Что называют кубом числа

Степень числа. Квадрат и куб числа

Определение.

Степенью числа «Что называют кубом числа» с натуральным показателем «Что называют кубом числа«, большим 1, называется произведение «Что называют кубом числа» одинаковых множителей, каждый из которых равен числу «Что называют кубом числа«.

Что называют кубом числа

Что называют кубом числа

Например, найдем значение следующих степеней:

2 4 = 2Что называют кубом числа2Что называют кубом числа2Что называют кубом числа2 = 4Что называют кубом числа2Что называют кубом числа2 = 8Что называют кубом числа2 = 16;

3 6 = 3Что называют кубом числа3Что называют кубом числа3Что называют кубом числа3Что называют кубом числа3Что называют кубом числа3 = 9Что называют кубом числа3Что называют кубом числа3Что называют кубом числа3Что называют кубом числа3 = 27Что называют кубом числа3Что называют кубом числа3Что называют кубом числа3 = 81Что называют кубом числа3Что называют кубом числа3 =243Что называют кубом числа3 = 729.

Например, найдем квадрат чисел 4 и 8:

4 2 = 4Что называют кубом числа4 = 16;

8 2 = 8Что называют кубом числа8 = 64.

Например, найдем куб чисел 5 и 7:

5 3 = 5Что называют кубом числа5Что называют кубом числа5 = 25Что называют кубом числа5 = 125;

7 3 = 7Что называют кубом числа7Что называют кубом числа7 = 49Что называют кубом числа5 = 343;

Степенью числа «Что называют кубом числа» с показателем Что называют кубом числа= 1 является само это число, то есть Что называют кубом числа.

Сначала выполним возведение во 2 степень числа 4, затем находим значение выражения, находящегося в скобках, после чего выполняем умножение, и последним действием выполняем вычитание:

Поделись с друзьями в социальных сетях:

Источник

Таблица кубов и квадратов, как состовлять и найти

Как появилось понятие куб числа?

Древнегреческие математики оперировали так называемыми фигурными числами – числами, которые можно представить в виде фигуры. Выделялись, например:

Последовательность кубов натуральных чисел выглядит так

Полезно будет запомнить, хотя бы те, что меньше тысячи. Особенно мне нравится число 729. Посмотрите:

Еще несколько интересных свойств кубов чисел:

Вот так, к слову выглядит формула вычисления суммы первых кубов чисел:

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

Возвести число в куб — значит умножить его само на себя три раза.

Возвести число в натуральную степень — значит умножить его само на себя раз:

Теория

Куб числа – это результат умножения числа само на себя три раза. Операция вычисления куба числа – это частный случай возведения числа в степень, в данном случае в втретью:

Данное выражение читается: «возвести в куб число 6» или «6 в кубе».

Возвести в куб онлайн

Как возвести число в куб онлайн!? Введите нужное число, которое требуется возвести в куб и нажмите возвести в куб. Справа от равно появится число, которое возвели в куб
Ну и далее пробежимся по нескольким поисковым запросам, которые так или иначе вы задаете в строке поиска!

Дополнительная информация

Квадратом числа называют произведение двух одинаковых множителей.

Мы уже пробовали находить квадраты первого десятка натуральных чисел.

Возводить двузначные числа, трехзначные и т.д. числа немного сложнее, главное хорошо знать и помнить таблицу умножения чисел.

Существует способ быстрого возведения в квадрат двухзначных чисел, которые оканчиваются на цифру 5.

1) Первую цифру числа, возводимого в квадрат, необходимо умножить на сумму этого числа и единицы.

2) Записать полученное число- это будут первые цифры ответа (с этих цифр начинается ответ).

3) Ответ всегда будет заканчиваться на 25 (т.е. в конце ответа всегда будет стоять число 25).

4) Приписываем к числу, полученному в п 2, число 25, получаем ответ.

Рассмотрим поясняющий пример.

Найдем квадрат 65.

65 2 = 65 ∙ 65

6 (6 + 1) = 6 ∙ 7 = 42

Запишем число 42 и припишем к нему число 25.

65 2 = 4225

Проверим: Так как квадрат числа- это произведение двух одинаковых множителей 65 2 = 65 ∙ 65, то

65 2 = 65 ∙ 65 = 4225

Получили все тот же ответ: 65 2 = 4225

Источник

Урок 25 Бесплатно Степень числа. Квадрат и куб числа

На данном уроке мы познакомимся с понятием степени числа.

Выясним, что называют «показателем степени» и «основанием степени».

Научимся вычислять квадрат и куб числа.

Составим таблицу степеней первых десяти натуральных чисел и рассмотрим ряд задач с использованием таких таблиц.

Определим, в каком порядке выполняют действия в выражениях, содержащих степень.

Что называют кубом числа

Степень числа

Известно, что сумму равных слагаемых можно заменить произведением.

Например, сумму пяти слагаемых, каждое из которых равняется четырем, можно записать короче:

4 + 4 + 4 + 4 + 4 = 5 ∙ 4

В произведении число 5 указывает на количество одинаковых слагаемых.

В свою очередь произведение одинаковых множителей тоже можно записать компактнее.

Что называют кубом числа

Произведение n одинаковых множителей можно представить в виде степени.

В буквенном виде произведение равных множителей можно представить следующим образом:

Что называют кубом числа

а— любое натуральное число.

Читают «а в n-ной степени» или «а в степени n».

Число а называют основанием (число, возводимое в степень).

n— это показатель степени (число, которое указывает сколько раз повторяется основание степени).

Степень числа представляют всегда так: записывают основание степени, а показатель ее записывают меньше размером в верхнем правом углу основания степени.

Операция умножения одинаковых множителей называется возведением в степень.

Например, произведение пяти множителей, каждое из которых равняется четырем, можно записать так:

4 ∙ 4 4 4 4 = 4 5

Читают данную запись следующим образом:

4 5 четыре в пятой степени.

Данная степень равна произведению трех двоек.

Что называют кубом числа

2— основание степени.

3— показатель степени.

Данная степень равна произведению четырех пятерок.

Что называют кубом числа

5— основание степени.

4— показатель степени.

Пройти тест и получить оценку можно после входа или регистрации

Квадрат и куб числа

Вторую степень числа называют квадратом числа.

Так, квадрат любого натурального числа а будет представлять собой произведение двух одинаковых множителей: а а = а 2 (говорят и читают «а в квадрате»).

Что называют кубом числа

2 2 (два во второй степени) иначе говорят и читают «два в квадрате».

10 2 (десять во второй степени) иначе говорят и читают «десять в квадрате».

27 2 (двадцать семь во второй степени) иначе говорят и читают «двадцать семь в квадрате».

Давайте сосчитаем квадраты первого десятка натуральных чисел (возведем во вторую степень первые десять натуральных чисел), используя таблицу умножения.

Один в квадрате равняется одному: 1 2 = 1 ∙ 1 = 1.

Два в квадрате равняется четырем: 2 2 = 2 ∙ 2 = 4.

Три в квадрате равняется девяти: 3 2 = 3 ∙ 3 = 9.

Четыре в квадрате равняется шестнадцати: 4 2 = 4 ∙ 4 = 16.

Пять в квадрате равняется двадцати пяти: 5 2 = 5 ∙ 5 = 25.

Шесть в квадрате равняется тридцати шести: 6 2 = 6 ∙ 6 = 36.

Семь в квадрате равняется сорока девяти: 7 2 = 7 ∙ 7 = 49.

Восемь в квадрате равняется шестидесяти четырем: 8 2 = 8 ∙ 8 = 64.

Девять в квадрате равняется восьмидесяти одному: 9 2 = 9 ∙ 9 = 81.

Десять в квадрате равняется сотне: 10 2 = 10 ∙ 10 = 100.

Оформим полученные данные квадратов натуральных чисел от 1 до 10 в виде таблицы.

Таблица квадратов первых десяти натуральных чисел

Учитывая данные таблицы квадратов, решим уравнение.

Решим уравнение х 2 = 49.

Решить уравнение- это значит найти корень уравнения (в нашем случае установить значение х).

Следовательно, корень уравнения (х) равен семи.

х 2 = 49

х = 7

Проверка: подставим найденное значение неизвестной (х = 7) в исходное уравнение х 2 = 49, получим:

7 2 = 49

7 ∙ 7 = 49

49 = 49

Ответ: х = 7.

У меня есть дополнительная информация к этой части урока!

Что называют кубом числа

Чтобы возвести в любую степень число 10, необходимо дописать после единицы нули, количество которых показывает показатель степени.

Разберем пример первый.

Найдите четвертую степень десяти (десять в четвертой степени 10 4 ).

10— это основание.

4— это показатель степени.

Так как по вышеизложенному правилу количество нулей после единицы должно быть равно показателю степени, то результат запишем следующим образом:

10 4 = 1 0000

На самом деле, если перемножить (по определению степени) четыре десятки, то получим:

10 4 = 1 0 1 0 ∙ 1 0 ∙ 1 0 = 1 0000

Пример второй: найдите третью степень десяти (десять в третьей степени 10 3 ).

10— это основание.

3— это показатель степени.

Так как по правилу количество нулей после единицы должно быть равно показателю степени, то результат запишем следующим образом:

10 3 = 1 000

Соответственно, если перемножить (по определению степени) три десятки, то получим:

10 3 = 1 0 1 0 ∙ 1 0 = 1 000

Рассмотрим обратную ситуацию:

Представим число 100 в виде степени с основанием 10.

Запишем основание 10, а показателем будет число, равное количеству нулей исходного числа (1 00 ).

Число 100 содержит два нуля, следовательно, это число в виде степени с основанием 10 представим следующим образом:

1 00 = 10 2

10— это основание.

2— это показатель степени.

Рассмотрим еще один подобный пример.

Представим число 10000 в виде степени с основанием 10.

Запишем основание 10, а показателем будет число, равное количеству нулей исходного числа (1 0000 ).

Данное число содержит четыре нуля, следовательно, 10000 в виде степени с основанием 10 представим следующим образом:

1 0000 = 10 4

10— это основание.

4— это показатель степени

Третья степень числа тоже имеет свое название.

Число в третьей степени называют кубом числа.

Так, куб любого натурального числа а будет представлять собой произведение трех одинаковых множителей: а а а = а 3 (говорят и читают «а в кубе»).

Что называют кубом числа

2 3 (два в третьей степени) иначе говорят и читают «два в кубе».

10 3 (десять в третьей степени) иначе говорят и читают «десять в кубе».

27 3 (двадцать семь в третьей степени) иначе говорят и читают «двадцать семь в кубе».

Давайте определим кубы первого десятка натуральных чисел (возведем в третью степень первые десять натуральных чисел), используя таблицу умножения.

Один в кубе: 1 3 = 1 1 1 = 1.

Два в кубе: 2 3 = 2 2 2 = 8.

Три в кубе: 3 3 = 3 ∙ 3 ∙ 3 = 27.

Четыре в кубе: 4 3 = 4 ∙ 4 4 = 64.

Пять в кубе: 5 3 = 5 ∙ 5 5 = 125.

Шесть в кубе: 6 3 = 6 ∙ 6 6 = 216.

Семь в кубе: 7 3 = 7 ∙ 7 7 = 343.

Восемь в кубе: 8 3 = 8 ∙ 8 8 = 512.

Девять в кубе: 9 3 = 9 ∙ 9 9 = 729.

Десять в кубе: 10 3 = 10 ∙ 10 10 = 1000.

Оформим полученные данные кубов натуральных чисел от 1 до 10 в виде таблицы.

Таблица кубов первых десяти натуральных чисел

1000

С помощью таблицы кубов можно легко и просто решать примеры и задачи, в которых необходимо высчитывать третью степень числа.

Представим в виде куба число 343.

По таблице кубов видим, что 343 = 7 3

Проверим: найдем произведение трех семерок:

7 3 = 7 ∙ 7 7 = 49 ∙ 7 = 343

На прошлом уроке мы подробно разобрали порядок выполнения арифметических действий в выражениях.

Что называют кубом числа

Выяснили, что в первую очередь выполняются арифметические действия в скобках, затем-действия второй ступени (умножение и деление) по порядку их следования слева направо, и только потом выполняются действия первой ступени (сложение и вычитание) по порядку слева направо.

Однако, в математических выражениях, в которых отсутствуют скобки, но есть действия первой, второй ступени и степень, возведение в степень выполняется раньше других действий, только потом умножают, делят, складывают и вычитают в установленном правилами порядке.

Если в скобках содержится степенное выражение, то действия в скобках выполняются по порядку слева направо, начиная с действий высшей ступени- возведение в степень, и далее по известным нам правилам.

За скобками действия выполняют, соблюдая порядок выполнения действий без скобок, рассмотренный выше.

Рассмотрим поясняющие примеры.

При решении различных задач и примеров будем пользоваться составленными таблицами степеней.

Пример 1.

Определим порядок действий в выражении и найдем его значение.

Так как исходное выражение не содержит скобки, а возведение в степень- это действие более высокой ступени, чем умножение, деление, сложение и вычитание, следовательно, в первую очередь необходимо выполнить вычисление степени, затем слева направо в порядке следования сначала действия второй ступени (деление), затем- действия первой ступени (вычитание).

1) 8 2 = 8 8 = 64 (по определению степени или по таблице квадратов).

2) 64 ÷ 4 = 16

Пример 2.

Найдем значение данного выражения, определив порядок действий в нем.

Согласно порядка выполнения действий сначала выполняются действия в скобках.

Найдем разность 21 и 11.

Далее выполняется действие высшей ступени (возведение в степень), т.е. разность, полученную в скобках, возведем в квадрат.

Найдем, чему равно 10 2 по определению степени или по таблице квадратов.

2) 10 2 = 10 ∙ 10 = 100

Затем выполним действия, которые находятся в исходном выражении за скобками.

Определим третью степень двойки по таблице кубов или по определению степеней.

3) 2 3 = 2 ∙ 2 ∙ 2 = 8

4) 100 ∙ 8 = 800

У меня есть дополнительная информация к этой части урока!

Что называют кубом числа

С давних пор основными арифметическими операциями являются операции сложения, вычитания, умножения и деления.

Представление о степени, как об отдельной операции возникло не сразу.

Однако степени применялись при вычислении площадей и объемов уже у древних народов: степень числа высчитывали при решении различных задач в Древнем Египте, Древней Греции, в Вавилоне.

Диофант Александрийский древнегреческий математик, философ (III век н.э.) в своем знаменитом труде «Арифметика» описал первые натуральные степени чисел.

Диофант первым из античных ученых предложил специальные обозначения для шести степеней неизвестного (квадрат, куб, квадрато-квадраты, квадрато-кубы и т.д.)

Древнегреческий ученый Пифагор и его последователи (пифагорейцы) проявляли большой интерес к числам, искали в них скрытый смысл, закономерности и приписывали им различные свойства.

Пифагорейцы предполагали, что каждое число можно представить в виде фигуры.

Так, например, числа 4, 9, 16, 25 они представляли в виде квадратов.

Что называют кубом числа

В Древнем Вавилоне для вычисления и расчетов был создан целый ряд вычислительных таблиц: таблицы умножения, таблицы квадратов и кубов и многие другие.

В Древней Индии успешно развивалась наука.

Высоких результатов индийцы добились в астрономии, медицине, математике.

Индийские ученые часто оперировали большими числами.

В Древней Индии существовало понятие степени числа, математики того времени умели вычислять площади и объемы фигур, разработали алгоритмы вычисления всех арифметических операций, в том числе определение степени числа.

Важнейшим открытием индийских ученых в математике стало изобретение позиционной системы счисления, а также запись (чтение) чисел, для каждой цифры был придуман свой знак.

Математические труды их были изложены в основном в словесной форме на древнеиндийском языке в священных писаниях, книгах, сказаниях.

Потребность в решении более сложных математических задач со степенями заставляла ученых разных стран расширять понятие о степени, систематизировать и обобщать известные уже данные о ней.

В начале XV века самаркандский математик Гияс ад-Дин Джемшид Аль-Каши рассматривал нулевой показатель степени, в это же время французский ученый Никола Шюке применял в своих трудах нулевой и отрицательный показатель степени.

В 1544 г. немецкий математик Михаэль Штифель в своей книге «Полная арифметика» впервые ввел понятие «Показатель степени».

Постепенно понятие степени становится все шире, оно применяется не только к числу, но и к переменной.

Математики средневековья пытались установить единое обозначение степени и сделать ее компактней.

Французский ученый математик Франсуа Виет ввел буквенное обозначение (N, Q, C) для первой, второй и третьей степени.

Нидерландский математик Симон Стевин предложил называть степень по их показателям, отвергая тем самым словесные обозначения степеней, составленные Диофантом.

Современное обозначение степеней (а n ), где а-основание степени, n-показатель степени, ввел французский математик Рене Декарт.

Пройти тест и получить оценку можно после входа или регистрации

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *