Что относится к механической и оптической частям светового микроскопа
Устройство микроскопа, строение микроскопа
В микроскопе различают механическую и оптическую части. Механическая часть представлена штативом (состоящим из основания и тубусодержателя) и укрепленным на нем тубусом с револьвером для крепления и смены объективов. К механической части относятся также: предметный столик для препарата, приспособления для крепления конденсора и светофильтров, встроенные в штатив механизмы для грубого (макромеханизм, макровинт) и тонкого (микромеханизм, микровинт) перемещения предметного столика или тубусодержателя.
Оптическая часть представлена объективами, окулярами и осветительной системой, которая в свою очередь состоит из расположенных под предметным столиком конденсора Аббе и встроенного осветителя с низковольтной лампой накаливания и трансформатором. Объективы ввинчиваются в револьвер, а соответствующий окуляр, через который наблюдают изображение, устанавливают с противоположной стороны тубуса.
Рисунок 1. Устройство микроскопа
К механической части относится штатив, состоящий из основания и тубусодержателя. Основание служит опорой микроскопа и несет всю конструкцию штатива. В основании микроскопа находится также гнездо для зеркала или встроенный осветитель.
В большинстве современных микроскопов фокусировка осуществляется путем вертикального перемещения предметного столика с помощью макро- и микромеханизма при неподвижном тубусодержателе. Это позволяет установить на тубусодержатель различные насадки (микрофото и т.п.). В некоторых конструкциях микроскопов, предназначенных для работы с микроманипулятором, фокусировка осуществляется вертикальным перемещением тубусодержателя при неподвижном предметном столике.
Рис. 2. Револьверный держатель объективов |
Существуют различные взаимозаменяемые конструкции участка тубуса, несущего окуляры (прямой и наклонный) и различающиеся по количеству окуляров (окулярные насадки):
Помимо тубусодержателя с тубусом к механической части микроскопа относятся:
Световой микроскоп
Микроско́п (от греч. μικρός — малый и σκοπεῖν — смотрю) — оптический прибор для получения увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом.
Содержание
История микроскопа
Невозможно точно определить, кто изобрёл микроскоп. Считается, что голландский мастер очков Ханс Янссен и его сын Захария Янссен изобрели первый микроскоп в 1590, но это было заявление самого Захария Янссена в середине XVII века. Дата, конечно, не точна, так как оказалось, что Захария родился около 1590 г. Другим претендентом на звание изобретателя микроскопа был Галилео Галилей. Он разработал «occhiolino» («оккиолино»), или составной микроскоп с выпуклой и вогнутой линзами в 1609 г. Галилей представил свой микроскоп публике в Академии деи Линчеи, основанной Федерико Чези в 1603 г. Изображение трёх пчел Франческо Стеллути было частью печати Папы Урбана VIII и считается первым опубликованным микроскопическим символом (см. «Stephen Jay Gould, The Lying stones of Marrakech, 2000»). Кристиан Гюйгенс, другой голландец, изобрел простую двулинзовую систему окуляров в конце 1600-х, которая ахроматически регулировалась и, следовательно, стала огромным шагом вперед в истории развития микроскопов. Окуляры Гюйгенса производятся и по сей день, но им не хватает широты поля обзора, а расположение окуляров неудобно для глаз по сравнению с современными широкообзорными окулярами. Антон Ван Левенгук (1632—1723) считается первым, кто сумел привлечь к микроскопу внимание биологов, несмотря на то, что простые увеличительные линзы уже производились с 1500-х годов, а увеличительные свойства наполненных водой стеклянных сосудов упоминались ещё древними римлянами (Сенека). Изготовленные вручную, микроскопы Ван Левенгука представляли собой очень небольшие изделия с одной очень сильной линзой. Они были неудобны в использовании, однако позволяли очень детально рассматривать изображения лишь из-за того, что не перенимали недостатков составного микроскопа (несколько линз такого микроскопа удваивали дефекты изображения). Понадобилось около 150 лет развития оптики, чтобы составной микроскоп смог давать такое же качество изображения, как простые микроскопы Левенгука. Так что, хотя Антон Ван Левенгук был великим мастером микроскопа, он не был его изобретателем вопреки широко распространённому мнению.
Недавние достижения
Немецкие ученые Штефан Хелль в 2006 году Stefan Hell и Мариано Босси Mariano Bossi из Института биофизической химии разработали оптический микроскоп под названием Наноскоп, позволяющий наблюдать объекты размером около 10 нм и получать высококачественные трёхмерные изображения. [1]
Применение
Человеческий глаз представляет собой биологическую оптическую систему, характеризующуюся определённым разрешением, т. е. наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличены один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешение составляет 0,176 мм. Размеры микроорганизмов, большинства растительных и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины. Для наблюдения и изучения подобных объектов и предназначены микроскопы различных типов. С помощью микроскопов определяли форму, размеры, строение и многие другие характеристики микрообъектов. Оптический микроскоп в видимом свете давал возможность различать структуры с расстоянием между элементами до 0,20 мкм. Так было до создания оптического микроскопа наноскопа. [2]
Устройство микроскопа
Оптическая система микроскопа состоит из основных элементов — объектива и окуляра. Они закреплены в подвижном тубусе, расположенном на металлическом основании, на котором имеется предметный столик.
В современном микроскопе практически всегда есть осветительная система (в частности, конденсор с ирисовой диафрагмой), макро- и микро- винты для настройки резкости, система управления положением конденсора.
В зависимости от назначения, в специализированных микроскопах могут быть использованы дополнительные устройства и системы.
Объективы
Иммерсия
Может быть сухой и масляной. а)сухая: показатель преломления равен 1; б)масляная: используется при работе с мелкими объектами, показатель преломления равен 1,33 Иммерсионное масло добывают из деревьев
Окуляры
Система освещения препарата
В первых микроскопах исследователи вынуждены были пользоваться естественными источниками света. Для улучшения освещённости стали использовать зеркало, а затем — и вогнутое зеркало, с помощью которого на препарат направляли лучи солнца или лампы. В современных микроскопах освещение регулируют с помощью конденсора.
Конденсор
Конденсор (от лат. condense — сгущаю, уплотняю), короткофокусная линза или система линз, используемая в оптическом приборе для освещения рассматриваемого или проецируемого предмета. Конденсор собирает и направляет на предмет лучи от источника света, в том числе и такие, которые в его отсутствие проходят мимо предмета; в результате такого «сгущения» светового потока резко возрастает освещённость предмета. Конденсоры применяются в микроскопах, в спектральных приборах, в проекционных аппаратах различных типов (например, диаскопах, эпидиаскопах, фотографических увеличителях и т. д.). Конструкция конденсора тем сложнее, чем больше его апертура. При числовых апертурах до 0,1 применяют простые линзы; при апертурах 0,2—0,3— двухлинзовые конденсоры, выше 0,3—трёхлинзовые. Наиболее распространён конденсор из двух одинаковых плосковыпуклых линз, которые обращены друг к другу сферическими поверхностями для уменьшения сферической аберрации. Иногда поверхности линз конденсора имеют более сложную форму — параболоидальную, эллипсоидальную и т. д. Разрешающая способность микроскопа повышается с увеличением апертуры его конденсора, поэтому конденсоры микроскопов — обычно сложные двух или трёхлинзовые системы. В микроскопах и кинопроекционных аппаратах широко применяют также зеркальные и зеркально-линзовые конденсоры, апертура которых может быть очень велика — угол 2u раствора собираемого пучка лучей достигает 240°. Часто наличие в конденсорах нескольких линз вызвано не только стремлением увеличить его апертуру, но и необходимостью однородного освещения предмета при неоднородной структуре источника света. [3]
Конденсор тёмного поля
Предметный столик
Предметный столик выполняет роль поверхности, на которой размещают микроскопический препарат. В разных конструкциях микроскопов столик может обеспечить координатное движение препарата в поле зрения объектива, по вертикали и горизонтали, или поворот препарата на заданный угол.
Вспомогательные приспособления
Предметные и покровные стёкла
Первые наблюдения в микроскоп производились непосредственно над каким-либо объектом (птичье перо, снежинки, кристаллы и т. п.). Для удобства наблюдения в проходящем свете, препарат стали размещать на стеклянной пластинке (предметное стекло). Иногда эту пластинку делали с лункой — для размещения объекта в капле воды. Позже препарат стали закреплять тонким покровным стеклом, что позволило создавать коллекции образцов, например, гистологические коллекции.
Классификация
Рабочие лабораторные микроскопы
Бинокулярные микроскопы
Бинокулярный микроскоп (иначе — стереомикроскоп) позволяет получать 2 изображения объекта, рассматриваемые под небольшим углом, что обеспечивает объёмное восприятие. В современных бинокулярных микроскопах одновременно используются два окуляра (по одному на каждый глаз) и обычно 1 объектив. Общее увеличение (объектив*оккуляр) бинокуляров обычно меньше, чем у монокулярных микроскопов. Бинокулярные микроскопы хорошо работают как в проходящем, так и в отражённом свете.. [4]
Наиболее широко бинокуляры используются для исследования неоднородностей поверхности твёрдых непрозрачных тел, таких как горные породы, металлы, ткани; в микрохирургии и пр.
Металлографические микроскопы
Специфика металлографического исследования заключается в необходимости наблюдать структуру поверхности непрозрачных тел. Поэтому микроскоп построен по схеме отраженного света, где имеется специальный осветитель установленный со стороны объектива. Система призм и зеркал направляет свет в объектив, далее свет отражается от не прозрачного объекта и направляется обратно в объектив. «.. [5]
ТЕМА 1. УСТРОЙСТВО МИКРОСКОПА. ВИДЫ МИКРОСКОПИИ
Цель работы: изучить устройство светового биологического микроскопа и освоить правила работы с ним. Ознакомиться с различными видами микроскопии.
Материалы, реактивы, оборудование: микроскоп; бактериологические петли; предметные стекла.
1.1. Устройство микроскопа
1. Оптическая часть: окуляр, объектив, конденсор Аббе, осветительный прибор (зеркальце).
2. Механическая часть: штатив, основание, предметный столик, тубусодержатель, макровинт, микровинт (рис. 1).
Механическая часть микроскопа.
Штатив имеет основание в виде подковы и колонку (тубусодержатель) в форме дуги. К нему примыкают коробка механизмов, система зубчатых колес для регуляции положения тубуса. Система приводится в движение вращением макрометрического и микрометрического винтов.
Макрометрический винт (кремальера, зубчатка, макровинт) служит для предварительной ориентировочной установки изображения рассматриваемого объекта.
Микрометрический винт (микровинт) используют для последующей четкой установки на фокус. При полном повороте микровинта труба передвигается на 0,1 мм (100 мкм).
Оптическая часть микроскопа состоит из основного оптического узла (объектив и окуляр) и вспомогательной осветительной системы (зеркало и конденсор). Все части оптической системы строго центрированы относительно друг друга.
Во многих современных микроскопах зеркало и конденсор заменены вмонтированным в прибор регулируемым источником света.
Под конденсором располагается кольцевидный держатель для светофильтров (обычно к микроскопу прилагаются синее и белое матовые стекла). При работе с искусственным источником света светофильтры создают впечатление диезного освещения, что делает микроскопирование менее утомительным для глаз.
Хроматическая аберрация возникает при прохождении через линзу пучка лучей с различной длиной волны. Преломляясь по- разному, лучи пересекаются не в одной точке. Сине-фиолетовые лучи с короткой длиной волны преломляются сильнее, чем красные с большей длиной волны. Вследствие этого у бесцветного объекта появляется окраска.
Объективы, устраняющие хроматическую аберрацию и для вторичного спектра, называют апохроматами. В их составе может быть от 1 до 12 линз. Линзы апохроматов для лучей коррекции вторичного спектра делают из плавикового пата, каменной соли, квасцов и других материалов. Апохроматы дают возможность устранить окрашивание объекта и получить одинаково резкое изображение от лучей разного цвета. Максимального эффекта при работе с апохроматами можно достичь только при их сочетании с компенсационными окулярами, возмещающими оптические недостатки объективов. В компенсационных окулярах хроматическая ошибка противоположна хроматической ошибке объектива, и в результате хроматическая аберрация микроскопа оказывается почти полностью компенсированной.
Объективы бывают сухие и погружные (иммерсионные). При работе с сухими объективами между фронтальной линзой объектива и объектом исследования находится воздух. Оптический расчет иммерсионных объективов предусматривает их работу при погружении фронтальной линзы объектива в жидкую однородную среду. При работе с сухим объективом вследствие разницы между показателями преломления стекла (1,52) и воздуха (1,0) часть световых лучей отклоняется и не попадает в глаз наблюдателя (рис. 2).
Рис. 2. Ход лучей в сухой и иммерсионной системах: I-V- лучи света
При работе с иммерсионным объективом необходимо поместить между покровным стеклом и линзами объектива кедровое масло, показатель преломления которого близок к показателю преломления стекла (табл. 1).
Таблица 1. Показатели преломления некоторых соединений
Устройство светового микроскопа
Разрешающая способность микроскопа дает раздельное изображение двух близких друг другу линий. Невооруженный человеческий глаз имеет разрешающую способность около 1/10 мм или 100 мкм. Лучший световой микроскоп примерно в 500 раз улучшает возможность человеческого глаза, т. е. его разрешающая способность составляет около 0,2 мкм или 200 нм.
Разрешающая способность и увеличение не одно и тоже. Если с помощью светового микроскопа получить фотографии двух линий, расположенных на расстоянии менее 0,2 мкм, то, как бы не увеличивать изображение, линии будут сливаться в одну. Можно получить большое увеличение, но не улучшить его разрешение.
В учебных лабораториях обычно используют световые микроскопы, на которых микропрепараты рассматриваются с использованием естественного или искусственного света. Наиболее распространены световые биологические микроскопы: БИОЛАМ, МИКМЕД, МБР (микроскоп биологический рабочий), МБИ (микроскоп биологический исследовательский) и МБС (микроскоп биологический стереоскопический). Они дают увеличение в пределах от 56 до 1350 раз. Стереомикроскоп (МБС) обеспечивает подлинно объемное восприятие микрообъекта и увеличивает от 3,5 до 88 раз.
В микроскопе выделяют две системы: оптическую и механическую. К оптической системе относят объективы, окуляры и осветительное устройство (конденсор с диафрагмой и светофильтром, зеркало или электроосветитель).
Устройство световых микроскопов изображено на рис. 1.
Рис. 1. Устройство световых микроскопов:
Окуляр устроен намного проще объектива. Он состоит из 2-3 линз, вмонтированных в металлический цилиндр. Между линзами расположена постоянная диафрагма, определяющая границы поля зрения. Нижняя линза фокусирует изображение объекта, построенное объективом в плоскости диафрагмы, а верхняя служит непосредственно для наблюдения. Увеличение окуляров обозначено на них цифрами: х7, х10, х15. Окуляры не выявляют новых деталей строения, и в этом отношении их увеличение бесполезно. Таким образом, окуляр, подобно лупе, дает прямое, мнимое, увеличенное изображение наблюдаемого объекта, построенное объективом.
Для определения общего увеличения микроскопа следует умножить увеличение объектива на увеличение окуляра.
Осветительное устройство состоит из зеркала или электроосветителя, конденсора с ирисовой диафрагмой и светофильтром, расположенных под предметным столиком. Они предназначены для освещения объекта пучком света.
Зеркало служит для направления света через конденсор и отверстие предметного столика на объект. Оно имеет две поверхности: плоскую и вогнутую. В лабораториях с рассеянным светом используют вогнутое зеркало.
Электроосветитель устанавливается под конденсором в гнездо подставки.
Конденсор состоит из 2-3 линз, вставленных в металлический цилиндр. При подъеме или опускании его с помощью специального винта соответственно конденсируется или рассеивается свет, падающий от зеркала на объект.
Ирисовая диафрагма расположена между зеркалом и конденсором. Она служит для изменения диаметра светового потока, направляемого зеркалом через конденсор на объект, в соответствии с диаметром фронтальной линзы объектива и состоит из тонких металлических пластинок. С помощью рычажка их можно то соединить, полностью закрывая нижнюю линзу конденсора, то развести, увеличивая поток света.
Кольцо с матовым стеклом или светофильтром уменьшает освещенность объекта. Оно расположено под диафрагмой и передвигается в горизонтальной плоскости.
Механическая система микроскопа состоит из подставки, коробки с микрометренным механизмом и микрометренным винтом, тубуса, тубусодержателя, винта грубой наводки, кронштейна конденсора, винта перемещения конденсора, револьвера, предметного столика.
Коробка с микрометренным механизмом, построенном на принципе взаимодействующих шестерен, прикреплена к подставке неподвижно. Микрометренный винт служит для незначительного перемещения тубусодержателя, а, следовательно, и объектива на расстояния, измеряемые микрометрами. Полный оборот микрометренного винта передвигает тубусодержатель на 100 мкм, а поворот на одно деление опускает или поднимает тубусодержатель на 2 мкм. Во избежание порчи микрометренного механизма разрешается крутить микрометренный винт в одну сторону не более чем на половину оборота.
Револьвер предназначен для быстрой смены объективов, которые ввинчиваются в его гнезда. Центрированное положение объектива обеспечивает защелка, расположенная внутри револьвера.
Тубусодержатель несет тубус и револьвер.
Винт грубой наводки используют для значительного перемещения тубусодержателя, а, следовательно, и объектива с целью фокусировки объекта при малом увеличении.
Кронштейн конденсора подвижно присоединен к коробке микрометренного механизма. Его можно поднять или опустить при помощи винта, вращающего зубчатое колесо, входящее в пазы рейки с гребенчатой нарезкой.
Дата добавления: 2016-02-10 ; просмотров: 7940 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
Оптические части микроскопа.
МИКРОСКОП. МИКРОСКОПИЧЕСКИЕ ПРИБОРЫ.
Микроскопическая техника.
Главные этапы цитологического и гистологического анализа:
— Выбор объекта исследования
— Подготовка его для изучения в микроскопе
— Применение методов микроскопирования
— Качественный и количественный анализ полученных изображений
Микроскопические методы исследования имеют огромное значение для теории и практики медицины как способ изучения гистологических структур в норме, эксперименте и патологии.
Световой микроскоп.Микроскоп – оптический прибор, предназначенный для получения увеличенных изображений биологических объектов и деталей их строения, не видимых невооруженным глазом.
Микроскоп состоит из оптических и механических частей. Оптические части микроскопа: объективы, окуляры, зеркало и конденсор с ирисовой диафрагмой. Механические части микроскопа: основание, тубусодержатель, тубус, револьвер, предметный столик, механизмы макро- и микровинта, механизм перемещения конденсора
Оптические части микроскопа.
Объектив– основная оптическая часть микроскопа, которая создает изображение препарата. Объектив является системой линз в металлической оправе, где различают фронтальную – главную или увеличительную линзу, ближайшую к объекту, которая строит изображение и коррекционные – они устраняют аберрации фронтальной линзы. Объективы подразделяются:
А) по степени увеличения на объективы малых увеличений (увеличение ≤10), объективы средних увеличений (увеличение ≤40), объективы больших увеличений (увеличение ≥40),
Б) по степени совершенства исправлений аберраций (искажений) на монохроматы (предназначены для работы при монохроматическом освещении), ахроматы (хроматическая аберрация исправлена для 2 цветов спектра), апохроматы (хроматическая аберрация исправлена для 3 цветов спектра); планмонохроматы, планахроматы, планапохроматы ( исправлена кривизна поверхности изображения),
В) по свойствам на суховоздушные и иммерсионные. При использовании суховоздушных объективов между препаратом и объективом воздушное пространство, при иммерсионыых между препаратом и объективом находится жидкость ( иммерсионное масло, вода). Соответственно иммерсионные объективы делят на водные и маслянные. Получение максимального увеличения возможно только с помощью иммерсионного объектива ( как правило, объектива с увеличением 90).Иммерсионные объективы рассчитываются на работу с покровными стеклами не толще 0,17 мм.
Окуляр – оптическая система, используемая для рассматривания изображения, построенного объективом. Простой окуляр (Гюйгенса) состоит из двух плосковыпуклых линз, обращенных выпуклой поверхностью в сторону объектива. Между линзами находится диафрагма с постоянным отверстием. К диафрагме крепится стрелка – указатель. Верхняя линза именуется глазной, на ее оправе указывается увеличение окуляра. Нижняя линза получила название полевой. Окуляр обычно увеличивает изображение в 5-25 раз
Зеркало– направляет поток света через конденсор на препарат. Имеет плоскую и вогнутую поверхности, которые используются в зависимости от степени освещения.
Конденсор – собирает лучи света и фокусирует их на препарат, обеспечивая достаточное и равномерное освещение последнего. Конденсор состоит из двух линз: нижней двояковыпуклой и верхней плосковыпуклой. С помощью конденсора регулируют степень освещения изучаемого объекта.
Механизм перемещения конденсора позволяет изменять его положение и тем самым увеличить или ослабить освещение препарата.
Ирисовая диафрагма, вмонтированная в конденсор, служит для изменения степени освещенности препарата.