Что называют проекцией вектора на ось
Проекция вектора на ось. Проекция вектора на вектор
рис. 1 |
Формула вычисления проекции вектора на вектор
Для вычисления проекции вектора a на направление вектора b из определения скалярного произведения получена формула:
Примеры задач на проекцию вектора
Примеры вычисления проекции вектора для плоских задач
Найдем скалярное произведение этих векторов
a · b = 1 · 3 + 2 · 4 = 3 + 8 = 11
Найдем модуль вектора b
| b | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
Найдем проекцию вектора a на вектор b
Пр b a = | a · b | = | 11 | = 2.2 |
| b | | 5 |
Примеры вычисления проекции вектора для пространственных задачи
Найдем скалярное произведение этих векторов
a · b = 1 · 4 + 4 · 2 + 0 · 4 = 4 + 8 + 0 = 12
Найдем модуль вектора b
| b | = √ 4 2 + 2 2 + 4 2 = √ 16 + 4 + 16 = √ 36 = 6
Найдем проекцию вектора a на вектор b
Пр b a = | a · b | = | 12 | = 2 |
| b | | 6 |
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Проекция вектора на ось. Как найти проекцию вектора
Вы будете перенаправлены на Автор24
Для понятия проекции вектора на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.
Предварительные сведения
Основное понятие – непосредственно понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок. Введем следующее определение.
Отрезком будем называть часть прямой, которая имеет две границы в виде точек.
Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.
Введем еще несколько понятий, связанных с понятием вектора.
Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой или на прямых, параллельных друг другу (рис.2).
Готовые работы на аналогичную тему
Два ненулевых вектора будем называть сонаправленными, если они удовлетворяют двум условиям:
Два ненулевых вектора будем называть противоположно направленными, если они удовлетворяют двум условиям:
Перейдем к определению равенства двух векторов
Два вектора будем называть равными, если они удовлетворяют двух условиям:
Геометрическая проекция
Как мы уже сказали ранее, результатом геометрической проекции будет вектор.
Заметим, что если угол между вектором и осью острый, то проекция сонаправлена с осью, а если тупой, то проекция противоположно направлена с осью.
Числовая проекция
Как мы уже знаем, результатом алгебраической проекции будет неотрицательное действительное число.
Числовой (алгебраической) проекцией на ось будем называть неотрицательное число, равное длине вектора геометрической проекции.
Рассмотрим это понятие на примере задачи:
Введем на рисунке следующие обозначения:
Другие случаи можете видеть на рисунке 9.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 13 07 2021
Проекция вектора на ось. Скалярное произведение векторов
По этой ссылке вы найдёте полный курс лекций по математике:
Опуская из его начала и конца перпендикуляры на заданную ось I, построим на ней направленный отрезок CD (рис. 24). Определение. Проекцией вектора АВ на ось I называется величина направленного отрезка CD, построенного указанным выше способом. Основные свойства проекций 1. Проекция вектора АВ на какую-либо ось I равна произведению длины вектора на косинус угла между осью и этим вектором (рис. 25) 2.
Заметив, что (b| cosy> есть проекция вектора b на направление вектора а, можем написать (рис. 27 6) и,аналогично, (рис.27 в), т.е. скалярное произведение двух векторов равно длине одного из них, помноженной на проекцию на него другого вектора. В случае, если один из векторов а или Ь — нулевой, будем считать, что Проекция вектора на ось.
Скалярное произведение векторов 5.1.
Свойства скалярного произведения 1. Скалярное произведение обращается в нуль в том и только в том случае, когда по крайней мере один из перемножаемых векторов является нулевым или когда векторы а и Ь ортогональны, a J.h. Это следует из формулы (1), определяющей скалярное произведение. Поскольку направление нулевого вектора не определено, мы можем его считать ортогональным любому вектору. Поэтому указанное свойство скалярного произведения можно сформулировать так: 2.
Возможно вам будут полезны данные страницы:
Скалярное произведение векторов, заданных координатами Пусть векторы а и Ь заданы своими координатами в ортонор миро ванном базисе Рассмотрим скалярное произведение векторов и и Ь: Проекция вектора на ось. Скалярное произведение векторов Пользуясь распределительным свойством скалярного произведения, находим Учитывая, что Тоесть, если векторы а и b заданы своими координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений одноименных координат. Пример.
Найти скалярное произведение векторов |
Тогда формула (7) примет следующий вид cos Пример. Найти угол между векторами Пользуясь формулой (8), находом Пусть b = i, т.е. b = <1,0, 0>. Тогда для всякого вектора О имеем Проекция вектора на ось. Скалярное произведение векторов или, в координатной записи, где q есть угол, образованный вектором а с осью Ох.
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Проекции вектора на ось и на плоскость
Проекции вектора на ось и на плоскость
Аналитический способ решения задач статики основан на применении метода проекции, знакомого студентам из векторной алгебры. Ввиду особой важности этого метода для дальнейшего, напомним его основы.
Проекцией вектора на ось называется скалярная величина, равная взятой с соответствующим знаком длине отрезка оси проекций, заключенного между проекциями на нее начала и конца данного вектора (рис. 24).
Проекция считается положительной, если переход от ее начала к концу совпадает с заданным положительным
направлением оси, и отрицательной — если с противоположным.
Проекцию вектора на ось принято обозначать теми же буквами, что и вектор, но обычного шрифта, указывая нижним индексом ось проекций.
Проекции вектора на две параллельные и одинаково направленные оси равны между собой. Этим особенно удобно бывает пользоваться в тех случаях, когда вектор не лежит в одной плоскости с осью (рис. 24,(5). Из рис. 24, а и б имеем:
Проекция вектора на ось равна модулю вектора, умноженному на косинус угла между направлением вектора и положительным направлением оси проекций
Проекция будет положительной, если направление вектора составляет с положительным направлением оси острый угол, н отрицательной — если тупой.
Проекцией вектора на плоскость называется вектор, заключенный между проекциями на эту плоскость начала и конца данного вектора.
Так, например, проекцией_вектора на плоскость (рис. 25) будет вектор .
По модулю проекция вектора на плоскость:
где — угол между направлением вектора и направлением его проекции на плоскость.
Для нахождения проекции вектора на ось, не лежащую с ним в одной плоскости, иногда бывает удобно
спроектировать сначала вектор на плоскость, в которой лежит эта ось, а затем уже проекцию вектора на плоскость спроектировать на данную ось.
Так, проекция вектора на ось (рис. 25):
где — угол между направлениями вектора и оси .
Зная проекции вектора па оси прямоугольной декартовой системы координат, легко найти и модуль и направление вектора.
Так как модуль вектора равен диагонали прямоугольного параллелепипеда (рис. 26), ребра которого равны абсолютным значениям проекций вектора на оси координат, то модуль вектора
Модуль вектора равен квадратному корню из суммы квадратов его проекций на три любые взаимно перпендикулярные оси.
Направление вектора определяется из равенств:
Косинус угла между вектором и положительным направлением оси проекции называется направляющим косинусом. Он равен отношению проекции вектора на соответствующую ось к модулю вектора.
Заметим, что в формуле (4) надо брать арифметическое значение корня.
Вектор (рис. 27) является замыкающем стороной векторного многоугольника , следовательно его можно рассматривать как геометрическую сумму составляющих векторов, расположенных па координатных осях
Век горы и называются составляющими вектора но осям координат (или его компонентами).
Векторы и совпадающие с положительными направлениями координатных осей и равные по модулю единице, называются единичными координатными векторами или координатными ортами соответствующих осей.
Составляющая вектора по оси координат равна проекции вектора на данную ось, умноженной на соответствующий координатный орт:
Подставляя последние выражения в предыдущее равенство. получаем весьма важную формулу разложения вектора по осям координат
где коэффициенты и при координатных ортах представляют собой проекции данного вектора на соответствующие координатные оси.
Пример задачи:
Даны проекции силы на оси прямоугольной системы координат
Написать формулу разложения заданной силы по осям координат, а также найти ее модуль и направление.
Решение:
По формуле находим
Отсюда, углы между направлением силы и положительными направлениями осей координат:
Эта теория взята с полного курса лекций на странице решения задач с подробными примерами по предмету теоретическая механика:
Возможно вам будут полезны эти дополнительные темы:
Образовательный сайт для студентов и школьников
Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.
© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института
Проекции векторов на координатные оси
Векторное описание движения является полезным, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения. Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами – проекциями векторов.
Проекцией вектора на ось называют скалярную величину, равную произведению модуля проектируемого вектора на косинус угла между направлениями вектора и выбранной координатной оси.
На левом чертеже показан вектор перемещения, модуль которого 50 км, а его направление образует тупой угол 150° с направлением оси X. Пользуясь определением, найдём проекцию перемещения на ось X:
sx = s · cos(α) = 50 км · cos( 150°) = –43 км
Поскольку угол между осями 90°, легко подсчитать, что направление перемещения образует с направлением оси Y острый угол 60°. Пользуясь определением, найдём проекцию перемещения на ось Y:
sy = s · cos(β) = 50 км · cos( 60°) = +25 км
Как видите, если направление вектора образует с направлением оси острый угол, проекция положительна; если направление вектора образует с направлением оси тупой угол, проекция отрицательна.
На правом чертеже показан вектор скорости, модуль которого 5 м/с, а направление образует угол 30° с направлением оси X. Найдём проекции:
υx = υ · cos(α) = 5 м/c · cos( 30°) = +4,3 м/с
υy = υ · cos(β) = 5 м/с · cos( 120°) = –2,5 м/c
Гораздо проще находить проекции векторов на оси, если проецируемые векторы параллельны или перпендикулярны выбранным осям. Обратим внимание, что для случая параллельности возможны два варианта: вектор сонаправлен оси и вектор противонаправлен оси, а для случая перпендикулярности есть только один вариант.
Проекция вектора, перпендикулярного оси, всегда равна нулю (см. sy и ay на левом чертеже, а также sx и υx на правом чертеже). Действительно, для вектора, перпендикулярного оси, угол между ним и осью равен 90°, поэтому косинус равен нулю, значит, и проекция равна нулю.
На правых частях обоих чертежей показаны другие случаи, когда векторы параллельны одной из координатных осей и перпендикулярны другой. Предлагаем вам убедиться самостоятельно, что и в этих случаях тоже выполняются правила, сформулированные в предыдущих абзацах.