Что определила целостная дидактическая система обучения а м леушиной

Вклад А. М. Леушиной

Что определила целостная дидактическая система обучения а м леушиной Что определила целостная дидактическая система обучения а м леушиной Что определила целостная дидактическая система обучения а м леушиной Что определила целостная дидактическая система обучения а м леушиной

Что определила целостная дидактическая система обучения а м леушиной

вразработку проблем математического развития детей-дошкольников

Вопросы развития количественных представлений у детей до­школьного возраста разрабатывались А. М. Леушиной начиная с 40-х годов. Благодаря ее работам методика получила теорети­ческое, научное и психолого-педагогическое обоснование, были раскрыты закономерности развития количественных представлений у детей в условиях целенаправленного обучения на занятиях в дет­ском саду. Это стало возможным благодаря глубокому и тщатель­ному анализу различных точек зрения, подходов и концепций формирования математических представлений, учета достижений отечественной и зарубежной науки, практики общественного воспи­тания и обучения дошкольников в нашей стране.

А. М. Леушина заложила основы современной дидактической системы формирования математических представлений, разработав программу, содержание, методы и приемы работы с детьми 3-, 4-, 5- и 6-летнего возраста. Методическая концепция автора сложи­лась в результате многолетней экспериментальной и научно-теоре­тической работы.

Она заключается в следующем: от нерасчлененного восприя­тия множеств предметов детей необходимо переводить к выявлению отдельных составляющих это множество элементов путем попарного сопоставления их, что представляет дочисловой период обучения (усвоение отношений «столько же», «поровну», «больше», «меньше» и др.). Обучение счету следует за освоением детьми действий с множествами и базируется на сравнении двух предметных групп. Дети знакомятся с числом как характеристикой численности конкрет­ной предметной группы в сопоставлении ее с другой. В ходе срав­нения чисел (на наглядной основе) ребенком усваиваются последо­вательность и отношения между ними, что приводит к сознательному • освоению счета и использованию его в вычислениях, выполнению действий при решении простых арифметических задач. Элементарное представление о числе формируется у детей в ходе накопления ими опыта сравнения нескольких предметных групп по признаку количе­ства независимо от других признаков (качественные особенности, расположение в пространстве). На этой основе строилось освоение количественного и порядкового счета, определение состава чисел из единиц и двух меньших чисел.

В методике первоначального ознакомления детей с числами, счетом, арифметическими действиями, разработанной А. М. Леуши­ной, использованы положительные стороны метода изучения чисел (воспроизведение групп предметов, применение числовых фигур и счетных карточек, изучение состава чисел) и метода изучения дей­ствий (число как результат счета, образование чисел на основе сравнения двух совокупностей и практического установления между ними взаимно однозначного соответствия, увеличение или уменьше­ние одного из них на 1, освоение действий сложения и вычитания на основе сформированных представлений о числах натурального ряда и навыков счетной деятельности). По утверждению А. М. Леу­шиной, в работе по развитию количественных представлений у детей следует особое внимание уделять накоплению чувственного опыта, созданию сенсорной основы счетной деятельности, последователь­ному обобщению детских представлений. Этим требованиям отвечает предложенная ею система практических упражнений с демонстра­ционным и раздаточным материалом.

Разработанная А. М. Леушиной концепция формирования ко­личественных представлений в 60—70-е годы была существенно дополнена за счет научно-теоретической и методической разработки проблемы развития пространственно-временных представлений у дошкольников. Результаты научных исследований А. М. Леушиной отражены в ее докторской диссертации «Подготовка детей к усвое­нию арифметического материала в школе» (1956), многочисленных публикациях, учебных пособиях, например: «Обучение счету в дет­ском саду» (М., 1959, 1961), «Формирование элементарных мате­матических представлений у детей дошкольного возраста» (М., 1974) и др.

Воспитатели детских садов широко использовали разработан­ные А. М. Леушиной конспекты занятий «Занятия по счету в дет­ском саду» (М., 1963, 1965) и наглядные дидактические материалы (1965).

Что определила целостная дидактическая система обучения а м леушиной

В дальнейшем под руководством А. М. Леушиной разработаны содержание и методы формирования у детей пространственных и временных представлений, обучения измерению объектов, массы тел, вопросы умственного и всестороннего развития детей в процессе освоения ими элементарных математических знаний, усвоения спо­собов практических действий.

Разработанная А. М. Леушиной концепция формирования эле­ментарных математических представлений у детей служит источ­ником для многих современных исследований, а дидактическая система прошла испытания временем, успешно функционирует уже несколько десятков лет, показала свою эффективность в условиях общественного дошкольного воспитания, реализована в «Программе воспитания и обучения в детском саду».

§ 6. Современное состояние проблемы формирования у детей математических представлений и перспективы совершенствования методики

В связи с перестройкой преподавания математики в начальной школе и новыми психологическими исследованиями стали очевид­ными недостатки математической подготовки в детском саду: неэф­фективное использование возросших возможностей дошкольников, ограниченность и слабое развивающее влияние обучения. Сложив­шаяся система обучения в дошкольном возрасте, ее содержание и методы ориентировали в основном на развитие у детей предметных способов действий, узких навыков, связанных со счетом и простей­шими вычислениями, что недостаточно обеспечивало подготовку к усвоению математических понятий в дальнейшем обучении.

Необходимость пересмотра методов и содержания обучения была обоснована в работах психологов и математиков, которые положили начало новым научным направлениям в разработке проблем ма­тематического развития дошкольников. Специалисты выясняли воз­можности интенсификации и оптимизации обучения, способствующие общему и математическому развитию ребенка, отмечали необходи­мость повышения теоретического уровня осваиваемых детьми знаний. Это требовало реконструкции программы обучения, в том числе системы представлений, последовательности их введения и т. д., отвечающих современному состоянию математики как науки, при­ведения методов в строгое соответствие с предлагаемым новым содержанием знаний. Развернулись интенсивные поиски путей вве­дения научных понятий в систему работы с детьми дошкольного возраста. Решение этих сложных проблем осуществлялось по-разному.

Психологи в качестве основания для формирования начальных математических представлений и понятий предлагали различ­ные предметные действия. П. Я- Гальперин разработал линию форми­рования начальных математических понятий и действий, построен­ную на введении мерки и определении единицы через отношение к ней.

В исследовании В. В. Давыдова был раскрыт психологический механизм счета как умственной деятельности и намечены пути форми­рования понятия числа через освоение детьми действий уравни­вания и комплектования, измерения. Генезис понятия числа рассматривается на основе краткого отношения любой величины к ее части (Г. А. Корнеева).

В отличие от традиционной методики ознакомления с числом (число — результат счета) новым явился способ введения самого понятия: число как отношение измеряемой величины к единице из­мерения (условная мера).

Анализ содержания обучения дошкольников с точки зрения но­вых задач привел исследователей к выводу о необходимости научить детей обобщенным способам решения учебных задач, усвое­нию связей, зависимостей, отношений и логических операций (клас­сификации и сериации). Для этого предлагались и своеобразные средства: модели, схематические рисунки и изображения, отражаю­щие наиболее существенное в познаваемом содержании.

Математики-методисты настаивали на значительном пересмотре содержания знаний для детей 6-летнего возраста, насыщении его некоторыми новыми представлениями, относящимися к множествам, комбинаторике, графам, вероятности и т. д. (А. И. Маркушевич, Ж- Папи и др.).

Методику первоначального обучения А. И. Маркушевич реко­мендовал строить, основываясь на положениях теории множеств.

Он считал необходимым обучать дошкольников простейшим опера­циям с множествами (объединение, пересечение, дополнение), развивать у них количественные и пространственные представле­ния.

Ж- Папи (бельгийский математик) разработал интересную ме­тодику формирования у детей представлений об отношениях, функци­ях, отображении, порядке и др., используя с этой целью многоцвет­ные графы.

В последние годы (1960—1980) осуществлен педагогический эксперимент, направленный на выявление более эффективных мето­дов математического развития детей дошкольного возраста, опреде­ление содержания обучения. Педагогические исследования были вызваны непосредственно результатами экспериментов в области возрастной и педагогической психологии и методики математики.

В эти годы выяснялись возможности формирования у детей представлений о величине, установлении взаимосвязей между сче­том и измерением, апробировались приемы обучения (Р. Л. Бе­резина, Н. Г. Белоус, 3. Е. Лебедева, Р. Л. Непомнящая, Е. В. Проскура, Л. А. Левинова, Т. В. Тарунтаева, Е. И. Щербакова).

Возможности формирования количественных представлений у де­тей раннего возраста, пути совершенствования количественных представлений у детей дошкольного возраста изучены В. В. Данило­вой, Л. И. Ермолаевой, Е. А. Тархановой.

Содержание и приемы формирования пространственно-временных представлений определены на основе ряда исследований Т. А. Му-сейибовой, К. В. Назаренко, Т. Д. Рихтерман.

Методы и приемы педагогического руководства математическим развитием детей с помощью игры разработаны 3. А. Грачевой, Т. Н. Игнатовой, А. А. Смоленцевой, И. И. Щербининой.

В настоящее время исследуются возможности использования наглядного моделирования в процессе обучения решению арифмети­ческих задач (Н. И. Непомнящая), познания детьми количествен­ных и функциональных зависимостей (Л. Н. Бондаренко, Р. Л. Не­помнящая, А. И. Кириллова), способности дошкольников к нагляд­ному, моделированию при ознакомлении с пространственными отно­шениями (Р. И. Говорова, О. М. Дьяченко, Т. В. Лаврентьева, Л. М. Хализева).

Результаты научных поисков психологов, математиков и педа­гогов вызвали необходимость в совершенствовании программы раз­вития элементарных математических представлений у дошкольников (были введены разделы «Величина», «Геометрические фигуры», «Ориентировка в пространстве и времени»).

Конспекты занятий по формированию элементарных математи­ческих представлений и методические рекомендации их использо­вания строятся на современных научных данных о единстве обу­чения и воспитания, комплексном подходе в обучении, введении наиболее эффективных дидактических средств (моделирование), обогащении содержания и приемов обучения.

М. Фидлер (Польша), Э. Дум (ФРГ) особое значение придают формированию представлений о числах в процессе практических дей­ствий с множествами предметов. Предлагаемые ими содержание и приемы обучения (целенаправленные игры и упражнения) помогают детям овладеть умениями классифицировать и упорядочивать пред­меты по различным признакам, в том числе и по количеству. В работе М. Фидлер отражена взаимосвязь в формировании у детей количественных, пространственных и временных представлений.

Р. Грин, В. Лаксон (США) в качестве основы формирования понятия числа и арифметических действий рассматривают понима­ние детьми количественных отношений на конкретных множествах предметов. Авторы считают, что формирование представлений о числах происходит во время практических действий с множествами предметов, они показывают, как под влиянием сравнения двух или нескольких множеств у детей формируется представление о месте числа среди других чисел натурального ряда, умение осуществлять простейшие действия увеличения и уменьшения чисел. Сопостав­ление равночисленных множеств ведет при этом к пониманию общности совокупностей по количеству (столько же) и по числу (такое же число).

Авторы этих работ предлагают формировать математические представления с учетом разнообразных впечатлений, полученных детьми в повседневной жизни. Своеобразно рассматривается ими обучение: доказывая необходимость проведения с. детьми игр и упражнений, авторы не рекомендуют строго соблюдать требования к качеству усвоения учебного материала. В ходе обучения значитель­ное внимание уделяется выработке у детей умения применять полу­ченные знания на практике. Это достигается за счет использова­ния в качестве наглядного материала предметов окружающей обстановки, практической и игровой мотивации специальных упраж­нений.

Французские педагоги материнских школ считают, что способ­ность к математике зависит от качества обучения. Ими разработана система логических игр для детей разного возраста. В играх у де­тей развиваются способность к рассуждению, пониманию, самоконт­ролю, умение переносить усвоенное в новые ситуации. К детям 5—6 лет предъявляются более высокие требования. Они должны усвоить элементарные математические понятия, в том числе понятия теории множеств и их свойств; используя математический язык, точно и кратко выражать свои мысли, обнаруживать и исправлять ошибки, допущенные другим ребенком.

На основании изложенного в данной главе можно заключить, что становление методики формирования элементарных математи­ческих представлений первоначально осуществлялось под влиянием отдельных положений русской и зарубежной педагогики, психологии о значении и содержании подготовки детей к усвоению арифмети­ки в школе, возможности формирования умений с раннего возраста различать геометрические фигуры и размеры предметов.

Передовые русские и зарубежные педагоги XVII—XIX вв., исходя из опыта непосредственной работы с детьми, пришли к убеждению о необходимости их подготовки к усвоению математических дисциплин в школе. Ими высказаны отдельные предложения о содержа­нии и методах обучения детей до школы: программа по арифме­тике (счет, вычисления, счет групп; арифметические действия сложе­ния и вычитания); по основам геометрии (геометрические фигуры, измерения величин); простейшие представления о пространстве и времени.

Экспериментальное изучение специфики количественных пред­ставлений детей, разработка, систематизация и апробирование игр и дидактических упражнений, направленных на формирование математических представлений, осуществленное А. М. Леушиной и под ее руководством, представляет современное содержание мето дики.

Дальнейшее совершенствование методики формирования элемен­тарных математических представлений направлено на уточнение со держания, поиск наиболее эффективных методов педагогического руководства математическим развитием детей, разработку и внед­рение в практику работы дошкольных учреждений новых дидакти­ческих средств, что соответствует требованиям реформы общеобразо­вательной и профессиональной школы, совершенствованию среднего и высшего образования в нашей стране.

Источник

Презентация «Концепция математического развития дошкольников А. М. Леушиной»

Что определила целостная дидактическая система обучения а м леушиной Анастасия Бузмакова
Презентация «Концепция математического развития дошкольников А. М. Леушиной»

Концепция математического развития дошкольников А. М. Леушиной

Проблема обучения математике в современной жизни приобретает все большее значение. Это объясняется, прежде всего, бурным развитием математической науки и проникновением ее в различные области знаний.

Математическая подготовка имеет исключительную практическую значимость. Человеку в обыденной жизни постоянно приходится использовать математические знания, а для ребенка это является немаловажным фактором социальной приспособленности.

Исследование и практика обучения дошкольников свидетельствуют о том, что формирование элементарных математических представлений оказывает развивающее воздействие, содействует развитию восприятия и мышления, познавательной деятельности в целом.

Математическое образование дошкольников предполагает не только овладения основами элементарной математики, но и развитие активности и самостоятельности в учебной деятельности и в повседневной жизни.

С 1929 преподавала в вузах Ленинграда; с 1936 в ЛГПИ им. А. И. Герцена (в 1944-73 зав. кафедрой дошкольной педагогики). Автор трудов в области психического развития дошкольников, учебников и учебных пособий для дошкольных факультетов педагогических вузов, практических пособий для воспитателей дошкольных учреждений.

Разработала систему начального обучения счёту, формирования пространственных и временных представлений.

Вклад А. М. Леушиной в разработку проблем математического развития детей-дошкольников

леушина математический ребенок дошкольный

Вопросы развития количественных представлений у детей дошкольного возраста разрабатывались А. М. Леушиной, начиная с 40-х годов. Благодаря ее работам методика получила теоретическое, научное и психолого-педагогическое обоснование, были раскрыты закономерности развития количественных представлений у детей в условиях целенаправленного обучения на занятиях в детском саду. Это стало возможным благодаря глубокому и тщательному анализу различных точек зрения, подходов и концепций формирования математических представлений, учета достижений отечественной и зарубежной науки, практики общественного воспитания и обучения дошкольников в нашей стране, у А. М. Леушина заложила основы современной дидактической системы формирования математических представлений, разработав программу, содержание, методы и приемы работы с детьми 3-, 4-, 5- и 6-летнего возраста, методическая концепция автора сложилась в результате многолетней экспериментальной и научно-теоретической работы.

Она заключается в следующем: от нерасчлененного восприятия множеств предметов детей необходимо переводить к выявлению отдельных составляющих это множество элементов путем попарного сопоставления их, что представляет дочисловой период обучения (усвоение отношений «столько же», «поровну», «больше», «меньше» и др.). Обучение счету следует за освоением детьми действий с множествами и базируется на сравнении двух предметных групп. Дети знакомятся с числом как характеристикой численности конкретной предметной группы в сопоставлении ее с другой. В ходе сравнения чисел (на наглядной основе) ребенком усваиваются последовательность и отношения между ними, что приводит к сознательному освоению счета и использованию его в вычислениях, выполнению действий при решении простых арифметических задач. Элементарное представление о числе формируется у детей в ходе накопления ими опыта сравнения нескольких предметных групп по признаку количества независимо от других признаков (качественные особенности, расположение в пространстве). На этой основе строилось освоение количественного и порядкового счета, определение состава чисел из единиц и двух меньших чисел.

В методике первоначального ознакомления детей с числами, счетом, арифметическими действиями, разработанной А. М. Леушиной, использованы положительные стороны метода изучения чисел (воспроизведение групп предметов, применение числовых фигур и счетных карточек, изучение состава чисел) и метода изучения действий (число как результат счета, образование чисел на основе сравнения двух совокупностей и практического установления между ними взаимно однозначного соответствия, увеличение или уменьшение одного из них на, освоение действий сложения и вычитания, сформированных представлений о числах натурального ряда и навыков счетной деятельности). По утверждению А. М. Леушиной, в работе по развитию количественных представлений у детей следует особое внимание уделять накоплению чувственного опыта, созданию сенсорной основы счетной деятельности, последовательному обобщению детских представлений. Этим требованиям отвечает предложенная ею система практических упражнений с демонстрационным и раздаточным материалом.

Воспитатели детских садов широко использовали разработанные А. М. Леушиной конспекты занятий «Занятия по счету в детском саду» (М., 1963, 1965) и наглядные дидактические материалы (1965).

В дальнейшем под руководством А. М. Леушиной разработаны содержание и методы формирования у детей пространственных и временных представлений, обучения измерению объектов, массы тел, вопросы умственного и всестороннего развития детей в процессе освоения ими элементарных математических знаний, усвоения способов практических действий.

Разработанная А. М. Леушиной концепция формирования элементарных математических представлений у детей служит источником для многих современных исследований, а дидактическая система прошла испытания временем, успешно функционирует уже несколько десятков лет, показала свою эффективность в условиях общественного дошкольного воспитания, реализована в «Программе обучения и воспитания в детском саду».

Таким образом, А. М. Леушина внесла огромный вклад в развитие математических представлений в развитии детей дошкольного возраста.

Она написала многочисленные труды в этой области. Благодаря ее работам методика получила теоретическое, научное и психолого-педагогическое обоснование, были раскрыты закономерности развития количественных представлений у детей в условиях целенаправленного обучения на занятиях в детском саду.

Разработанная Леушиной А. М. концепция формирования элементарных математических представлений у детей до сих пор служит источником для исследований многих современных педагогов. Ее дидактическая система прошла испытания временем и успешно функционирует уже несколько десятков лет.

Источник

Вклад А.М. Леушиной в математическое образование

Автор работы: Пользователь скрыл имя, 10 Марта 2012 в 18:34, реферат

Описание

Вопросы развития количественных представлений у детей дошкольного возраста разрабатывались А. М. Леушиной начиная с 40-х годов. Благодаря ее работам методика получила теоретическое, научное и психолого-педагогическое обоснование, были раскрыты закономерности развития количественных представлений у детей в условиях целенаправленного обучения на занятиях в детском саду.

Работа состоит из 1 файл

Вклад А.М. Леушиной.docx

§ 5. Вклад А. М. Леушиной в разработку проблем математического развития детей-дошкольников

Вопросы развития количественных представлений у детей дошкольного возраста разрабатывались А. М. Леушиной начиная с 40-х годов. Благодаря ее работам методика получила теоретическое, научное и психолого-педагогическое обоснование, были раскрыты закономерности развития количественных представлений у детей в условиях целенаправленного обучения на занятиях в детском саду. Это стало возможным благодаря глубокому и тщательному анализу различных точек зрения, подходов и концепций формирования математических представлений, учета достижений отечественной и зарубежной науки, практики общественного воспитания и обучения дошкольников в нашей стране, у А. М. Леушина заложила основы современной дидактической системы формирования математических представлений, разработав программу, содержание, методы и приемы работы с детьми 3-, 4-, 5- и 6-летнего возраста., методическая концепция автора сложилась в результате многолетней экспериментальной и научно-теоретической работы.

Она заключается в следующем: от нерасчлененного восприятия множеств предметов детей необходимо переводить к выявлению отдельных составляющих это множество элементов путем попарного сопоставления их, что представляет дочисловой период обучения (усвоение отношений «столько же», «поровну», «больше», «меньше» и др.). Обучение счету следует за освоением детьми действий с множествами и базируется на сравнении двух предметных групп. Дети знакомятся с числом как характеристикой численности конкретной предметной группы в сопоставлении ее с другой. В ходе сравнения чисел (на наглядной основе) ребенком усваиваются последовательность и отношения между ними, что приводит к сознательному освоению счета и использованию его в вычислениях, выполнению действий при решении простых арифметических задач. Элементарное представление о числе формируется у детей в ходе накопления ими опыта сравнения нескольких предметных групп по признаку количества независимо от других признаков (качественные особенности, расположение в пространстве). На этой основе строилось освоение количественного и порядкового счета, определение состава чисел из единиц и двух меньших чисел.

Разработанная А. М. Леушиной концепция формирования количественных представлений в 60—70-е годы была существенно дополнена за счет научно-теоретической и методической разработки проблемы развития пространственно-временных представлений у дошкольников. Результаты научных исследований А. М. Леушиной Отражены в ее докторской диссертации «Подготовка детей к усвоению арифметического материала в школе» (1956), многочисленных публикациях, учебных пособиях, например: «Обучение счету в детском саду» (М., 1959, 1961), «Формирование элементарных математических представлений у детей дошкольного возраста» (М., 1974) и др.

Воспитатели детских садов широко использовали разработанные А. М. Леушиной конспекты занятий «Занятия по счету в детском саду» (М., 1963, 1965) и наглядные дидактические материалы (1965).

В дальнейшем под руководством А. М. Леушиной разработаны содержание и методы формирования у детей пространственных и временных представлений, обучения измерению объектов, массы тел, вопросы умственного и всестороннего развития детей в процессе освоения ими элементарных математических знаний, усвоения способов практических действий.

Разработанная А. М. Леушиной концепция формирования элементарных математических представлений у детей служит источником для многих современных исследований, а дидактическая система прошла испытания временем, успешно функционирует уже несколько десятков лет, показала свою эффективность в условиях общественного дошкольного воспитания, реализована в «Программе обучения и воспитания в детском саду».

Особенности формирования математических представлений у детей дошкольного возраста

Проблема обучения детей математике интересовала ученых на протяжении многих веков. В 17-19 вв. Я. А. Коменский, Дж. Локк, И. Г. Песталоцци, К. Д. Ушинский, Л. Н. Толстой, М. Монтессори и др. пришли к выводу о необходимости специальной математической подготовки детей дошкольного возраста. Формирование у них знаний о размере, измерении, времени и пространстве рассматривалось с точки зрения практической целесообразности. Этот период становления методики называют эмпирическим, так как основные идеи математического развития обобщали личный опыт педагогов.

Огромный вклад в методику математики внес И. Г. Песталоцци. Он назвал свою теорию образования элементарной, так как считал, что развитие ребенка должно начинаться с наипростейших элементов и двигаться к сложным. Им была разработана система расположенных в определенной последовательности упражнений, с целью привести в движение присущее природным силам человека стремление к деятельности. Вслед за Я. А. Коменским И. Г. Песталоцци придавал значение наглядности в обучении как средству развития у ребенка умения в процессе наблюдения сравнивать предметы, выявляя их общие и отличительные признаки и соотношения между ними. С целью облегчить ребенку наблюдения и упорядочить их он выделил простейшие элементы, общие для всех учебных предметов и потому являющиеся исходными для любого предмета. Первоначальное обучение счету И. Г Песталоцци предложил начинать с единицы: на основе сочетания разъединения единиц давать детям наглядные представления о свойствах чисел. Он первый стал обучать детей геометрии и предлагал переход от изучения формы к измерениям, рисованию и письму.

В педагогических сочинениях отца русской дидактики К. Д. Ушинского говорится, что, прежде всего, следует выучить детей считать до десяти на наглядных предметах: на пальцах, орехах, и т. д., которые не жаль было бы и разломать, если придется показать наглядно половину, треть, и т. д. Считать следует учить назад и вперёд так, чтобы дети с одинаковой лёгкостью считали от единицы до десяти и от десяти до единицы. Потом следует научить считать их парами, тройками, пятёрками, чтобы дети поняли, что половина десяти равна пяти и т. д. Ушинский говорил, что надо просто «приучить дитя распоряжаться с десятком совершенно свободно — и делить, и умножать, и дробить… «

Разработка подходов к освоению детьми количественных отношений, чисел и цифр стала основной проблемой. Д. Л. Волковский, Ф. Н. Блехер, В. А. Лай, К. Ф. Лебединцев и в настоящее время Г. Доман, последователи А. В. Грубе, безосновательно считали, что освоение первоначальных количественных представлений должно проходить на основании целостного восприятия чисел. Поэтому сторонники монографического метода подвергались справедливой критики Л. Н. Толстого, С. И. Шорох-Троцкого и др. счетная операция не может формироваться только на основе восприятия объектов счета, вне аналитико-синтетической деятельности.

В противовес методу изучения чисел В. А. Латышевым был предложен метод изучения действий. Обучение, основанное на этом методе, способствовало значительному повышению уровня теоретической подготовки. Однако отвлеченные математические закономерности, которыми должны были руководствоваться ученики при выполнении тех или иных операций, иногда не имели для них реального смысла, были лишены прочной базы чувственного восприятия. В дальнейшем при обучении детей математике стали использовать метод изучения чисел, и метод изучения действий в их сочетании.

Большой интерес представляет метод М. Монтессори, который связывает формирование математических представлений и сенсорное развитие детей. Наглядный дидактический материал, разработанный М. Монтессори, позволяет активизировать работу зрительных, слуховых, тактильных анализаторов. Упражнения со специально разработанными пособиями имеют цель развить представления детей о количестве, форме, величине, пространстве и времени.

Когда ещё не существовало таких терминов, как «гуманизация» и « личностно-ориентированный подход», М. Монтессори обращалась к педагогам и родителям с призывом относится к ребенку как к личности, не унижать его человеческое достоинство, не рассматривать как орудие проявления своей воли, а самое главное — доверять в стремлении к самообразованию. Занимаясь с детьми, она действительно добилась высоких результатов обучения. Введение созданных ею методов в практику школ привело к внушительным результатам.

Взгляды М. Монтессори повлияли на организацию математического образования дошкольников в России. Её последователями стали Е. И. Тихеева, Ю. И. Фаусек, которые воплотили идеи М. Монтессори в педагогическую практику, адаптировали их к отечественным условиям.

Система сенсорного воспитания (М. Монтессори, Ф. Фребель) показала, что создание развивающей среды является важным условием полноценного математического развития.

В начале XX в. появилась необходимость детального изучения механизмов, позволяющих преподавать математику дошкольникам. На этом этапе началось становление теории и методики математического развития дошкольников, определились содержание, методы и приемы работы с детьми. Свой вклад в изучение данной проблемы внесли как зарубежные (Б. Инельдер, Ж. Пиаже и др.), так и отечественные исследователи (Ф. Н. Блехер, Л. В. Глаголева, Е. И. Тихеева, Л. К. Шлегер).

В середине XX в. на становление теории и методики формирования математических представлений у детей стали оказывать влияние фундаментальные исследования в области психологии и педагогики. Начался процесс изучения психологии математического развития (П. Я. Гальперин, В. В. Давыдов, Г. С. Костюк, Н. И. Непомнящая и др.).

Основным вопросом, который требовал решения, было определение подходов к формированию представлений о числе и счете.

Изучение чисел в процессе овладения предметными действиями с непрерывными и дискретными величинами стало основой в концепции П. Я. Гальперина, В. В. Давыдова, Г. А. Корнеева и др. Одну из главных задач изучения этой темы авторы видят в том, чтобы приучить детей систематически пользоваться меркой и результатами измерения. Такой подход позволяет показать относительность отношений между величинами.

Признавая целесообразность установления зависимости между числом и меркой, Г. С. Костюк, Н. А. Менчинская, А. М. Леушина и др. подчеркивают, что акцентирование связи между количественной оценкой величин и их измерением создает конфликтную ситуацию, т. к. имеющийся практический опыт вступает в противоречие с изучением нового. Для преодоления указанного недостатка они предлагают обучать числу на основе установления соответствия между предметами двух групп и сосчитывания. В связи с этим первичное ознакомление дошкольников с числом начинается на основе практического установления взаимнооднозначного соответствия между элементами предметных групп, их сравнения и обозначения полученных результатов при помощи выражения «столько… сколько». Научно обоснованная дидактическая система формирования элементарных математических представлений была представлена А. М. Леушиной.

Наиболее важным является понимание того, что специально организованный процесс обучения позволяет создать условия для развития ребенка. Одним из источников развивающей роли обучения является содержание усваиваемых знаний. В связи с этим был определен круг математических представлений, которыми должен овладеть ребенок. Они зафиксированы в «Типовой программе воспитания и обучения в детском саду».

Большое значение А. М. Леушина придавала способам организации занятий. Она считала, что только целенаправленная деятельность детей на занятии позволяет достичь высоких результатов обучения. Опираясь на теорию деятельности А. Н. Леонтьева, методика формирования математических представлений предполагает создание положительной мотивации обучения математике, постановку конкретных целей и разработку

В дошкольном возрасте учебная деятельность начинается развиваться в процессе игры, поэтому ребенок должен обучаться играя. Использование игровых методов на занятиях по формированию элементарных математических представлений способствует тому, что у детей появляется интерес к учению, развиваются творческое начало, инициатива, настойчивость, самоконтроль, которые, в дополнение к интеллекту и приобретенным умениям и навыкам, составляют творческую направленность личности.

Заинтересованность часто вызывается повышенной трудностью, нестандартностью игры, необходимостью решить поставленную задачу. Все это характерно для дидактических игр, содержащих большой мотивационный потенциал для развития у дошкольников активного познавательного отношения к окружающему миру.

В исследования Л. А. Венгера, З. А. Михайловой, А. А. Смоленцевой, А. А. Столяра, Л. И. Тихоновой и др. показана целесообразность использования различных игр в обучении детей математике и развитии интереса к обучению. В игре моделируются такие логические и математические конструкции, решаются такие задачи, которые способствуют ускорению формирования и развития у дошкольников логических структур мышления. В процессе игры создаются благоприятные условия для применения математических знаний, их активного и самостоятельного использования на практике. Развивается интерес к математическому содержанию.

Обучение математике дает широкие возможности для развития интеллектуальных способностей у детей, о которых мы говорили в первой главе данного исследования.

Задачами математической подготовки являются не только формирование знаний о множестве, числе, величине, форме, пространстве и времени навыков и умений в счете, но и развитие познавательных процессов и способностей, словесно-логического мышления, общее интеллектуальное развитие ребенка.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *