Что называют уравнением фигуры заданной на плоскости x y
Содержание:
Из определения уравнения фигуры следует, что фигура Ф состоит только из тех точек плоскости, координаты которых являются решениями уравнения , т.е. уравнение фигуры задает эту фигуру.
Возможны два вида задач:
Первая задача сводится к построению графика уравнения и решается, чаще всего, методами математического анализа.
Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:
Эллипс
Эллипсом называется линия, состоящая из всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек , есть величина постоянная (большая, чем расстояние между ).
Если а =Ь, то уравнение (7.3) можно переписать в виде:
(7.5)
Это уравнение окружности с центром в начале координат. Эллипс (3) можно получить из окружности (4) сжатием плоскости к оси Ох. Пусть на плоскости выбрана прямоугольная система координат Оху. Тогда преобразование, переводящее произвольную точку М(х,у) в точку координаты которой задаются формулами будет окружность (4) переводить в эллипс, заданный соотношением
Число называется эксцентриситетом эллипса. Эксцентриситет характеризует форму эллипса: чем ближе к нулю, тем больше эллипс похож на окружность; при увеличении становится более вытянутым
Директрисы обладают следующим свойством: отношение расстояния г любой точки эллипса от фокуса к ее расстоянию d до соответствующей директрисы есть величина постоянная, равная эксцентриситету, т.е.
Гипербола
Гиперболой называется линия, состоящая из всех точек плоскости, модуль разности расстояний от которых до двух данных точек есть величина постоянная (не равная нулю и меньшая, чем расстояние между ).
Тогда А расстояние Подставив в формулу r=d, будем иметь. Возведя обе части равенства в квадрат, получим
или
(9.4.1)
Уравнение (9.4.1)- каноническое уравнение параболы. Уравнения также определяют параболы.
Легко показать, что уравнение , определяет параболу, ось симметрии которой перпендикулярна оси абсцисс; эта парабола будет восходящей, если а > 0 и нисходящей, если а О. Для этого выделим полный квадрат:
и сделаем параллельный перенос по формулам
Пример:
Кривые второго порядка на плоскости
Кривой второго порядка называется фигура на плоскости, задаваемая в прямоугольной системе координат уравнением второй степени относительно переменных х и у:
где коэффициенты А, В и С не равны одновременно нулю
Любая кривая второго порядка на плоскости принадлежит к одному из типов: эллипс, гипербола, парабола, две пересекающиеся прямые, 2 параллельные прямые, прямая, точка, пустое множество.
Кривая второго порядка принадлежит эллиптическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют одинаковые знаки: АС>0.
Кривая второго порядка принадлежит гиперболическому типу, если коэффициент В равен нулю: В=0, а коэффициенты А и С имеют противоположные знаки: АС 2с. Точка М(х,у) принадлежит эллипсу тогда и только тогда, когда ее координаты удовлетворяют уравнению
которое называют каноническим уравнением эллипса.
Число а называют большей полуосью эллипса, число — мень-
Замечание. Каноническое уравнение эллипса можно рассматривать и в случае b>а. Оно определяет эллипс с большей полуосью b, фокусы которого лежат на оси Оу.
В случае а=b каноническое уравнение эллипса принимает вид и определяет окружность радиуса а с центром в начале координат.
Эксцентриситетом эллипса называется отношение фокусного расстояния к длине большей оси.
Так, в случае а>b эксцентриситет эллипса выражается формулой:
Эксцентриситет изменяется от нуля до единицы и характеризует форму эллипса. Для окружности Чем больше эксцентриситет, тем более вытянут эллипс.
Пример:
Показать, что уравнение
является уравнением эллипса. Найти его центр, полуоси, вершины, фокусы и эксцентриситет. Построить кривую.
Решение:
Дополняя члены, содержащие х и у соответственно, до полных квадратов, приведем данное уравнение к каноническому виду:
— каноническое уравнение эллипса с центром в точке большей полуосью а=3 и меньшей полуосью
Найдем эксцентриситет эллипса:
Для вычисления вершин и фокусов удобно пользовать новой прямоугольной системой координат, начало которой находится в точке а оси параллельны соответственно осям Ох, Оу и имеют те же направления (осуществили преобразование параллельного переноса). Тогда новые координаты точки будут равны ее старым координатам минус старые координаты нового начала, т.е.
В новой системе координат координаты вершин и фокусов гиперболы будут следующими:
Переходя к старым координатам, получим:
Построим график эллипса.
Задача решена.
Гиперболой называется множество всех точек плоскости, для которых модуль разности расстояний до двух данных точек, называемых фокусами, есть величина постоянная, меньшая расстояния между фокусами.
Так же, как и для эллипса, геометрическое свойство точек гиперболы выразим аналитически. Расстояние между фокусами назовем фокусным расстоянием и обозначим через 2с. Постоянную величину обозначим через 2а: 2а
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.
Геометрическое место точек в пространстве.
Содержимое разработки
Геометрическое место точек в пространстве. Уравнение плоскости.
Постройте геометрическое место точек,
равноудаленных от точек A и B.
Постройте геометрическое место точек,
равноудаленных от сторон угла AOB.
Геометрическим местом точек называется фигура, состоящая из всех точек, удовлетворяющих заданному свойству, или нескольким заданным свойствам
Геометрическим местом точек (ГМТ) называют множество точек пространства, обладающих определенным свойством.
Чтобы доказать, что какое-то множество точек является ГМТ, надо доказать:
1. каждая точка данного множества обладает заданным свойством;
2. если точка обладает заданным свойством, то она принадлежит данному множеству.
Плоскость, перпендикулярная отрезку и проходящая через его середину, является ГМТ, равноудаленных от концов этого отрезка.
Плоскость, перпендикулярная отрезку и проходящая через его середину, является ГМТ, равноудаленных от концов этого отрезка.
Биссектором двугранного угла называют полуплоскость, границей которой является ребро двугранного угла, и делящую его на два равных двугранных угла.
Биссектор двугранного угла является ГМТ, принадлежащих двугранному углу и равноудаленных от его граней.
Уравнением фигуры F, заданной в координатном пространстве xyz, называют уравнение с тремя переменными x, y, z, обладающее следующими свойствами:
Уравнение плоскости имеет вид ax + by + cz + d = 0, где a, b, c и d – некоторые числа, причем
a, b, и c не равны нулю одновременно.
Уравнение фигуры на плоскости
Тема 13. Геометрические образы на плоскости и в пространстве
Что такое джиттер?
Что такое время ожидании?
Что такое синхронизация?
Что такое сжатие файлов?
Какие факторы влияют на полосу пропускания и пропускную способность сети?
Факторы, влияющие на полосу пропускания и производительность:
• сжатие файлов и совместимость файловых форматов;
Сжатие файлов – это процесс, используемый для уменьшения размера обычного файла с помощью различных методов. Методы сжатия важны потому, что при уменьшении размера файла уменьшается время передачи файла в точку назначения, что влияет на производительность сети
При совместной передаче речи, видео и данных по сети вся эта информация должна быть синхронизирована программами у получателя, т. е. нужно, чтобы все последовательные фрагменты были собраны и воспроизведены в правильном порядке
Время, необходимое для передачи информации передающего устройства к принимающему, называется временем ожидания. Если полоса пропускания сети недостаточна, время ожидания увеличивается
Джиттер – разброс значений времени ожидания в сети, вызывающие заметные ошибки в доставке мультимедийного сигнала. Величина джиггера определяется путем вычитания минимального значения времени ожидания из максимального значения
Геометрической фигурой или просто фигурой на плоскости будем называть множество точек на плоскости. Задать фигуру — значит указать, из каких точек плоскости она состоит. Одним из важных способов задания фигуры на плоскости является ее задание при помощи уравнений с двумя неизвестными. Произвольное уравнение с двумя неизвестными x и y будем записывать в виде F(x, у) = 0.
Выберем на плоскости некоторую прямоугольную систему координат. В этой системе координат уравнение F(x, у) = 0 называется уравнением фигуры при выполнении следующих двух условий:
1) если точка M(а,b) принадлежит фигуре , то координаты (а,b) точки М являются решением уравнения F(x, у) = 0, т. е. F(a, b) = 0 — верное числовое равенство;
2) если же пара чисел (с, d) является решением уравнения F(x,у) = 0, то точка N, координатами которой служат числа c и d, принадлежит фигуре .
Из определения уравнения фигуры следует, что фигура состоит только из тех точек плоскости, координаты которых являются решениями уравнения F(x,у) = 0, т. е. уравнение фигуры задает эту фигуру.
Возможны два вида задач:
1) дано уравнение F(x, у) = 0, и надо построить фигуру , уравнением которой является F(x, у) = 0;
2) дана фигура , и надо найти уравнение этой фигуры.
Первая задача сводится к построению графика уравнения F(x, у) = 0 и решается чаще всего методами математического анализа.
Для решения второй задачи, как следует из определения уравнения фигуры, достаточно:
1) задать фигуру геометрически, т. е. сформулировать условие, которому удовлетворяют только точки фигуры (довольно часто определение фигуры содержит такое условие);
2) записать в координатах условие, сформулированное в первом пункте.
Пример.1. Окружность Ф с центром в точке О и радиусом R задается условием MФ, где — расстояние между точками O и М. Запишем это условие в координатах. Пусть центр O окружности имеет координаты (а,b), а через (x,у) обозначим координаты произвольной точки. Тогда условиев координатах имеет вид =.
Последнее уравнение, называется каноническим уравнением окружностис центром в точке O(а, b) и радиусом R.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Общее уравнение плоскости : описание, примеры, решение задач
В статье рассмотрим такой тип уравнений плоскости как общее уравнение, получим его вид и разберем на практических примерах. Рассмотрим частные случаи и понятие общего неполного уравнения плоскости.
Общее уравнение плоскости: основные сведения
Также вспомним определение прямой, перпендикулярной к плоскости: прямая является перпендикулярной к заданной плоскости, если она перпендикулярна любой прямой, принадлежащей этой плоскости.
Теорема состоит из двух частей. Разберем доказательство каждой из них.
Уравнение вида A x + B y + C z + D = 0 называют общим уравнением плоскости в прямоугольной системе координат O x y z трехмерного пространства.
Раскроем чуть шире смысл теорем.
Укажем пример как иллюстрацию этих утверждений.
Общее уравнение плоскости, проходящей через точку
Решение
Подставим координаты точки М 0 в исходной уравнение плоскости:
Ответ: точка М 0 принадлежит заданной плоскости; точка N 0 – не принадлежит.
Решение
Разберем обратную задачу, когда требуется составить уравнение плоскости по заданным координатам нормального вектора.
Возможно получить это уравнение другим способом.
Решение
Рассмотрим два способа решения.
Чтобы получить искомое общее уравнение плоскости, необходимо также воспользоваться необходимым и достаточным условием перпендикулярности векторов и тогда:
Неполное общее уравнение плоскости
Разберем все возможные варианты общих неполных уравнений в прямоугольной системе координат трехмерного пространства.
A · 0 + B · 0 + C · 0 = 0 ⇔ 0 ≡ 0
Решение
Задачу возможно решить еще одним способом.
Решение
Содержание:
Система координат в пространстве
Декартова система координат в пространстве
Вы познакомились с декартовой системой координат на плоскости в предыдущих классах. Систему координат в пространстве введём аналогично тому, как это было сделано на плоскости. Рассмотрим три взаимно перпендикулярных оси Ох, Оу и Оz, пересекающихся в точке О, являющейся началом координат. Через каждую пару этих прямых проведём плоскости Оху, 0xz и Оуz (рис. 1). Таким образом вводится система координат в пространстве, при этом
Координатные плоскости делят пространство на 8 октант (получетвертей) (рис. 1).
Пусть в пространстве задана произвольная точка А. Через эту точку проведём плоскости, перпендикулярные плоскостям Охz, Оуz и Охz (рис. 2). Одна из этих плоскостей пересечёт ось Ох в точке Ах.
Координату Ах на оси Ох называют координатой х или абсциссой точки А.
Пример:
Пусть в пространстве в декартовой системе координат
задана точка А (2; 3; 4). Где она расположена?
Решение:
От начала координат в положительном направлении осей Ох и Оу отложим отрезки ОАх = 2 и ОАу = 3 (рис. 4).
Пользуясь системой координат, созданной для современных программируемых станков и автоматизированных роботов, составляются программы, на основе которых обрабатываются металлы (рис. 5).
Расстояние между двумя точками
Координаты х и у этих точек соответственно равны координатам х и у точек А, В, а координаты z равны 0.
Теперь через точку В проведём плоскость а, параллельную плоскости Оху. Она пересечёт прямую ААz в некоторой точке С.
Однако
Поэтому
2.Пусть отрезок АВ параллелен оси Оz, тогда и, так как
Следовательно, расстояние между двумя точками А и В:
(1)
Примечание. Формула (1) выражает длину диагонали прямоугольного параллелепипеда, измерения которого равны
Уравнение сферы и шара
Известно, что множество всех точек М (х; у; z), расположенных на расстоянии R от данной точки А (а; Ь; с) образуют сферу (рис. 7). Тогда по формуле (1) координаты всех точек, расположенных на сфере радиуса R с центром в точке А (а; b; с), удовлетворяют равенству
Отсюда, ясно, что неравенство для точек шара радиуса R с центром в
точке А (а; b; с) имеет вид:
Пример:
Найдите периметр треугольника ABC с вершинами в
Решение:
Р=АВ+АС+ВС периметр треугольника ABC. Воспользовавшись формулой расстояния между двумя точками, найдём длины сторон треугольника:
Следовательно, треугольник ABC равносторонний и его периметр .
Ответ:
Координаты середины отрезка
Отсюда по формулам нахождения координат середины отрезка на плоскости
Чтобы найти координату z, нужно вместо плоскости Оху рассмотреть плоскость 0xz или Оуz.
Тогда и для z получим формулу, подобную вышеприведённой.
Аналогично, используя координаты концов A и B отрезка AB, по формулам
находят координаты точки Р(х1;у]; г,), делящей отрезок АВ в отношении X САР: РВ = X).
Доказательство: Для решения задачи используем признак параллелограмма: Четырёхугольник, точка пересечения диагоналей которого делит их пополам, является параллелограммом.
Координаты середины отрезка МК:
Координаты середины отрезка NL:
В переписке с известным целителем и математиком Абу Али ибн Сино Абу Райхон Беруни задаёт следующий вопрос: «Почему Аристотель и другие (философы) называют шесть сторон?»
Здесь Ибн Сино имеет ввиду три координаты, именуемые условно «шесть сторон».
В произведении «Канон Масъуда» Беруни приводит точное математическое определение шести сторон: «Сторон шесть, так как они ограничивают движение фигур по своим измерениям. Измерений три: длина, ширина и глубина. А их в два раза больше самих измерений.»
Векторы в пространстве и действия над ними
Векторы в пространстве
Понятие вектора в пространстве вводят также как на плоскости.
Вектором в пространстве называют направленный отрезок. Основные понятия, относящиеся к векторам в пространстве, аналогичны этим понятиям на плоскости: длина (модуль), направление вектора, равенство векторов.
Координатами вектора с началом в точке А (х1; у1; z1) и концом в точке В (х1; у1; z1) называют числа , (рис. 17).
Приведем без доказательства свойства векторов, аналогичных свойствам на плоскости.
Также как на плоскости, соответствующие координаты равных векторов равны и, обратно, векторы с равными координатами равны.
Hа основании этого вектор можно обозначить как или или кратко (рис. 18).
Вектор можно записать и без координат (или ). В этой записи
Вектор с координатами, равными нулю, называют нулевым вектором и обозначают или , направление этого вектора не определено.
Если начало вектора расположено в начале координат О, а числа а1,
координатами вектора : (а1; а2; а3).
Однако вектор в пространстве с началом в точке К(с1; с2; с3) и концом в точке будет иметь те же координаты: .
Отсюда следует, что вектор можно приложить к любой точке пространства. В геометрии мы рассматриваем такие свободные векторы. Но в физике, обычно вектор связан с некоторой точкой. Например, воздействие силы приложенная к пружине F на рисунке 19 зависит от точки её приложения.
Длинной вектора называют длину направленного отрезка
изображающего его (рис. 17). Длину вектора записывают
так. Длина вектора , заданного координатами,
вычисляется по формуле .
Пример:
Решение:
У равных векторов равны соответствующие координаты. Поэтому найдём координаты векторов:
Следовательно, .
Докажите самостоятельно, что
Действия над векторами в пространстве
Действия над векторами. Сложение векторов, умножение на число и их скалярное произведение определяется также как на плоскости.
Суммой векторов и (b1; b2; b3); называют вектор (рис. 20).
Пусть кран на рисунке 20.b движется вдоль вектора , а груз относительно крана вдоль вектора . В результате груз движется вдоль вектора . Поэтому из рисунка 20.с, на котором изображён сюжeт басни русского писателя И.А.Крылова, ясно, что герои басни не смогут сдвинуть телегу с места.
Свойства суммы векторов
Для любых векторов , и имеют место следующие свойства:
a) — переместительный закон сложения векторов;
b) — распределительный закон сложения.
Правило треугольника сложения векторов
Для любых точек А, В и С (рис. 21):
Правило параллелограмма сложения векторов
Правило многоугольника сложения векторов
Правило параллелепипеда сложения трёх векторов, не лежащих в одной плоскости. Если АВСDА1В1С1D1 параллелепипед (рис. 24), то
.
(a1; a2; a3) на число (рис. 25). Свойства операции умножения вектора на число.
Для любых векторов и и чисел и
а);
b);
c) и направление вектора
совпадает с направлением вектора , если ,
противоположно направлению вектора , если .
Коллинеарные и компланарные векторы
Пусть заданы ненулевые векторы и . Если векторы
и сонаправлены или противоположно направлены,
то их называют коллинеарными векторами (рис. 26).
Свойство 1. Если для векторов и имеет место равенство , то они коллинеарны и наоборот.
Если , то векторы и сонаправлены , если, то
противоположно направлены .
Свойство 2. Если векторы (a1; a2; a3) и (b1; b2; b3) коллинеарны,
то их соответствующие координаты пропорциональны:
и наоборот.
Пример:
Найдите вектор с началом в точке А (1; 1; 1) и концом в точке В, лежащей в плоскости Оху, коллинеарный вектору ( 1; 2; 3).
Решение:
Тогда получаем следующие пропорции .
Откуда находим , .
Итак,
Векторы, лежащие в одной плоскости или параллельных плоскостях, называют компланарными векторами (рис. 27).
Векторы (1; 0; 0), (0; 1; 0) и (0; 0; 1) называют ортами (рис. 28).
Любой вектор можно единственным образом разложить по ортам, то есть представить в виде (рис. 29).
Точно также, если заданы три нeкомпланарных вектора и , то любой вектор можно единственным образом представить в виде:
.
Здесь некоторые действительные числа. Тогда говорят, что вектор разложен по заданным векторам.
Скалярное произведение векторов
Углом между ненулевыми векторами и называют угол между направленными отрезками векторов = и =, исходящих из точки О (рис. 30).
Угол между векторами и обозначают так .
Скалярным произведением векторов и называют произведение длин этих векторов на косинус угла между ними.
Если один из векторов нулевой, то скалярное произведение этих векторов равно нулю.
Скалярное произведение обозначают или . По определению (1)
Из определения следует, что если скалярное произведение векторов и равно нулю, то эти векторы перпендикулярны и наоборот.
В физике работа A, выполненная при движении тела на расстоянии , под воздействием силы (рис. 31), равна скалярному произведению силы на расстояние:
Свойство. Если и (b1; b2; b3), то () =
Доказательство. Приложим векторы и к началу
координат О (рис.32). Тогда = и = (b1; b2; b3).
Тогда .
Однако, ,
и .
Следовательно,
.
Самостоятельно докажите, что и в случае, когда данные векторы коллинеарны , также выполняется
это равенство.
Свойства скалярного произведения векторов
1. — переместительное свойство.
2. — распределительное свойство.
3. — сочетательное свойство.
4.Если векторы а и b являются сонаправленными коллинеарными
векторами, то , так как соs 0° = 1.
6. .
7. Если вектор перпендикулярен вектору , то . Следствия: а) Длина вектора ; (1) b) косинус угла между векторами
: ; (2)
с) условие перпендикулярности векторов и
.
(3)
Пример:
— заданные точки. Найдите косинус угла между векторами .
Решение:
Найдём длины векторов :
,
.
,
.
Пример:
Найдите угол между векторами .
Решение:
Итак,
Пример:
Найдите , если , и угол между векторамии равен .
Решение:
Пример:
Найдите координаты и длины векторов 1); 2), если .
Решение:
Подставим в выражения искомых векторов разложения векторов и по координатам:
1)
. Следовательно,.
Тогда.
2)
.
Следовательно, .
Тогда
Пример:
Найдите произведение, если угол между векторами и равен 30° и , .
Решение:
Сначала найдём поизведение векторов и :
.
Затем перемножим заданные выражения как многочлены
и, пользуясь распределительным свойством умножения
вектора на число, получим:
.
Учитывая, что ,
найдём искомое произведение
Преобразование и подобие в пространстве
Геометрические преобразования в пространстве
Если каждую точку заданной в пространстве фигуры F изменить одним и тем же способом, то получим фигуру F1. Если при этом преобразовании различные точки первой фигуры переходят в различные точки второй, то говорят о преобразовании геометрической фигуры.
Если рассматривать все пространства как геометрическую фигуру, то также можно говорить о преобразовании геометрической фигуры.
Понятие геометрического преобразование в пространстве вводят также как на плоскости. Следовательно, свойства некоторых рассматриваeмых ниже видов преобразований и их доказательства также подобны соответствующим им на плоскости. Поэтому, мы не будем доказывать их и рекомендуем провести их самостоятельно.
Движение и параллельный перенос
В пространстве фигуры, которые можно перевести одну в другую при некотором движении называют равными фигурами.
Простейшим примером движения является параллельный перенос.
Пусть в пространстве даны вектор и произвольная точка Х
(рис. 44). Говорят, что точка Х перешла в точку X1 параллельным
переносом на вектор , если выполняется условие . Если каждую точку фигуры F сдвинуть на вектор при помощи параллельного переноса (рис. 45), то получим фигуру F1. Тогда говорят, что фигура F получена параллельным переносом фигуры F1 . При параллельном переносе каждая точка фигуры F сдвигается в одном и том же направлении на одно и то же расстояние.
Каждая точка подъёмного крана, изображённого на рисунке 46, параллельно перенесена на 40 м относительно начального положения.
Пусть точка фигуры F перешла в точку
фигуры F1 при помощи параллельного переноса
на вектор .
Тогда по определению получим:
или
.
Эти равенства называют формулами параллельного переноса.
Пример:
В какую точку перейдёт точка Р (-2; 4; 6) при параллельном переносе на вектор = (3; 2; 5)?
Решение:
По вышеприведённым формулам параллельного переноса: .
Ответ: .
Центральная симметрия в пространстве
Если в пространстве каждая точка фигуры F переходит в точку, симметричную относительно точки О (рис. 47), то такое преобразование называют симметрией относительно точки О. На рисунках 48, 49 изображёны фигуры симметричные относительно точки О. Симметрия относительно точки является движением.
Если при симметрии относительно точки О фигура F переходит в себя, то её называют центрально симметричной фигурой.
Например, диагонали параллелепипеда (рис. 50) относительно их точки пересечения О являются центрально симметричными фигурами.
Пример:
В какую точку перейдет точка A = (1; 2; 3) при симметрии относительно точки О (2; 4; 6)?
Решение:
Из этих уравнений получаем:
.
Ответ:
Симметрия относительно плоскости
Точки А и А1 называют симметричными относительно плоскости а,
если плоскость перпендикулярна отрезку и делит его пополам (рис. 51). Фигуры F1, и F2 на рисунке 52 симметричны относительно
плоскости а. Очевидно, что наш силуэт и его отражение симметричны относительно плоскости зеркала (рис. 53).
Симметрия относительно плоскости а является движением.
Если при симмeтрии относительно плоскости фигура F переходит в себя, то её называют фигурой симметричной относительно плоскости.
Например, изображённый на рисунке 54 куб, есть фигура, симметричная относительно плоскости а, проходящей через его диагонали АА1 и СС1.
Поворот и симметрия относительно оси
Пусть в пространстве заданы точки А и А1 и прямая l. Если перпендикуляры АК и А1К, опущенные на прямую l, равны и образуют угол , то говорят, что точка А перешла в точку А1 в результате поворота на угол относительно прямой l (рис. 55).
Поворот относительно прямой также является движением.
Поворот на 180° относительно прямой l называют симметрией относительно прямой l.
Центр, ось и плоскость симметрии называют элементами симметрии. Точки, симметричные точке А (х; у; z) относительно координатных плоскостей, координатных осей и начала координат, будут иметь следующие координаты:
Симметрия в природе и технике
В природе на каждом шагу можно встретить симметрию.
Например, множество живых существ, в частности тела человека и животных, листья растений и цветы устроены симметрично (рис. 58). Также в неживой природе есть элементы, например, снежинки, кристаллы соли. Молекулярное строение веществ тоже состоит из симметричных фигур. Это, конечно, неспроста, поскольку симметричные фигуры не только красивы, но и самые устойчивые.
Раз так, то можно считать, что красота и совершенство природы построены на основе симметрии. Взяв за основу природную красоту и совершенство, строители, инженеры и архитекторы создают строения и механизмы, здания и сооружения, технику и транспортные средства симметричными. В этой работе им очень помогает наука геометрия.
Подобие пространственных фигур
Пусть и преобразование переводят фигуру F1, в фигуру F2. Если
при этом преобразовании для произвольных точек X1 и Х2 фигуры F1 и соответствующих им точек Y1 и Y2 фигуры , то это преобразование называют преобразованием подобия (рис. 59).
Как видим, понятие преобразования подобия в пространстве вводится также как на плоскости. Следовательно, рассматриваемые ниже виды подобия, их свойства и доказательства этих свойств подобны соответствующим на плоскости. Поэтому, мы не будем останавливаться на их доказательствах и рекомендуем провести их самостоятельно. Преобразование подобия в пространстве отображает прямую в прямую, луч в луч, отрезок в отрезок и угол в угол. Точно также это преобразование плоскость отображает в плоскость.
Если в пространстве одна из фигур перешла в другую с помощью преобразования подобия, то эти фигуры называют подобными.
Пусть в пространстве задана фигура F, точка О и число к . Преобразование, переводящее произвольную точку X фигуры F в точку Х1 удовлетворяющую условию , называют гомотетией относительно центра О с коэффициентом (рис. 61). Точку О называют центром гомотетии, а число коэффициентом гомотетии. Если в результате такого преобразования каждой точки фигуры F получена фигура F1 то говорят, что фигура F гомотетична фигуре F1.
Вы видите, что определение гомотетии в пространстве аналогично соответствующему определению на плоскости. Следовательно, все свойства и их доказательства аналогичны. Поэтому, мы не будем доказывать их и рекомендуем провести их самостоятельно.
Если же прямая или плоскость проходят через центр гомотетии, то они отображаются в себя.
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.