Что называют котангенсом угла а где 0 а 180 и а не

Котангенс

Котангенс – одна из тригонометрических функций. Как и для всех других функций, значение котангенса определяется для конкретного угла или числа (в этом случае используют числовую окружность).

Аргумент и значение

Что называют котангенсом угла а где 0 а 180 и а не

Аргументом может быть:
— как число или выражение с Пи: \(1,3\), \(\frac<π><4>\), \(π\), \(-\frac<π><3>\) и т.п.
— так и угол в градусах: \(45^°\), \(360^°\),\(-800^°\), \(1^° \) и т.п.

Котангенс острого угла

1) Пусть дан угол и нужно определить \(ctgA\).

Что называют котангенсом угла а где 0 а 180 и а не

2) Достроим на этом угле любой прямоугольный треугольник.

Что называют котангенсом угла а где 0 а 180 и а не

3) Измерив, нужные стороны, можем вычислить \(ctg\;A\).

Что называют котангенсом угла а где 0 а 180 и а не

Вычисление котангенса числа или любого угла

Для чисел, а также для тупых, развернутых углов и углов больших \(360°\) котангенс чаще всего определяют с помощью синуса и косинуса, через их отношение:

Пример. Вычислите \(ctg\: \frac<5π><6>\).
Решение: Найдем сначала \(\frac<5π><6>\) на круге. Затем найдем \(cos\:⁡\frac<5π><6>\) и \(sin\:\frac<5π><6>\), а потом поделим одно на другое.

Что называют котангенсом угла а где 0 а 180 и а не

Решение: Чтобы найти котангенс пи на \(2\) нужно найти сначала косинус и синус \(\frac<π><2>\). И то, и другое найдем с помощью тригонометрического круга :

Что называют котангенсом угла а где 0 а 180 и а не

Точка \(\frac<π><2>\) на числовой окружности совпадает с \(1\) на оси синусов, значит \(sin\:\frac<π><2>=1\). Если из точки \(\frac<π><2>\) на числовой окружности провести перпендикуляр к оси косинусов, то мы попадем в точку \(0\), значит \(cos\:⁡\frac<π><2>=0\). Получается: \(ctg\:\frac<π><2>=\) \(\frac<2>><2>>\) \(=\)\(\frac<0><1>\)\(=0\).

Что называют котангенсом угла а где 0 а 180 и а не

Прямая проходящая через \(\frac<π><2>\) на числовой окружности и параллельная оси абсцисс (косинусов) называется осью котангенсов. Направление оси котангенсов и оси косинусов совпадает.

Что называют котангенсом угла а где 0 а 180 и а не

Ось котангенсов – это фактически копия оси косинусов, только сдвинутая. Поэтому все числа на ней расставляются так же как на оси косинусов.

Чтобы определить значение котангенс с помощью числовой окружности, нужно:
1) Отметить соответствующую аргументу котангенса точку на числовой окружности.
2) Провести прямую через эту точку и начало координат и продлить её до оси котангенсов.
3) Найти координату пересечения этой прямой и оси.

Что называют котангенсом угла а где 0 а 180 и а не

2) Проводим через данную точку и начало координат прямую.

Что называют котангенсом угла а где 0 а 180 и а не

3) В данном случае координату долго искать не придется – она равняется \(1\).

Пример. Найдите значение \(ctg\: 30°\) и \(ctg\: (-60°)\).
Решение:
Для угла \(30°\) (\(∠COA\)) котангенс будет равен \(\sqrt<3>\) (приблизительно \(1,73\)), потому что именно в таком значении сторона угла, проходящая через начало координат и точку \(A\), пересекает ось котангесов.
\(ctg\;(-60°)=\frac<\sqrt<3>><<3>>\) (примерно \(-0,58\)).

Что называют котангенсом угла а где 0 а 180 и а не

В отличие от синуса и косинуса значение котангенса не ограничено и лежит в пределах от \(-∞\) до \(+∞\), то есть может быть любым.

Что называют котангенсом угла а где 0 а 180 и а не

Так происходит потому, что в этих точках синус равен нулю. А значит, вычисляя значение котангенса мы придем к делению на ноль, что запрещено. И прямая проходящая через начало координат и любую из этих точек никогда не пересечет ось котангенсов, т.к. будет идти параллельно ей. Поэтому в этих точках котангенс – НЕ СУЩЕСТВУЕТ (для всех остальных значений он может быть найден).

Знаки по четвертям

Для примера на рисунке нанесены две зеленые точки в I и III четвертях. Для них значение котангенса положительно (зеленые пунктирные прямые приходят в положительную часть оси), значит и для любой точки из I и III четверти значение будет положительно (знак плюс).
С двумя фиолетовыми точками в II и IV четвертях – аналогично, но с минусом.

Что называют котангенсом угла а где 0 а 180 и а не

Связь с другими тригонометрическими функциями:

Источник

Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы

Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.

Синус, косинус, тангенс и котангенс. Определения

Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.

Определения тригонометрических функций

Данные определения даны для острого угла прямоугольного треугольника!

Что называют котангенсом угла а где 0 а 180 и а не

В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.

Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.

Угол поворота

В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.

Что называют котангенсом угла а где 0 а 180 и а не

Синус (sin) угла поворота

При решении практических примеров не говорят «синус угла поворота α «. Слова «угол поворота» просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.

Числа

Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?

Синус, косинус, тангенс, котангенс числа

Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.

Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.

Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.

Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.

Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.

Тригонометрические функции углового и числового аргумента

Основные функции тригонометрии

Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.

Связь определений sin, cos, tg и ctg из геометрии и тригонометрии

Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.

Что называют котангенсом угла а где 0 а 180 и а не

В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.

sin α = A 1 H O A 1 = y 1 = y

Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.

Источник

Таблица КОТАНГЕНСОВ для углов от 0° до 360° градусов

КОТАНГЕНС (ctg α) острого угла в прямоугольном треугольнике равняется отношение прилежащего катета к противолежащему катету.

Малая таблица значений тригонометрических функций (в радианах и градусах)

α (радианы)0π/6π/4π/3π/2π3π/2
α (градусы)30°45°60°90°180°270°360°
ctg α (Котангенс)311/300

Полная таблица котангенсов для углов от 0° до 360°

Угол в градусахCtg (Котангенс)
57.29
28.6363
19.0811
14.3007
11.4301
9.5144
8.1443
7.1154
6.3138
10°5.6713
11°5.1446
12°4.7046
13°4.3315
14°4.0108
15°3.7321
16°3.4874
17°3.2709
18°3.0777
19°2.9042
20°2.7475
21°2.6051
22°2.4751
23°2.3559
24°2.246
25°2.1445
26°2.0503
27°1.9626
28°1.8807
29°1.804
30°1.7321
31°1.6643
32°1.6003
33°1.5399
34°1.4826
35°1.4281
36°1.3764
37°1.327
38°1.2799
39°1.2349
40°1.1918
41°1.1504
42°1.1106
43°1.0724
44°1.0355
45°1
46°0.9657
47°0.9325
48°0.9004
49°0.8693
50°0.8391
51°0.8098
52°0.7813
53°0.7536
54°0.7265
55°0.7002
56°0.6745
57°0.6494
58°0.6249
59°0.6009
60°0.5774
61°0.5543
62°0.5317
63°0.5095
64°0.4877
65°0.4663
66°0.4452
67°0.4245
68°0.404
69°0.3839
70°0.364
71°0.3443
72°0.3249
73°0.3057
74°0.2867
75°0.2679
76°0.2493
77°0.2309
78°0.2126
79°0.1944
80°0.1763
81°0.1584
82°0.1405
83°0.1228
84°0.1051
85°0.0875
86°0.0699
87°0.0524
88°0.0349
89°0.0175
90°0

Таблица котангенсов для углов от 91° до 180°

УголCtg (Котангенс)
91°-0.0175
92°-0.0349
93°-0.0524
94°-0.0699
95°-0.0875
96°-0.1051
97°-0.1228
98°-0.1405
99°-0.1584
100°-0.1763
101°-0.1944
102°-0.2126
103°-0.2309
104°-0.2493
105°-0.2679
106°-0.2867
107°-0.3057
108°-0.3249
109°-0.3443
110°-0.364
111°-0.3839
112°-0.404
113°-0.4245
114°-0.4452
115°-0.4663
116°-0.4877
117°-0.5095
118°-0.5317
119°-0.5543
120°-0.5774
121°-0.6009
122°-0.6249
123°-0.6494
124°-0.6745
125°-0.7002
126°-0.7265
127°-0.7536
128°-0.7813
129°-0.8098
130°-0.8391
131°-0.8693
132°-0.9004
133°-0.9325
134°-0.9657
135°-1
136°-1.0355
137°-1.0724
138°-1.1106
139°-1.1504
140°-1.1918
141°-1.2349
142°-1.2799
143°-1.327
144°-1.3764
145°-1.4281
146°-1.4826
147°-1.5399
148°-1.6003
149°-1.6643
150°-1.7321
151°-1.804
152°-1.8807
153°-1.9626
154°-2.0503
155°-2.1445
156°-2.246
157°-2.3559
158°-2.4751
159°-2.6051
160°-2.7475
161°-2.9042
162°-3.0777
163°-3.2709
164°-3.4874
165°-3.7321
166°-4.0108
167°-4.3315
168°-4.7046
169°-5.1446
170°-5.6713
171°-6.3138
172°-7.1154
173°-8.1443
174°-9.5144
175°-11.4301
176°-14.3007
177°-19.0811
178°-28.6363
179°-57.29
180°

Таблица котангенсов для углов от 181° до 270°

УголCtg (Котангенс)
181°57.29
182°28.6363
183°19.0811
184°14.3007
185°11.4301
186°9.5144
187°8.1443
188°7.1154
189°6.3138
190°5.6713
191°5.1446
192°4.7046
193°4.3315
194°4.0108
195°3.7321
196°3.4874
197°3.2709
198°3.0777
199°2.9042
200°2.7475
201°2.6051
202°2.4751
203°2.3559
204°2.246
205°2.1445
206°2.0503
207°1.9626
208°1.8807
209°1.804
210°1.7321
211°1.6643
212°1.6003
213°1.5399
214°1.4826
215°1.4281
216°1.3764
217°1.327
218°1.2799
219°1.2349
220°1.1918
221°1.1504
222°1.1106
223°1.0724
224°1.0355
225°1
226°0.9657
227°0.9325
228°0.9004
229°0.8693
230°0.8391
231°0.8098
232°0.7813
233°0.7536
234°0.7265
235°0.7002
236°0.6745
237°0.6494
238°0.6249
239°0.6009
240°0.5774
241°0.5543
242°0.5317
243°0.5095
244°0.4877
245°0.4663
246°0.4452
247°0.4245
248°0.404
249°0.3839
250°0.364
251°0.3443
252°0.3249
253°0.3057
254°0.2867
255°0.2679
256°0.2493
257°0.2309
258°0.2126
259°0.1944
260°0.1763
261°0.1584
262°0.1405
263°0.1228
264°0.1051
265°0.0875
266°0.0699
267°0.0524
268°0.0349
269°0.0175
270°0

Таблица котангенсов для углов от 271° до 360°

УголCtg (Котангенс)
271°-0.0175
272°-0.0349
273°-0.0524
274°-0.0699
275°-0.0875
276°-0.1051
277°-0.1228
278°-0.1405
279°-0.1584
280°-0.1763
281°-0.1944
282°-0.2126
283°-0.2309
284°-0.2493
285°-0.2679
286°-0.2867
287°-0.3057
288°-0.3249
289°-0.3443
290°-0.364
291°-0.3839
292°-0.404
293°-0.4245
294°-0.4452
295°-0.4663
296°-0.4877
297°-0.5095
298°-0.5317
299°-0.5543
300°-0.5774
301°-0.6009
302°-0.6249
303°-0.6494
304°-0.6745
305°-0.7002
306°-0.7265
307°-0.7536
308°-0.7813
309°-0.8098
310°-0.8391
311°-0.8693
312°-0.9004
313°-0.9325
314°-0.9657
315°-1
316°-1.0355
317°-1.0724
318°-1.1106
319°-1.1504
320°-1.1918
321°-1.2349
322°-1.2799
323°-1.327
324°-1.3764
325°-1.4281
326°-1.4826
327°-1.5399
328°-1.6003
329°-1.6643
330°-1.7321
331°-1.804
332°-1.8807
333°-1.9626
334°-2.0503
335°-2.1445
336°-2.246
337°-2.3559
338°-2.4751
339°-2.6051
340°-2.7475
341°-2.9042
342°-3.0777
343°-3.2709
344°-3.4874
345°-3.7321
346°-4.0108
347°-4.3315
348°-4.7046
349°-5.1446
350°-5.6713
351°-6.3138
352°-7.1154
353°-8.1443
354°-9.5144
355°-11.4301
356°-14.3007
357°-19.0811
358°-28.6363
359°-57.29
360°

Как распечатать таблицу? Левой кнопкой на компьютерной мишке выделите нужную часть таблицы, на выделенном фоне нажмите правую кнопку мишки и в появившемся меню перейдете в пункт «Печать».

Чему равен котангенс 30? …

— Находим в нашей табличке нужное значение. Правильный ответ будет такой: 1.7321

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *