Что не просвечивает рентген
О безопасности проведения рентгеновского сканирования багажа при прохождении досмотра в аэропорту
Досмотр ручной клади при входе в аэропорт и многие другие места массового пребывания людей сегодня является нормой. Рентгеновские установки для досмотра багажа и товаров (РУДБТ) широко применяются для обеспечения безопасности перевозок пассажиров. Благодаря этому, за считанные секунды становится ясно, содержатся в багаже предметы, представляющие опасность или нет.
Однако, все, что относится к источникам ионизирующего излучения, вызывает у нас тревогу и порождает множество вопросов: Могут ли в процессе досмотра стать радиоактивными вещи? Не повредит ли рентген электронному устройству : телефону, планшету, фотоаппарату и т.д.? Можно ли употребить в пищу продукт, прошедший досмотр, без риска для здоровья?
Рентгеновское оборудование для досмотра багажа и товаров допущено к использованию, и его работа регламентирована гигиеническим нормативом СанПиН 2.6.1.3488-17 «Гигиенические требования по обеспечению радиационной безопасности при обращении с лучевыми досмотровыми установками».
До начала работ организация, эксплуатирующая РУДБТ, должна пройти процедуру государственной санитарно-гигиенической экспертизы и получить официальное разрешение на проведение рентгеновского досмотра. Это определяет радиационную безопасность.
В помещениях, в которых эксплуатируются РУДБТ, проводится периодический радиационный контроль.
Для оценки воздействия радиации на организм человека используются понятия эквивалентной дозы и мощности амбиентного эквивалента дозы, которые измеряются в Зивертах (Зв) и Зивертах/час(Зв/ч). Получение излучения в 2-3 Зв действительно может привести к негативным последствиям на организм человека, но РУДБТ такой мощности не дают.
Рентгеновский сканер действует по принципу обратного рассеивания, когда при помощи рентгеновских лучей на экране формируется двухмерное изображение. По своей природе рентгеновское излучение – это электромагнитная волна определенной длины и энергии. Оно производится за счет электронных процессов при подаче на рентгеновскую трубку высокого напряжения и исчезает после того, как напряжение снято. Энергии рентгеновского излучения недостаточно для того, чтобы изменить структуру вещества и создать в нем наведенную активность (радиоактивность веществ и предметов, возникающую под действием облучения их ионизирующим излучением), а образование продуктов радиационного разложения при таких дозах незначительно.
Исходя из опыта нашей работы по проведению обследований радиационной обстановки при осуществлении замеров мощности амбиентного эквивалента дозы рентгеновского излучения от работающих РУДБТ (на протяжении многих лет мы ежеквартально проводим дозиметрический контроль на ООО «Авиалинии Мордовии», а в период проведения Чемпионата Мира по футболу нашей организацией было подвержено радиационному контролю порядка 93 РУДБТ различных типов в аэропорту, на стадионе, на авто-и железнодорожных вокзалах, в гостиницах и т.д.;), измеренная мощность амбиентного эквивалента дозы рентгеновского излучения при досмотре багажа не превышает 1 мкЗв/ч (интервал от 0,10 до 0,79 мкЗв/ч), что соответствует гигиеническим требованиям по обеспечению радиационной безопасности. На основании этого можно заключить, что вещи после сканирования остаются неизменными и не становятся радиоактивными, а технические характеристики установок подобраны таким образом, чтобы не повредить электронные устройства.
Исходя из выше изложенного, употреблять пищу и носить одежду, прошедшие через рентгеновскую установку для досмотра багажа и товаров, безопасно.
ФБУЗ «Центр гигиены и эпидемиологии в Республике Мордовия» проводит замеры мощности амбиентного эквивалента дозы рентгеновского излучения от РУДБТ и на рабочих местах персонала, санитарно-гигиеническую экспертизу с выдачей официального заключения о возможности проведения досмотра багажа на РУДБТ.
и мы свяжемся с Вами в ближайшее время.
Наши координаты: 430030, г. Саранск, ул. Дальняя, д. 1а,
Как выглядит ваш чемодан на рентгене в аэропорту и как ищут запрещенные предметы
Скажите, только честно — вам было бы интересно заглянуть в чемодан соседа в аэропорту? Например, узнать, чем ограничился вон тот мужчина с одним чемоданчиком? Или чем набила свои кофры вон та блондинка? Сотрудники службы безопасности аэропортов делают это постоянно, дабы не пропустить на борт самолета потенциально опасные предметы и вещества. Как они умудряются за несколько секунд отличить опасный чемодан от безопасного и как вообще работает сканер багажа? Рассказывают специалисты одного из самых популярных аэропортов мира — Хельсинки.
Как это работает
Загадочная машина, через которую проходит багаж в аэропорту, — в целом довольно простое устройство. Это короткий туннель, куда чемоданы и сумки подаются с помощью конвейерной ленты. Изнутри туннель выложен свинцом, способным поглощать большую часть излучения, созданного рентген-генератором — главным элементом сканера.
«Рентгеновские лучи попадают в туннель через отверстие шириной около 1 см и просвечивают каждый предмет багажа. На противоположной от источника стене туннеля находится детектор, измеряющий количество излучения, прошедшего через каждую точку сканируемого объекта. На основании этих данных компьютер создает изображение предмета», — объясняет принцип работы устройства Микко Халонен, специалист по безопасности Finavia.
Я художник, я так вижу
Чтобы людям на контроле было проще, компьютер научился «раскрашивать» предметы из разных материалов в разные цвета. Пластик, воду, текстиль, дерево и другие органические вещества — в оранжевый, а, например, металлы, — в синий. Если происходит наложение одного типа веществ на другое (теннисный мяч в металлической упаковке), такие предметы отображаются в зеленом цвете. Еще зелеными могут быть кости, соль, стекло.
Легким движением руки
Технологии шагнули так далеко, что теперь специалисты службы безопасности при желании могут «повернуть» багаж, не прикасаясь к нему, чтобы лучше его рассмотреть. «В аэропорту Хельсинки используются устройства, создающие два разных изображения отсканированного предмета. Это помогает сделать процесс досмотра более эффективным, ведь мы редко повторно сканируем багаж», — отмечает Йони Пекканен, руководитель службы безопасности аэрогавани.
Кроме того, устройства досмотра багажа, установленные в аэропорту Вантаа, способны автоматически обнаруживать взрывчатые вещества. По сути это современные томографы, в которых источник излучения вращается вокруг сканируемого предмета с высокой скоростью, создавая детализированное трехмерное изображение. «Досмотреть» таким образом можно до 1800 чемоданов в час!
А это не опасно?
Забирая на выходе из устройства свой «облученный» чемодан, некоторые пассажиры задумываются: а не может ли облучение как-то испортить вещи в багаже, а то и вовсе «навести» в них радиацию? Специалисты уверены: не может даже теоретически. «Во время сканирования объект подвергается излучению, равному 1 микрозиверту. Столько же вы получаете за час полета на высоте 10 км», — поясняет Йони Пекканен. «И это в 10 раз меньше фона от рентгена в зубном кабинете», — добавляет Микко Халонен.
Единственное, для чего излучение представляет потенциальную опасность, — высокочувствительная фото- или кинопленка. Ее рекомендуют упаковывать в ручную кладь (а лучше вообще проносить в руках) и предупреждать сотрудников аэропорта о ее наличии в багаже.
Вскрывать или не вскрывать?
Рентген и общие сведения о нём
Рентген и общие сведения о нём
Многие проблемы со здоровьем невозможно определить без точной диагностики или рентгена. Например, когда у нас есть подозрение на пневмонию, мы часто слышим от доктора – «нужно сделать флюрографию». А что из себя представляет рентгеновское исследование? И почему врачи часто его рекомендуют?
Флюрография – самая популярная разновидность рентгена.
Что же такое рентген? Если говорить профессиональным медицинским языком рентген – это детальное исследование внутренней структуры тела путем просвечивания его рентгеновскими лучами и фиксирование изображения на специальную пленку или цифровой детектор т.е рентгеновские лучи проникают сквозь ткани организма, не повреждая их формируют картину о состоянии органов человека.
Что показывает рентген? На снимках можно увидеть (в зависимости от назначения аппарата) различную патологию: воспаление, переломы, новообразования (опухоли), дегенеративно-дистрофические изменения, деструктивные изменения, аномалии развития и т.д. Рентгеновские методы применяются в обследовании легких, костей, мягких тканей, внутренних органов (желудка, почек и т.д.).
После рентгеновского исследования врач может поставить точный диагноз в ряде сложных заболеваний.
Как часто можно делать рентген?
Рентген бывает профилактический и диагностический. В целях профилактики делают флюорографию или рентгенографию органов грудной полости (не реже 1 раза в год), маммографию (не реже 1 раза в два года). Диагностический рентген (в т.ч. флюорографию) делают при подозрении на наличие каких-либо заболеваний, назначается он лечащим врачом. Пределы доз облучения пациентов (а соответственно и количество рентгеновских процедур) с диагностическими целями не устанавливаются ( СанПиН 2.6.1.1192-03).
Какая норма допустима?
Нужно ли выводить радиацию из организма после рентгеновского исследования?
После рентгенографических исследований выводить радиацию не нужно, так как доза облучения ничтожно мала. Даже после сцинтиграфии, при которой в вену вводят радиоактивный препарат, рекомендуется лишь пить больше жидкости.
Немаловажную роль играет качественное современное оборудование и грамотная работа с аппаратом специалиста.
В МЦ «Санас» рентген делают на лучшем японском оборудовании нового поколения Shimadzu SONIALVISION G4. Это лучший в своем классе и единственный на Дальнем Востоке мультикомплекс, который по мимо стандартных рентгенографических функций, обладает уникальными функциями – томосинтез (послойное исследование) и SLOT-рентгенография (панорамный снимок позвоночника или нижних конечностей). Обеспечивает высочайшее качество снимков и детальную передачу информации при минимальной дозе облучения.
7 бесспорных преимуществ Shimadzu SONIALVISION G4 перед другими аппаратами:
SONIALVISION G4 – универсальный телеуправляемый рентгеновский диагностический комплекс класса «Премиум ». Многоцелевая система «Все в одном» задает новые стандарты универсальных систем визуализации, увеличивая продуктивность рентгенологического кабинета по сравнению с обычными системами.
SONIALVISION G4 признан лучшим в своем классе универсальным рентгеновским аппаратом . Независимая аналитическая компания KLAS вручила компании Shimaszu Medical Systems награду«2015 Best in KLAS award» в сегменте рентгеновского оборудования.
Первый в мире телеуправляемый аппарат с функцией томосинтеза – это рентгенографический метод исследования, при котором производится послойное изображение исследуемой области с толщиной среза от 0,5 мм, что позволяет увидеть мельчайшие патологические изменения до 1 мм. Диагностические возможности этого метода намного шире, нежели при обычной цифровой рентгенографии.
Томосинтез существенно расширяет пределы обнаружения меньших патологических изменений, чем традиционная рентгенография. 74% очаговоподобных теней (очаговоподобные тени могут быть при опухолях, метастазах, туберкулёзе и других патологических процессах), выявляются при томосинтезе по сравнению с 25 % при стандартной рентгенографии, что указывает на трехкратное увеличение чувствительности обнаружения при томосинтезе. При цифровой рентгенографии в 21,3 % не удалось выявить изменений метастатического характера в легких, которые определялись при томосинтезе. Информативность томосинтеза при выявлении периферического рака легких доказана учеными Исследовательского центра по предупреждению и скринингу рака (Токио, Чиба).
Низкая доза облучения позволяет использовать томосинтез как скрининговый метод, в отличие от компьютерной томографии. В низкодозовом режиме (20 срезов) доза не превышает 0,001 мЗв, что соответствует нормам радиационной безопасности.
Еще одним преимуществом томосинтеза перед методом компьютерной томографии является возможность обследования пациентов с металлическими имплантатами без возникновения артефактов.
SLOT-рентгенография – (она же панорамная рентгенография, щелевая рентгенография, осевая рентгенография, телерентгенограмма). Этот метод позволяет произвести панорамный снимок всех отделов позвоночника с захватом таза или нижних конечностей с захватом таза на одном изображении за один проход рентгеновской трубки. Изображение получается с истинными анатомическими размерами в отличие от метода сшивки изображений. Слот-рентгенография эффективно применяется для диагностики: сколиозов, укорочений и деформации нижних конечностей, перекоса и ротации костей таза. Этот метод необходим для работы врачей-ортопедов, мануальных терапевтов.
Продуманная конструкция аппарата обеспечивает проведение всех исследований без перемещения пациента, охват «голова – ноги» составляет 202 см.
Чем нас досматривают?
В связи с повсеместным введением досмотровых систем, многие задаются таким вопросом. В этом посте автор хочет начать цикл статей о разнообразных системах досмотра, о применяемых принципах обнаружения опасных объектов и конструкции аппаратуры досмотра вплоть до «железа».
Для начала рассмотрим рентгеновские инспекционные системы
Чаще всего в рентгеновских инспекционных системах, или по памяти о телевизионных системах, типа «Поиск», — РТУ (рентгенотелевизионная установка) применяется рентгеновская трубка. Да, та самая которую придумал Кондрад Рентген и чаще всего без охлаждаемого вращением анода.
Схема получения изображения, изначально была проста – путем проекции на люминесцирующую под рентгеновскими лучами пластину.
История развития досмотровых систем для просвечивания багажа.
Расскажем историю развития рентгеновских досмотровых систем.
Для начала несколько поясняющих рисунков.
Базовая геометрия рентген излучения при флюорографии
На этом изображении видно как поток рентгеновских лучей проецируется на флуоресцентный экран. Изначально ренгено-инспекционные системы не во многом отличались от техники для флюорографии. Принцип действия был прост.
Рентгеновское излучение от источника проходит через контролируемый (просвечиваемый), предмет, преобразуется на специальном флуоресцентном экране в световой рельеф, соответствующий рентгеновскому изображению объекта (т.н. «теневое изображение») и через защитное стекло визуально воспринимается оператором.
Флюороскопия с прямым отображением:
Позже, для защиты от излучения додумались закрывать излучение в освинцованном ящике, наблюдая полученное изображение, через зеркала и оптические системы с возможностью увеличения.
Усиление изображения с ТВ камерой
Дальнейшее развитие шло по пути усиления получаемого изображения, при помощи фотоэлектронных усилителей и преобразования в телевизионный сигнал, просматриваемый на мониторе.
Но вскоре пришла «цифровая революция», коренным образом изменившая принципы сканирования.
Современные рентгеновские инспекционные установки, чаще используют другие принципы, уменьшившие побочное изучение и сильно улучшившие:
Качество изображения улучшилось благодаря применению высокочувствительных полупроводниковых детекторов (фотодиодов), с нанесенным на них слоем люминесцентного вещества (обычно йодид цезия) а, также цифровой обработке на компьютере.
Рентгеновский луч проецируется в виде полосы, точно на линейку детекторов, мимо которых перемещается сканируемый объект (багаж), по транспортерной ленте. Окна тоннеля, в котором происходит сканирование, закрыто на входе и выходе освинцованными шторками. Это делается для защиты от рассеянного излучения.
Далее полученный сигнал считывается и преобразуется аналого-цифровым преобразователем — АЦП, выравнивается и передается в компьютер для обработки и сложения » последовательных срезов» объекта в единое изображение.
Схема щелевой коллимации
Микродозовое цифровое рентгеновское сканирование
Преимущества Г-образной матрицы детекторов.
Современные рентгено-инспекционные комплексы различают материалы используя эффект Комптона и определяют две энергии рентгеновских лучей – высокую и низкую.
В 1923г. А. Комптон, исследуя рассеяние рентгеновских лучей (фотонов большой энергии) различными веществами (в основном легкими: графитом, парафином и др.), содержащими свободные или слабо связанные электроны, обнаружил, что в рассеянных лучах, наряду с излучением первоначальной длины волны l содержатся также лучи с длиной волны l¢ большей l (l¢>l). Причем разность Dl=l¢-l оказалась независящей от l и от природы рассеивающего вещества, а целиком определялась углом рассеяния. Экспериментально была установлена следующая закономерность:
где q — угол, образуемый направлением рассеянного излучения с направлением первичного пучка; l0 – постоянная для всех веществ величина, равная l0=0,0242 =2,42×10-12м.
ОПРЕДЕЛЕНИЕ: рассеяние электромагнитного излучения на свободных или слабо связанных электрона, при котором отдельный фотон в результате упругого соударения с электроном передает ему часть своего импульса (часть энергии), называется эффектом или явлением Комптона.
Простым языком, происходит следующее:
При соударении кванта рентгеновского излучения, происходит передача энергии электрону. Возбужденный электрон сбрасывает полученную от кванта энергию в виде фотона рентгеновского излучения, более низкой энергии.
Важно понимать:
При рассеянии излучения веществами с малыми атомными номерами практически все рассеянное излучение имеет смещенную длину волны. Таким образом, в спектре рентгеновского излучения появляются две энергии: низкая и исходная – высокая.
Первоначальный спектр рентгеновского излучения — высокой энергии.
Спектр рентгеновского излучения, после происхождения через органическое вещество.
Рентгеновские досмотровые комплексы выпускаются разными фирмами. В России в основном присутствует техника фирм Nuctech, Smits Detection, Rapiscan, L3 Communication, Astrophysics, Медрентех, Berg и многих других. Эти компании из разных стран: Россия, Китай, Америка, Великобритания, Германия.
Рассмотрим обычную конструкцию рентгено-инспекционной системы для досмотра ручного багажа.
Схема рентгено-инспекционной системы.
На рис отчетливо виден генератор рентгеновского излучения (X-ray Sourсe), Г-образная матрица детекторов Folded Detector Array и компьютер.
Принципы работы рентгено-инспекционной системы:
Когда инспектируемый объект входит в туннель и перекрывает фотоэлектрический датчик, сигнал с датчика поступает на блок управления, который запускает генератор рентгеновского излучения.
Рентгеновское излучение выходит из коллиматора, проникает через досматриваемый объект и попадает на детектор.
В системе используются детекторы двух энергий. Число модулей детекторов в два раза больше, чем в одно энергетической системе. Два блока детекторов с чувствительностью соответственно, к рентгеновским лучам низкой и высокой энергии размещены вместе для приема рентгеновского излучения.
В зависимости от сигналов, принятых с обоих детекторов, система обработки изображения может распознать типы материалов (в основном органику, неорганику и смеси) инспектируемого объекта.
Модули детекторов системы собраны в защищенных панелях расположенных в форме Г и установлены по диагонали от генератора рентгеновского излучения, для сканирования рентгеновскими лучами всего сечения туннеля.
В этой компоновке исключены «слепые» зоны и допускается досмотр любой части объектов проходящих по туннелю.
Дополнительное изображение рентгено-инспекционной системы
Высокоэффективный детектор преобразует рентгеновское излучение в слабые токовые сигналы, которые усиливаются и поступают на АЦП.
Эти аналоговые сигналы преобразуются в 16-битовые цифровые сигналы, которые передаются в компьютер.
Компьютер сначала корректирует несоответствие и смещение цифрового сигнала от каждого пикселя, затем по сигналам скорректированной высокой и низкой энергии классифицирует органические и неорганические материалы и выполняет базовые функции обработки изображения, например, улучшение краев изображений, коррекцию 16-битовых сигналов высокой и низкой энергии.
Сигнал каждого рентгено-графического среза объекта превращается в «линию» изображения на экране дисплея.
Уровень серого изображения указывает степень поглощения рентгеновского излучения в инспектируемом объекте.
Так как объект транспортируется по туннелю конвейером с постоянной скоростью, система сканирует его последовательными » ренгено-графическими срезами». Обработанные рентгеновские изображения объекта последовательно выводятся на дисплей для просмотра.
Все рентгено-графические срезы изображений досматриваемого объекта объединяются и образуют полное рентгеновское изображение.
Чтобы инспекторы могли лучше понять детали изображения и принять правильное решение, система предоставляет им ряд функций для анализа и оценки изображения.
Применение этих функций не меняет самих данных изображения. Отключение таких функций восстанавливает исходное изображение.
Отсканированный рентгено-инспекционной установкой тестовый багаж выглядит следующим образом:
Различным материалам соответствуют разные цвета окраски объектов в соответствии с таблицей:
Эффективное атомное число Z эфф
Соединения легких элементов, например, водород, углерод, азот и кислород, включая большинство взрывчаток (например, нитроглицерин), пластмасс (например, полипропилен), бумагу, ткань, пищу, дерево и воду
Металлические элементы средней массы (например, алюминий) и соли.
Тяжелые металлические элементы (например, титан, хром, серебро, никель, железо, медь, цинк и свинец).
Zэфф – это атомный вес материалов которые просвечены в заданной области изображения. Этот параметр определяется благодаря эффекту Комптона и детекторам рентгеновского излучения низкой и высокой энергии.
Есть разные функции обработки изображения досматриваемого объекта. Любимый инспекторами черно-белый режим используется для обнаружения тонких, металлических объектов.
Черно-белое (Ч/Б) изображение
Для обнаружения металлических объектов используется режим устранения органических материалов. В результате, на изображении синим цветом, отмечены металлические объекты. Немного забегая вперед, могу рассказать, что зеленым цветом окрашены легкие металлы – например, алюминий или соли металлов.
Устранение органики
Отображение только органических веществ при исключении неорганических материалов
Также при досмотре применяется возможность определения материалов по атомным номерам – Z эфф.
Вода и пластиковая взрывчатка
Наркотики с примесью или взрывчатые вещества
Применение функции Z9
Также используется режим «авто» — автоматического обнаружения. В этом режиме опасные вещества обводятся цветными, прямоугольными контурами.
Реальное изображение багажа на мониторе рентгеновской инспекционно-досмотровой установки.
Следовательно, за этим предметом может располагаться что-либо не видимое инспектору. И если скрыта значительная часть багажа, то инспектор обязан его досмотреть.
Важно понимать что, эти рамки предупреждение для инспектора. Не так часто рамки указывают на реальную угрозу.
В следующей статье будут рассмотрены методы тренировки операторов, возможности и функции программного обеспечения и конструкция рентгеновских инспекционных комплексов.