Именно этим и объясняются изменения давлений (дополни­тельные силы).

Но это объяснение достаточно только для идеальной среды, в ко­торой отсутствует внутреннее трение (вязкость). Вследствие вязкости обтекание всегда неполное, и поэтому возникает лобовое соп­ротивление.

Лобовое сопротивление — это сила, с которой среда препятствует относительному движению в ней тела. Лобовое сопротивление при относительно небольших скоростях приближенно равно про­изведению площади поперечного сечения тела, коэффициента лобового сопротивления, плотности среды и квадрата относи­тельной скорости:Rx=SCxv 2 , где S — площадь поперечного сечения (миделево сечение, или мидель 1 ), равная площади проекции тела на плоскость, перпендикулярную потоку; Сx — коэффициент лобового сопротивления, который зависит от формы тела (обтекаемости) и его ориентации относительно потока;

Перед телом давление повышено, так как скорость тока снижена (поджатие). Сзади тела силы трения вызывают отрыв потока от стенок тела, возникают завихрения, создается зона пониженного давления (разрежение). Равнодействующая сил давления на тело спереди и сза­ди направлена назад и тормозит движение тела.

Тело с более обтекаемой формой имеет меньше завихрений сзади. Поэтому сопротивление среды может в зависимости от формы тела сни­зиться при прочих равных условиях в десятки раз (см. рис. 31, б).

Таким образом, лобовое сопротивление зависит от разности давлений спереди и сзади тела в потоке (сопротивление формы) и трения меж­ду телом и пограничным слоем среды (сопро­тивление трения).

Когда поверхность тела образует угол с направлением потока (угол атаки а), возникает еще подъемная сила (R„, см. рис. 31, в). При этом давление снизу тела несколько больше давления в потоке, а давление сверху тела намного меньше; тело не столько подпирается снизу, сколь­ко «подсасывается» кверху.

Подъемная сила — это сила, действующая со стороны среды на тело, расположенное под углом к потоку. Подъемная сила зави­сит от тех же факторов, что и лобовое давление: Ry=SCyv 2 , где Су коэффициент подъемной силы.

Подъемная сила увеличивается в известных пределах с увеличе­нием угла атаки, а потом начинает падать.

Равнодействующая лобового давления и подъемной силы (она же равнодействующая сил давления и трения) при движении в воздухе называется полной аэродинамической силой.

Лобовое сопротивление среды тормозит продвижение вперед, на­пример, при полете, плавании, скольжении, беге. Подъемная сила поддерживает тело, например тело прыгуна на лыжах с трамплина в полете, пловца в воде при продвижении его по дистанции.

Реакции опоры — это мера противодействия опоры при давлении на нее со стороны покоящегося или движущегося при контакте с ней тела. Реакция опоры равна по величине силе, с которой те­ло действует на опору, направлена в противоположную этой силе сторону и приложена к телу в той точке, через которую проходит линия силы, действующей на опору.

Нормальная (или идеальная) реакция опоры при действии веса тела на горизонтальную поверхность направлена вертикально вверх. Во всех случаях она перпендикулярна плоскости, касательной той поверхности, которая служит опорой в точке приложения силы.

Человек может оказывать действие на опору не только по нормали к ней, но и под острым углом. Тогда направление полной реак­ции опоры не совпадает с нормалью. Горизонтальная составляющая полной реакции опоры называется силой трения, если поверхности, соприкасающиеся при опоре, ровные (без выступов).

Что относится к видам ускорения в биомеханике

Рис. 32. Силы опорной реакции:

1, 6 — статические; 2, 4 — уменьшенные; 3, 5 — увеличенные (ориг.)

Человек, находящийся на опоре (нижней или верхней), действует на нее статическим весом. В этом случае реакция опоры ста­тическая и равна весу тела (рис. 32). При движении с ускорением частей тела человека, опирающегося на опору, возникает сила инер­ции тела человека, которая геометрически суммируется с его весом. Увеличенную или уменьшенную опорную реакцию обычно называют динамической. Но правильнее говорить здесь о добавлении к статической еще и динамической составляющей опорной реакции, вызванной теми усилиями, которые определяют ускорение тела.

Линия действия силы опорной реакции при неподвижном положе­нии тела на опоре или же под опорой проходит через ОЦТ тела чело­века. Однако при движениях человека линия действия как нормаль­ной, так и полной опорной реакции (равнодействующая нормаль­ной реакции и силы трения по всем направлениям) почти никогда не проходит через ОЦТ.

Для анализа действия сил на наклонной плоскости опорная реак­ция может быть разложена на нормальную составляющую (перпендику­лярную плоскости) и касательную составляющую (параллельную пло­скости). Первая противодействует нормальной составляющей силы тяжести, вторая (сила трения) — силе, вызывающей скольжение тела.

Сила трения — это мера противодействия движению, направлен­ному по касательной к поверхности прикасающегося тела. Вели­чина силы трения (как составляющей реакции поверхности связи) зависит от воздействия движущегося или смещаемого тела; она направлена против скорости или смещающей силы и приложе­на в месте соприкосновения.

Силы трения (касательные реакции) возникают между соприкасаю­щимися телами во время их движения друг относительно друга (рис. 33)

Что относится к видам ускорения в биомеханике

Рис. 33. Силы трения (Т):

a-скольжения динамическая; б — скольжения статическая; в — момент трения качения (ориг.)

Различают три вида трения: трение скольжения, качения и верчения. При скольжении движущееся тело соприкасается с неподвижным одной и той же частью своей поверхности (лыжа скользит по снегу). При качении точки движущегося тела соприкасаются с дру­гим телом поочередно (колесо велосипеда катится по треку). Верчение характеризуется движением на месте вокруг оси (волчок).

Сила трения скольжения динамическая (движения) проявляется при движении тела, приложена к скользящему телу и направлена в сторону, противоположную относительной скорости его движе­ния. Динамическая сила трения скольжения не зависит от вели­чины движущей силы и приближенно пропорциональна динами­ческому коэффициенту трения скольжения (kдин) и силе нормаль­ного давления на опору(N): Tдин=kдинN

Когда поверхности полностью разделены слоем смазки, то прояв­ляется жидкостное трение 1 Оно существует между слоями жидкости, а также между жидкостью и твердым телом. В противопо­ложность сухому трению (между твердыми телами без смазки), жид­костное трение проявляется только тогда, когда есть скорость. С остановкой движущих­ся тел жидкостное трение исчезает, поэтому даже самая малая сила может сообщить скорость слоям жидкой среды, на­пример при движении твердого тела в воде.

Иная картина при сухом трении. Если приложить движущую силу к покоящемуся телу, то она сможет сдвинуть тело с места лишь тогда, когда станет больше силы трения покоя, препятствующей движению. Таким образом, сухое трение и жидкостное прин­ципиально различны.

Сила трения скольжения статическая (покоя) проявляется в по­кое, приложена к сдвигаемому телу, направлена в сторону, про­тивоположную сдвигающей силе. Статическая сила трения сколь­жения равна сдвигающей силе, но не может быть больше предель­ной 2 ; последняя пропорциональна статическому коэффициенту трения скольжения (kст) и силе нормального давления (N): Тст=kстN

Стало быть, статическая сила трения покоя мо­жет иметь величину от нулевой до предель­ной (неполная и полная). Минимальная сдвигающая сила, приводя­щая тело в движение, больше предельной силы трения покоя.

Отношение между величиной нормальной опорной реакции (равной силе нормального давления) и предельной силой трения покоя равно тангенсу угла (а), который называется углом трения (или углом сцеп­ления) (см. рис. 33, б).

Тангенс угла сцепления равен коэффициен­ту трения покоя. Фактический угол силы давления на опору в покое не может быть больше, чем угол трения. Это значит, что, пока линия действия силы, приложенной к телу, проходит внутри угла тре­ния, тело не может быть сдвинуто с места. Лишь когда линия действия силы окажется за пределами угла трения, тело будет сдвинуто.

На горизонтальной поверхности сила нормального давления обыч­но представлена статическим или динамическим весом (человек непод­вижен или отталкивается от опоры). Но могут быть и другие источники нормального давления, например при давлении, оказываемом ногами и спиной альпиниста на стенки камина (вертикальной расщелины в скалах),

3.6. Силы упругой деформации

Сила упругой деформации — это мера действия деформированного тела на другие тела, с которыми оно соприкасается. Величина и направление упругих сил зависят от упругих свойств деформи­рованного тела, а также от вида (сжатие, растяжение и др.) и величины деформации.

Все реальные твердые тела, а также жидкости и газы в той или иной степени деформируются под действием приложенных сил, при этом в них возникают силы упругой деформации (или упругие силы).

В так называемых упругих телах относительно невелик модуль Юнга. Деформации значительны, так как даже малые силы вызывают относительно большие деформации. После прекращения де­формирующего воздействия упругие силы восстанавливают форму тела. К таким телам, действующим на тело человека, можно отнести батут, пружинящий трамплин, эспандер. При деформации они пог­лощают работу (увеличивается их потенциальная энергия), а затем, восстанавливая свою форму, совершают работу (уменьшается потенциальная энергия). Эспандер (резиновый или пру­жинный) поглощает работу, совершаемую спортсменом. При исполь­зовании же батута и мостика существенна работа, которую совер­шают эти снаряды, восстанавливая свою форму.

Упругие взаимодействия имеют место при деформации тел, связан­ных с опорой под действием сил тяготения (проявление веса); при де­формации опоры (опорные реакции), ускоряемых тел (силы инерции), отчасти среды (силы сопротивления среды), соприкасающихся поверх­ностей (силы трения).

Выделение сил упругой деформации в отдельную группу как внеш­них относительно человека сил целесообразно только в случаях зна­чительных деформаций внешних упругих тел.

При биомеханическом исследовании движений человека рассмат­риваются обычно внутренние относительно его тела силы. Они возни­кают при взаимодействии частей биомеханической системы тела.

Внутренние силы механической системы — мера взаимодействия входящих в нее тел.

Внутренние силы нельзя мысленно рассматривать как приложен­ные к центру тяжести системы. Они не могут сами по себе изменять движение ОЦТ системы и ее кинетический момент.

Внутренние силы осуществляют притягивание и оттал­кивание внутри системы, между ее частями. В абсолютно твер­дом теле они попарно взаимно уравновешиваются. В системе внутрен­ние силы попарно не уравновешиваются, если приложены к разным частям системы (телам),— каждая производит свое действие.

К внутренним для тела человека силам относятся силы мышечной тяги и силы пассивного противодействия органов и тканей.

4.1. Силы мышечной тяги

Силы мышечной тяги приложены к звеньям кинематических це­пей внутри тела. Мышцы в своей активности всегда объединены в груп­пы. Силы тяги каждой мышцы изменяются. Поэтому изменяются и тяги отдельной группы мышц и тяги взаимодействующих групп мышц. Мышцы могут по ходу движения включаться в работу, выключаться из нее, а также, изменяя функцию, переходить из одной группы в дру­гую. Совместное действие мышц обеспечивает сохранение и направлен­ное изменение взаимного расположения звеньев.

Работа мышц — основной источник энергии движений человека (энергетическая функция). Мышцы, изменяя положение частей тела, обусловливают его воздействие на опору, среду и внеш­ние тела. Посредством мышечных тяг человек управляет движениями, используя внешние силы и остальные внутренние силы (управляющая функция).
4.2. Силы пассивного противодействия

Силы пассивного противодействия включают: опорные реакции в суставах и местах прикрепления мышц и связок, силы сухого и жидкостного трения, силы инерции при ускорениях звеньев, органов и тканей, а также упругие силы деформации упругих об­разований.

При передаче сил по кинематическим цепям в виде сил давления ко­стей друг на друга в суставах (вследствие воздействия веса частей тела и внешних тел, а также приложенных к костям тяг мышц и связок) воз­никают опорные реакции. Взаимное смещение органов и тканей при соприкосновении вызывает силы трения. К ним относятся и трение со смазкой (типа граничного и полусухого) и жидкостное трение как в жидких тканях и в прослойках между органами, так и в мягких тканях при их деформации (вязкость).

Вследствие деформаций тела человека возникают также упругие силы в пассивной части двигательного аппарата. Речь идет в первую очередь об упругих силах в связочном аппарате крупных суставов и соединений таких кинематических цепей, как позвоночник.

Все внутренние силы часто называют в отличие от внешних уси­лиями. В биомеханике усилиями именуют только си­лы мышечной тяги.

5.Динамические особенности в движениях человека

5.1. Роль сил в движениях человека

В классической механике изучается действие механических сил независимо от их источников, их происхождения. В биомеханике же существенно именно то, каковы источники сил и, следовательно, ка­кова «цена» используемой силы для организма человека. Все силы, при­ложенные к двигательному аппарату человека, в биомеханике принято рассматривать в качестве так называемого силового поля.

Различают внешнее силовое поле как совокупность всех внешних для человека сил и внутреннее — как совокупность внутренних сил.

Внешнее силовое поле проявляется как силы сопротивления. Их работа отрицательная; для ее пре­одоления затрачивается энергия движения и напряжения мышц чело­века. Различают рабочие и вредные сопротивления.

Преодоление рабочих сопротивлений составляет главную задачу движений человека (например, в преодолении веса штанги и заключа­ется цель движений со штангой).

Вредные сопротивления поглощают полезную работу; они в прин­ципе неустранимы (например, силы трения лыж по снегу).

Внешние силы используются человеком в его движениях и как движущие. Для совершения необхо­димой работы, для преодоления человеком сил сопротивления могут использоваться вес, упругие силы, инерционные и др. Внешние силы являются в этом случае «даровыми» источниками энергии, поскольку человек расходует меньше внутренних запасов энергии мышц.

Человек преодолевает силы сопротивления мышечными силами и соответствующими внешними и совершает как бы две части работы:

а) работу, направленную на преодоление всех сопротив­лений (л рабочих и вредных), и б) работу, направленную на сообщение ускорений своим органам движения и перемещае­мым внешним объектам.

В биомеханике сила действия человека это сила воз­действия на внешнее физическое окружение, передаваемого через рабочие точки тела че­ловека.

Рабочие точки, соприкасаясь с внешними телами, передают движе­ние (количество движения, а также кинетический момент) и кинетиче­скую энергию (поступательного и вращательного движения) внешним телам. Сила действия человека может быть статической, если она уравновешена внешними силами, и динамической, если она вызывает соответствующие ускорения (положительные, отрица­тельные, тангенциальные, нормальные).

Задача движений, относящихся к спортивной технике, в самом об­щем виде заключается в уменьшении действия вред­ных сопротивлений и увеличении эффектив­ности силы действия человека с наилучшим использованием движущих сил — активных мышечных тяг и особенно сил, имеющих иные источники.

К числу тормозящих сил, входящих в сопротивления, относятся все внешние и внутренние силы, в том числе и мышечные. Какие из сил будут играть роль вредных сопротивлений, зависит от условий конк­ретного упражнения. Только реактивные силы — силы опорной реак­ции и трения — не могут быть движущими силами: они всегда ос­таются сопротивлениями — как вредными, так и рабочими.

Эффективность приложения сил в механике определяют по коэффиценту полезного действия (к. п. д.): отношению работы по преодоле­нию рабочих сопротивлений к работе движущих сил. Чем больше к. п. д., тем эффективнее движение.

При энергетических расчетах для оценки роли силы определяют мощность силы, характеризующую важную сторону ее эффекта — бы­строту выполнения работы.

Мощность силы — это мера быстроты приращения работы силы. Мощность силы определяется как отношение выполненной ра­боты к затраченному на эту работу времени:

Внутреннее силовое поле включает и дви­жущие силы и сопротивления (как рабочие, так и вредные). В движениях человека движущие силы имеются не всегда (их может не быть в движениях по инерции), а тормозящие — всегда. В связи с тем что все движения в суставах характеризуются криволи­нейными траекториями, во всех случаях приложены отклоняющие (центростремительные) силы. От соотношения всех названных сил за­висят ускорения звеньев.

Как уже указывалось, движений человека без ускорений в прин­ципе не бывает. Следовательно, во всех движениях возникают силы инерции, направление которых противоположно направлению ускоре­ний. Силы инерции внешних тел относятся к внешним силам; силы инерции, вызываемые взаимодействием частей тела человека,— к внутренним. Чрезвычайное обилие сил инерции (реальных — ньютоновых) очень усложняет управление движениями и, конечно, их анализ. При рассмотрении составного движения кинематических цепей необ­ходимо учитывать также многочисленные переносные и поворотные силы инерции, возникающие в кинематических цепях. Следует постоянно помнить о вращательном характере движений: момент даже постоянной силы с изменением угла ее приложения изменяется.

5.2. Совместное действие сил

Внешние и внутренние относительно тела человека силы дейст­вуют на него совместно. Все эти силы независимо от их источника дей­ствуют как механические силы, изменяя механическое движение. В этом смысле они находятся в единстве, как материальные силы: мож­но производить при соблюдении соответствующих условий их сложе­ние, разложение, приведение и другие операции.

Внешние силы, действуя на тело человека, вызывают появление и изменение соответствующих внутренних сил. Это механические силы противодействия, в число которых входят обусловленные биологиче­скими факторами силы мышечной тяги.

Посредством внутренних сил мышечной тяги человек может вызы­вать своим действием появление и изменение внешних сил, управляя в известных пределах их воздействием на самого себя.

Силы мышечной тяги — единственные внутренние источники энер­гии человека. Только посредством этих сил человек может использо­вать все остальные силы и управлять движениями.

Движения человека представляют собой результат совместного действия внешних и внутренних сил. Внешние силы, как выражающие воздейст­вие внешней среды, обусловливают многие особенности движений. Внутренние силы, как единственные непосредственно управляемые человеком, обеспечивают правильное выполнение заданных движений.

По мере совершенствования движений становится возможным луч­ше использовать мышечные силы. Техническое мастерство проявляется в повышении удельного веса внешних и пассивных внутренних сил как движущих сил. При необходимости обеспечивается не только эконом­ность (сбережение сил), экономичность (высокий к. п. д. мышечных сил), но и высокий максимум мышечных сил и значительная быстрота дости­жения этого максимума при движении.

Тема 7.БИОДИНАМИКА ДВИГАТЕЛЬНЫХ КАЧЕСТВ

1.Биологические и физиологические механизмы развития двигательных качеств 2.Характеристика двигательных (локомоторных) качеств 3.Силовые качества 4.Развитие силы и ее измерение 5.Методика развития (тренировка) силы мышц 6.Влияние различных факторов на проявление силы мышц. 7.Физическая работоспособность. 8.Развитие быстроты. 9.Развитие ловкости. 10.Развитие выносливости. 11.Развитие гибкости.
1.Биологические и физиологические механизмы развития

двигательных качеств
Каждый человек владеет определенными двигательными навы­ками, например, может поднять определенный вес, пробежать или прыгнуть и т. п., но возможности у всех различны. Это связано и с возрастом, и наследственностью и, главное, с тренированно­стью. Двигательные качества отличаются друг от друга по форме и по затраченной энергии. Двигательные качества — это функциональные свойства организма, определяющие его двигательные способности.

Они проявляются в одинаковой форме движений и энергетического обеспечения и имеют анало­гичные физиологические механизмы.

Поэтому методики совершенствования (тренировки) тех или иных качеств имеют общие черты независимо от конкретного вида движения. Например, выносливость марафонца во многом сходна с выносливостью лыжника-гонщика, велогонщика, конькобежца и т. п. Сила (F), скорость (V) и длительность (продолжительность) движения находятся в определенных соотношениях друг с другом. Это соотношение различно в разных видах деятельности (в раз­ных видах спорта).

При сокращении мышцы развивают большие усилия, которые зависят от поперечного сечения, начальной длины волокон и ряда других факторов. Сила мышцы на 1 см 2 ее поперечного сечения называется абсолютной мышечной силой. Для человека она рав­на от 50 до 100 Н.

Сила и мощность одних и тех же мышц зависят от ряда физио­логических условий: возраста, пола, тренировки, температуры воз­духа, исходного положения при выполнении упражнений, биорит­мов и т. д.

Внешнее проявление сократительной активности мышцы (пучка волокон или волокна) состоит в том, что при ее фиксированной длине развивается усилие, а при фиксированной нагрузке проис­ходит укорочение. Эксперимент с мышцами проводится в двух режимах: изометрическом, когда длина мышцы фиксирована и изотоническом, когда мышца имеет возможность укорачивать­ся при постоянной нагрузке (рис. 14.1). На рисунке видно, что изо­метрическое усилие развивается очень быстро и достигает своей максимальной величины примерно через 170 мс после возбужде­ния. Начиная с 200 мс оно снова уменьшается с возрастающей ско­ростью. Интересно отметить, что даже через 900 мс в мышце еще сохраняется некоторое напряжение, что может быть обусловлено только активными физическими и химическими процессами.

Что относится к видам ускорения в биомеханике

С 10О 200 ЗО0 W 500 ВОВ Время,с

Рис. 14.1. Изометрическое и изотоническое одиночное сокращение. Портняж­ная мышца лягушки при 0°С (по В. Jewell, D. Wilkie, 1960)

Изотоническое одиночное сокращение существенно отличает­ся от изометрического. Укорочение в процессе изотонического одиночного сокращения начинается только тогда, когда в мышце развивается достаточное усилие, равное по величине внешнему. В результате одиночное сокращение начинается тем позднее, чем больше нагрузка. Укорочение вначале почти линейно зависит от времени и достигает максимальных значений тем раньше, чем больше нагрузка. Затем наступает расслабление мышц с возрас­тающей скоростью, причем, так же как и укорочение, оно завер­шается тем раньше, чем больше груз. Если сделать нагрузку равной тому полному изометрическому усилию, которое мышца способна развить, то никакого внешнего укорочения не произойдет. При нулевой нагрузке скорость укорочения, очевидно, должна быть максимальной. Соотношение между нагрузкой и установившейся скоростью укорочения показано на рис. 14.2.

Для описания зависимости между силой и скоростью мышечно­го сокращения используют уравнение Хилла (А. Hill, 1938). V=b(F0 –F)·(F+a) или F=(Fo+a)(v/b+l)-a, где V— скорость укорочения; F — сила (нагрузка); F0 макси­мальная изометрическая сила, которую может развить мышца; b — константа, имеющая размерность силы. Максимальная скорость, соответствующая условно F = 0, из уравнения Хилла равна bF0/a. При раздражении мышцы серией импульсов, сле­дующих с постоянной частотой, второй и последующие импульсы будут оказывать разное действие в зависимости и от того, на ка­кой участок кривой «сила — время» они попадут. Что относится к видам ускорения в биомеханике

Рис. 14.2. Зависимость скорости от нагрузки на различных стадиях изотоничес­кого одиночного сокращения портняжной мышцы лягушки при 0С:

1 — фаза развития напряжения, 2—4 — фазы расслабления (0,46; 0,64; 0,83 с);

напряжение составляет 0,6; 0,3 и 0,08 максимального

В описанных экспериментах (исследованиях) изотоническое укорочение или изометрическое усилие измерялось на мышцах, длина которых была близка к длине расслабленной мышцы или не­сколько превосходила ее.

2.Характеристика двигательных (локомоторных) качеств

К основным двигательным качествам относятся: сила, быстрота, выносливость, гибкость и ловкость. А.А. Тер-Ованесян к назван­ным качествам добавляет: устойчивость равновесия, способность к произвольному расслаблению мышц, ритмичность, прыгучесть, мягкость движений, координированность.

Механика мышечного сокращения. В покое мышечная ткань представляет собой вязко-упругий материал с самыми обычными свойствами (F. Buchthal, E. Kaiser, 1951; Р.М. Rack, 1966). Под­линно интересное свойство мышцы — это ее способность к сокра­щению. Максимальная сила, которую может развить мышца, при оптимальной ее длине составляет около 2-10 6 дин на 1 см 2 попе­речного сечения мышцы.

Если противодействующая сила невелика, мышца не только сильнее укорачивается, но и быстрее сокращается. Если сокращаю­щаяся мышца имеет длину / в момент времени t, то скорость ее укорочения: dl/dt («минус» означает уменьшение длины) опреде­ляется по формуле:

где F — сила, которую преодолевает мышца, F1 максимальная сила мышцы при той длине, при которой измеряется скорость ее укорочения, d и b — константы. Константа d равна около 4 ·10 5 дин на 1 см 2 поперечного сечения мышцы, а константа b для разных мышц различна (A.N. Hill, 1956). Заметим, что даже при отсутствии силы, противодействующей сокращению, мышца укорачивается с ограниченной скоростью: если F = 0, то dl/dt =F1·b/a.

Если неподвижно закрепить концы мышцы и заставить ее сокра­щаться, то максимальная сила сокращения будет зависеть от расстоя­ния между концами мышцы. Эта сила уменьшится, если расстояние будет меньше длины мышцы в покое. Сила сокращения уменьшается и в том случае, если расстояние между концами мышцы будет боль­ше ее длины в покое. Под силой сокращения имеется в виду разность между общей силой, которую развивает мышца при ее раздражении, и упругой восстанавливающей силой, обусловленной растяжением мышцы сверх ее нормальной длины.

Зависимость силы от длины было показано на изолированных поперечнополосатых мышечных волокнах (Edman К., 1966; GordonA.M.etat, 1966).

Что относится к видам ускорения в биомеханике

Расстояние между полосами, мк

Рис. 14.3. Зависимость силы сокращения поперечнополосатого мышечного волокна от расстояния между соседними пластинками (A.M.Gordonetal.,1966)

Поперечнополосатое мышечное волокно представляет собой клетку, содержащую многочисленные фибриллы, которые сами имеют поперечную исчерченность. На рис. 14.4 представлена схе­ма строения фибриллы, основанная на электронных микрофо­тографиях. Фибрилла состоит из продольных нитей, построенных из белков актина и миозина; нити актина входят своими концами в промежутки между нитями миозина. Эти нити образуют струк­туру, которая повторяется на всем протяжении волокна и лежит в основе поперечной исчерченности, видимой в обычный мик­роскоп. Нити актина — более тонкие, они лежат на участке b (см. рис. 14.4).
Что относится к видам ускорения в биомеханике

Рис. 14.4. Схема расположения субмикроскопических нитей в поперечнополосатом мышечном волокне (А.М. Gordon et al., 1966)

Они проходят сквозь поперечные перегородки, на­зываемые пластинками.

Миозиновые нити (рис. 14.4, а) толще и снабжены боковыми выступами, которые прикрепляются к нитям актина, образуя мос­тики. Полагают, что именно благодаря этим мостикам мышцы раз­вивают силу при сокращении. Посередине каждой нити миозина имеется участок (рис. 14,4, с), лишенный боковых выступов.

Когда мышца сокращается или подвергается растяжению, ни­ти актина и миозина скользят друг относительно друга, так что область их перекрывания становится длиннее или короче.

Что относится к видам ускорения в биомеханике

Рис. 14.5. Схема, показывающая степень перекрывания нитей миозина и актина в поперечнополосатом мышечном волокне при различных расстояниях между соседними пластинками Z (А.М. Gordon et al., 1966)

На рис. 14.5, показано, как изменяются пространственные от­ношения нитей при различных расстояниях между соседними пла­стинками Z (т. е. при различной плотности расположения попе­речных полос). Эти расстояния для представленных здесь случаев I—VI указаны также стрелками с соответствующими цифрами на рис. 14.3. При расстоянии 3,65 мк (положение I) нити актина и миозина уже не накладываются друг на друга и можно ожидать, что волокно не будет способно развивать силу; и действительно, примерно при таком растяжении сила сокращения падает до нуля. По мере сближения пластинок Z нити актина все глубже проникают в промежутки между нитями миозина, и, наконец, при расстоянии 2,2 мк (положение П) все боковые выступы на миозиновой нити приходят в контакт с нитью актина, образуя поперечные мостики. Если именно эти мостики ответственны за возникновение силы, то следует ожидать, что в диапазоне от положения I до положения II сила будет пропорциональная степени перекрывания нитей, и это подтверждается в исследованиях. При дальнейшем уко­рочении волокна число мостиков, которые могут образоваться, не изменяется, и сила остается постоянной, пока расстояние между пластинками 7 не уменьшится до 2,05 мк (положение III). В этот момент нити актина сходятся своими концами и сила начинает убывать. Она продолжает медленно убывать, пока расстояние не достигает 1,65 мк (положение V), когда концы миозиновых нитей приходят в соприкосновение с пластинками Z. При дальнейшем сокращении нити миозина должны сминаться; сила начинает убы­вать быстрее и, наконец, совсем исчезает.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *