Что называют системой счисления
Системы счисления. Основные понятия.
Запись числа в некоторой системе счисления называется кодом числа.
Количество разрядов в записи числа называют разрядностью и совпадает с его длиной.
Системы счисления делятся на позиционные и непозиционные. Позиционные системы счисления делятся
на однородные и смешанные.
Непозиционная система счисления — древнейшая, здесь все цифры числа имеют величину, которая не
зависит от позиции (разряда).
Т.е., если есть 5 палочек, значит число соответственно равно 5, так как каждой палочке, вне зависимости
от её места в строке, соответствует только 1 предмет.
Позиционная система счисления — значение каждой цифры зависит от позиции (разряда) этой цифры в числе.
Например, стандартная 10-я система счисления является позиционной. Допустим дано число 453.
Цифра 4 означает число сотен и соответствует числу 400, 5 — кол-во десятков и соответствует значению
50, а 3 — единицы и значению 3. Легко заметить, что с увеличением разряда увеличивается значение.
Таким образом, заданное число запишем в виде суммы 400+50+3=453.
Однородная система — для каждого разряда (позиции) числа набор допустимых символов (цифр)
одинаковый. Как пример снова используем 10-ю систему. Если записывать число в однородной 10-й системе,
(1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, так как символ F не входит в набор цифр от 0 до 9.
Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может
отличаться от наборов в других разрядах. Хороший пример — система измерения времени. В разряде
В непозиционных системах счисления вес цифры не зависим от позиции, которую она занимает в
числе. К примеру, в римской системе счисления в числе XXXII (32) вес цифры X в каждой позиции
Цифрами в римской системе служат: I(1), V(5), X(10), L(50), C(100), D(500), M(1000).
Размер числа в римской системе счисления определяют как сумму либо разность цифр в числе. Когда
меньшая цифра стоит слева от большей – она вычитается, когда справа – прибавляется.
Самая первая система счисления — единичная (непозиционная).
В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в
последовательности цифр, которые изображают число.
Каждая позиционная система характеризуется своим основанием.
Основание позиционной системы счисления – это количество разных знаков либо символов, которые
используются для изображения цифр в этой системе.
множество позиционных систем.
Перевод систем счисления. Числа можно перевести из одной системы счисления в другую.
Таблица соответствия цифр в различных системах счисления.
Системы счисления
Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр).
Системы счисления бывают:
Непозиционные системы счисления
Примеры: унарная, римская, древнерусская и др.
Позиционные системы счисления
Основание системы счисления —
количество различных цифр, используемых в этой системе.
отношение количественного эквивалента цифры в этом разряде к количественному эквиваленту той же цифры в нулевом разряде
где i — номер разряда, а s — основание системы счисления.
Разряды числа нумеруются справа налево, причем младший разряд целой части (стоящий перед разделителем — запятой или точкой) имеет номер ноль. Разряды дробной части имеют отрицательные номера:
По определению веса разряда
где i — номер разряда, а s — основание системы счисления.
Тогда, обозначив цифры числа как ai, любое число, записанное в позиционной системе счисления, можем представить в виде:
Например, для системы счисления с основанием 4:
Выполнив вычисления, мы получим значение исходного числа, записанное в десятичной системе счисления (точнее, в той, в которой производим вычисления). В данном случае:
= 1⋅64 + 3⋅16 + 0⋅4 + 2⋅1 + 2⋅0,25 =
= 64 + 48 + 2 + 0,5 = 114,5
Таким образом, для перевода числа из любой системы счисления в десятичную следует:
Вспомним пример перевода из системы счисления с основанием 4 в десятичную:
13024 = 1⋅4 3 + 3⋅4 2 + 0⋅4 1 + 2⋅4 0 = 114
Иначе это можно записать так:
114 = ((1 ⋅ 4 + 3) ⋅ 4 + 0) ⋅ 4 + 2 = 13024
Отсюда видно, что при делении 114 на 4 нацело в остатке должно остаться 2 — это младшая цифра при записи в четверичной системе. Частное же будет равно
Деление его на 4 даст остаток — следующую цифру (0) и частное 1 ⋅ 4 + 3. Продолжая действия, получим аналогичным образом и оставшиеся цифры.
В общем случае для перевода целой части числа из десятичной системы счисления в систему с каким-либо другим основанием необходимо:
Что называют системой счисления
Электронные облака
Лекции
Рабочие материалы
Тесты по темам
Template tips
Задачи
Логика вычислительной техники и программирования
Лекция «Системы счисления»
Система счисления — символический метод записи чисел, представление чисел с помощью письменных знаков.
Символы, при помощи которых записывается число, называются цифрами.
В конце концов, самой популярной системой счисления оказалась десятичная система. Десятичная система счисления пришла из Индии, где она появилась не позднее VI в. н. э. В ней всего 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 но информацию несет не только цифра, но также и место позиция, на которой она стоит. В числе 444 три одинаковых цифры обозначают количество и единиц, и десятков, и сотен. А вот в числе 400 первая цифра обозначает число сотен, два 0 сами по себе вклад в число не дают, а нужны лишь для указания позиции цифры 4.
Классификация систем счисления
Системы счисления подразделяются на позиционные и непозиционные.
Позиционные системы счисления
Путем долгого развития человечество пришло к созданию позиционного принципа записи чисел, который состоит в том, что каждая цифра, содержащаяся в записи числа, занимает определенное место, называемое разрядом. Отсчет разрядов производится справа налево. Единица каждого следующего разряда всегда превосходит единицу предыдущего разряда в определенное число раз. Это отношение носит название основание системы счисления (у непозиционных систем счисления понятия «разряда» и «основания» отсутствуют).
Общее свойство всех позиционных систем счисления: при каждом переходе влево (вправо) в записи числа на один разряд величина цифры увеличивается (уменьшается) во столько раз, чему равно основание системы счисления.
Непозиционные системы счисления
В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. Например: Римская система счисления.
Из многочисленных представителей этой группы в настоящее время сохранила свое значение лишь римская система счисления, где для обозначения цифр используются латинские буквы:
I | V | X | L | С | D | М |
1 | 5 | 10 | 50 | 100 | 500 | 1000 |
С их помощью можно записывать натуральные числа. Например, число 1995 будет представлено, как MCMXCV (М-1000,СМ-900,ХС-90 и V-5).
Правила записи чисел в римской системе счисления:
Например, запись XXX обозначает число 30, состоящее из трех цифр X, каждая из которых, независимо от места ее положения в записи числа, равна 10. Запись MCXX1V обозначает 1124, а самое большое число, которое можно записать в этой системе счисления, это число MMMCMXCIX (3999). Для записи еще больших чисел пришлось бы вводить все новые обозначения. По этой причине, а также по причине отсутствия цифры ноль, римская система счисления не годится для записи действительных чисел.
Таким образом, можно констатировать следующие основные недостатки непозиционных систем счисления:
Алфавит и основание системы счисления
Алфавитом системы счисления называется совокупность различных цифр, используемых в позиционной системе счисления для записи чисел. Например:
Десятичная система: <0, 1, 2, 3, 4, 5, 6, 7, 8, 9>
Двоичная система: <0, 1>
Восьмеричная система: <0, 1, 2, 3, 4, 5, 6, 7>
Шестнадцатеричная система:
Количество цифр в алфавите равно основанию системы счисления. Основанием позиционной системы счисления называется количество знаков или символов, используемых для изображения числа в данной системе счисления.
Позиция цифры в числе называется разрядом: разряд возрастает справа налево, от младших к старшим, начиная с нуля.
Развёрнутая форма представления числа
Системы счисления, используемые в вычислительной технике
Несмотря на то, что исторически человек привык работать в десятичной системе счисления, с технической точки зрения она крайне неудобна, так как в электрических цепях компьютера требовалось бы иметь одновременно десять различных сигналов. Тем не менее, такие схемы существуют в некоторых видах микрокалькуляторов.
Чем меньше различных сигналов в электрических цепях, тем проще микросхемы, являющиеся основой конструкции большинства узлов ЭВМ, и тем надежнее они работают.
Наименьшее основание, которое может быть у позиционных систем счисления это – двойка. Именно поэтому двоичная система счисления используется в вычислительной технике, а двоичные наборы приняты за средство кодирования информации. В компьютере имеются только два устойчивых состояния работы микросхем, связанных с прохождением электрического тока через данное устройство (1) или его отсутствием (0). Говоря точнее, (1) кодирует высокое напряжение в схеме компьютера, а (0) – низкое напряжение.
Если вспомнить, что двоичная система счисления обладает самыми маленькими размерами таблиц сложения и умножения, то можно догадаться, что этот факт должен сильно радовать конструкторов ЭВМ, поскольку обработка сигнала в этом случае будет также самой простой. Таким образом, двоичная система счисления, с точки зрения организации работы ЭВМ, является наилучшей.
Мы уже говорили о преимуществах двоичной системы счисления с технической точки зрения организации работы компьютера. Зачем нужны другие системы счисления, кроме, естественно, еще и десятичной, в которой человек привык работать? Чтобы ответить на него, возьмем любое число в десятичной системе счисления, например 255, и переведем его в другие системы счисления с основаниями, кратными двойке:
Чем меньше основание системы счисления, тем больше разрядов требуется для его записи то есть, тем самым мы проигрываем в компактности записи чисел и их наглядности. Поэтому, наряду с двоичной и десятичной системами счисления, в вычислительной технике применяют так же запись чисел в 8-и 16-ричных системах счисления. Поскольку их основания кратны двойке, они органично связаны с двоичной системой счисления и преобразуются в эту систему наиболее быстро и просто (по сути они являются компактными видами записи двоичных чисел). Все другие системы счисления представляют для вычислительной техники чисто теоретический интерес.
Решение задач
1. Какое число записано с помощью римских цифр: CLVI
Решение: Зная обозначения, запишем: С – 100; L – 50; V – 5; I – 1
Решение: Пользуемся формулой:
a1 = 3; a2 = B; a3 = F; a4 = A
Следовательно: 3ВFA16 = 3*16 3 + B*16 2 + F*16 1 + A*16 0
Ответ: 3ВFA16 = 3*16 3 + B*16 2 + F*16 1 + A*160
3. Запишите в свёрнутой форме число 1*8 2 + 4*8 1 + 7*8 0
Решение: Пользуемся формулой:
Следовательно: 1*8 2 + 4*8 1 + 7*8 0 = 1478
Ответ: 1*8 2 + 4*8 1 + 7*8 0 = 1478
Алгоритмы перевода в системы счисления по разным основаниям
Алгоритм перевода чисел из любой системы счисления в десятичную
Алгоритм перевода целых чисел из десятичной системы счисления в любую другую
Алгоритм перевода правильных дробей из десятичной системы счисления в любую другую
Алгоритм перевода произвольных чисел из десятичной системы счисления в любую другую
Перевод чисел из двоичной системы счисления в систему счисления с основанием q=2 n
Решение задач
1. Переведём в 10-ую с.с. число: 0,1235
Решение: Действуем строго по алгоритму перевода чисел из любой системы счисления в десятичную:
Найдём сумму ряда: 0,2 + 0,08 + 0,024 = 0,30410
Ответ: 0,1235 = 0,30410
2. Переведём число 12610 в 8-ую с.с. и число 18010 в 16-ую с.с.
Решение: Действуем строго по алгоритму перевода целых чисел из 10-ой с.с. в любую другую:
Во втором примере процесс можно продолжать бесконечно. В этом случае деление продолжаем до тех пор, пока не получим нужную точность представления. Записываем числа сверху вниз.
Ответ: 0,6562510 = 0,А816; 0,910 = 1,1110012 с точностью до семи значащих цифр после запятой.
4. Переведём число 124,2610 в шестнадцатеричную с.с.
Решение: Действуем строго по алгоритму перевода произвольных чисел:
Переводим целую и дробную часть:
Записываем полученные числа справа налево (в целой части) и сверху вниз (в дробной части).
Ответ: 124,2610 = 7С,428А16
5. Переведём число: 11001010011010101112 в шестнадцатеричную систему счисления
Решение: Действуем строго по алгоритму перевода чисел из 2-ой с.с в с.с. с основанием 2 n :
Cистемы счисления — история, виды, отличия
Со школы люди хорошо знакомы с римскими и арабскими цифрами и привыкли к обозначению чисел с их помощью. Однако такие системы счета образовались не сразу, и мало кто знает, что они были не единственными в истории человечества. С появлением электроники, системы счисления и вовсе преобразовались; подстроились под нужны людей, раскрыв многогранность подходов к применению чисел.
Немного истории
Что такое система счисления?
Например, в римской системе узловыми считаются числа 1, 5, 10, 50, 100, 500 и 1000. И, чтобы составить алгоритмическое число 121, необходимо вспомнить правила записи римских чисел. Так, чтобы получить 121, требуется составить следующее выражение:
100 + 10 + 10 + 1 = M + X + X +I = MXXI
Виды систем счисления
Унарная. Это самая простая система счисления, так как ее алфавит состоит всего из одного символа — единицы. Поэтому она и называется унарной или единичной.
В Древние времена именно ее использовали люди при отображении количества предметов палочками, камушками и зарубками. Длина записи числа при этом была напрямую связана с его величиной.
Непозиционные. Непозиционные системы счисления основаны на том, что условный вес цифры не связан с ее положением в записи числа.
Примерами таких систем являются древнегреческая, древнеримская и древнеегипетская. В них значение разряда может состоять из нескольких цифр, которые, стоящие в разных местах, имеют разный вес для числа в целом.
Чем позиционная система отличается от непозиционной?
Если рассмотреть одно и то же число в двух этих системах, то можно увидеть, как меняется его вес в зависимости от места цифры в его записи.
Например, цифры 1 и 5 в десятичной системе счисления для римской будут иметь следующий вид: I и V. Но записав их в одном и том же порядке мы получим различные числа для разных видов счисления:
Соответственно, для непозиционной системы счисления положение цифры в записи не имеет значения, а учитываются только правила построения чисел.
Системы счисления в информатике
В информатике принято выделять четыре основных системы счисления: двоичная, восьмеричная, десятичная, шестнадцатеричная. Связано это, в первую очередь, с их использованием в различных отраслях программирования.
Так, восьмеричная система требуется для перевода в двоичные числа на цифровых устройствах и в компьютерной документации. Позднее ей на смену пришла шестнадцатеричная, которую используют для записи символов Юникода. Однако восьмеричный код до сих пор применяется в системе Linux. Наиболее же распространенной системой является двоичная, которая используется в программировании практически всех ЭВМ.
Информатика
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Развиваясь, древний человек стал испытывать потребность в способах выражения количества. Подсчет убитых животных, количество врагов или соседей – причин становилось все больше. Сначала люди использовали только понятия «один», «много». После стали использовать понятие «пара», чтобы обозначить два предмета, это намного облегчило жизнь.
Постепенно перешли к использованию подручных средств – пальцев на руках и ногах, зарубок на коре дерева, кости животного или узелков на канате. Именно такие примитивные «счетные машины» позволили через тысячи лет узнать, что предки умели не просто считать, но даже умудрялись фиксировать результаты подсчета.
Кроме зарубок и узелков появилась потребность в символах, выражающих большее количество чего-либо, чем «один». Тогда были придуманы первые знаки для выражения больших значений. Так, египтяне, использовали знаки для цифр 1, 5, 10. Число 324 в их системе выглядело так:
А описание чисел при помощи специальных знаков и является системой счисления.
Системы счисления – виды, особенности
Система счисления (СС) – способ выражения чисел при помощи специальных правил и знаков, которые называются цифрами.
Все существующие системы делят на 2 группы:
Чтобы выразить число 475, достаточно по порядку написать 3 символа, 475, выражая 5 единиц, 7 десятков и 4 сотни.
К этой группе также относятся СС с различными основаниями (2,8,16).
Еще одна особенность – чтобы выразить число и не использовать сотни символов, применяется прибавление и вычитание. Написать 475 римскими знаками можно так CCCCXXXXXXXIIIII, но это нерационально. Если отнимать или прибавлять цифры, получится меньшее количество символов – CDLXXV. Цифра слева означает, что ее нужно отнять от большего числа, а справа – прибавить.
Правильным считается тот вариант, при котором получается меньше символов.
Интересно. Первой позиционной СС была вавилонская и была она шестнадцатиричная! А в 19 веке использовали двенадцатеричную СС.
Алфавит СС – знаки, которые используются для обозначения цифр.
Основание – количество знаков, которыми кодируются числа. Еще оно показывает отличие между цифрами на разных позициях. Основание – целое число, начиная с 2.
Важно. Если в тексте идет речь о различных системах, то чтобы уточнить, какая используется основа, ставится подстрочный знак: 12548, 011001112. Примеры? Если же обозначения нет, по умолчанию это десятичная (12549).
Разряд – положение, позиция обозначения цифры в числе. Пример?
Непозиционные СС, их особенности
Первоначально древние люди ставили отметки (черточки-зарубки, точки), чтобы обозначить количество того или иного предмета. Отклики этого подхода все еще встречаются (полоски у военных, счетные палочки).
Постепенно от единиц они переходили к группам предметов по 3, 5, 10 единиц. Постепенно такие группы стали обозначаться определенными символами, что позволило сократить размер записи.
Римская СС
В ней определенным цифрам отвечают латинские буквы. Их сумма и будет числом.
Основные рекомендации при пользовании римскими цифрами:
Таблица римских цифр
Недостаток этой СС в том, что для больших чисел недоступны операции сложения или другие, ещё она сложная и громоздкая. Зато римские цифры отлично вписались там, где нужна нумерация и эстетика: циферблаты, номера глав, списки, серии документов.
Основные позиционные СС, правила перевода
Двоичная система счисления
Систему, на которой основывается работа компьютеров, придумал гениальный немецкий ученый Г.В. Лейбниц (еще до 19 века!). Он придумал и описал СС, в которой все вычисления проводятся при помощи двух простейших символов – 0 и 1.
Компьютер, как механическое устройство, получает команды в виде двоичной кодировки. Он не в силах понять сложные задания, человеческую речь, музыку или тысячи оттенков, а переводя/кодируя всю необходимую информацию при помощи 0 и 1 (сеть, отсутствие сети), можно передать ему любые команды или информацию. Естественно, такие задания выглядят как огромные массивы двух знаков.
Алгоритм перевода чисел из десятичной в двоичную систему:
Этот порядок действия позволят переводить в любую позиционную СС. В данном случае, основа – 2, остаток 2 +7*10 1 +9*10 0 = 57910.
Обычно мы пользуемся свернутой формой записи чисел, то есть без разбивки на разряды и умножения на основу.
А чтобы было легче, пользуются готовой таблицей степеней 2.
Альтернативный способ преобразования для гуманитариев
Для начала нужно написать степени двойки, начиная с самой большой:
Далее нужно отнимать от числа максимальную степень двойки и напротив нее ставить 1, если есть в исходном варианте или 0, если его нет.
Перевод числа 579
Если же оно на 1 больше, то число будет начинаться и заканчиваться на 1, а внутри – сплошные 0.
Основой такой системы является 8, а числа восьмеричной системы 0-7. Данная система счисления является позиционной и целочисленной. Применяется в сферах, связанных с цифровыми технологиями, особенно в Linux-программном обеспечении (права доступа, исполнения).
Пример: Перевести 5798 из десятичной в восьмеричную систему счисления:
Обратный перевод из восьмеричной СС в десятичную:
11038 = 1∙8 3 +1∙8 2 +0∙8 1 +3∙8 0 = 512+64+0+3 = 57910
Альтернативный вариант таблицы степеней
Шестнадцатеричная СС
Это целочисленная система с основанием 16 (символы шестнадцатеричной системы счисления 0-9 и буквы A – F). Используется в реализации компьютерного программирования и документации на низком уровне, так как 8-битный байт, для записи которого удобно использовать 2 цифры из шестнадцатеричной системы.
Стандарт Юникод использует 4 и более символов 16-ой СС.
Для записи цвета из красного, зеленого и синего (R, G и B) также используют эту систему.
Алгоритм преобразования чисел в 16СС
Способ преобразования аналогичный предыдущим – расписывание числа как многочлена с учетом степеней 16. Для этого число делится на 16, в итоге – перечень остатков от деления, записанных наоборот.
В сети есть калькуляторы, способные выполнять преобразование чисел в различные СС и обратно (некоторые даже с детальным описанием процесса).
Арифметика для 2СС
Принципы выполнения простейших арифметических операций одинаковы для любых позиционных систем, независимо от основы:
Особенности арифметики СС с разными основами:
Примеры арифметических операций:
Для удобства разработаны готовые таблицы сложения в различных системах:
Сложение в 8-ой СС в 16СС
С их помощью можно быстро суммировать в различных СС.
Сложение для разных СС на примере 15 и 6:
Если необходимо сложить числа из разных систем, их приводят к одной основе. Самым простым вариантом будет перевод в десятичную систему, решение простого примера и перевод результата в любую из систем.
Рассмотрим сумму 438 и 5616. Результат можно выразить в любой СС, но проще привести к 8- или 16-ричной:
Переводим число 56 в восьмеричную через двоичную:
Умножение в 8-ой СС
Сравнение систем
СС могут быть с произвольной основой, но популярны 2,8,10,16-ые.
Сравнительная таблица разных систем счисления:
Перевод числа 75 в разные системы:
Правила перевода из двоичной, восьмеричной и шестнадцатеричной в 10СС:
Исходный вариант следует разделить на тройки цифр, с крайней справа. Если не хватает, старший разряд дополнить 0. Далее под каждой триадой ставится подходящий символ из 8‑ой системы.
Рассмотрим перевод на примере числа 579, которое соответствует 10010000112
Правила перевода из двоичной в шестнадцатеричную систему счисления:
Число разбивается по 4 знака, начиная справа (с меньшего разряда). Если не будет хватать символов у старшего разряда, тетраду дополняют нулями.
Сравнительный перевод дробей в СС
Чтобы перевести правильные дроби из 10-ой СС в другие позиционные, следует придерживаться правила, которое хорошо видно на примере перевода числа 0,35:
Удобно писать над каждой цифрой порядок, а дальше ее умножить на основу СС в степени разряда.
Перевод целых и дробей в 2СС, 8СС, 16СС:
Таблицы истинности
При помощи тех же нулей и единиц создаются таблицы истинности логических выражений, в которых описаны всевозможные варианты.
Основные логические операции
Например, конъюнкция является одной из логических операций. Она является истиной только в том случае, если два высказывания имеют истинные значения.
Логические переменные таблицы истинности обозначают p и q, а их значения выражают при помощи 0 и 1, где 0 – ложь, 1 – истина:
Фрагмент таблицы истинности для конъюнкции.
Так выражаются условия для всех логических операций.
Применяются таблицы истинности еще с начала 20 века в алгебре, логике, программировании.