Что называется моментом импульса
Момент импульса. Момент силы. Закон сохранения момента импульса. Изменение импульса.
Моме?нт и?мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.
Момент импульса материальной точки относительно точки O определяется векторным произведением
, где — радиус-вектор, проведенный из точки O, — импульс материальной точки.
Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z.
Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим
.
Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса):
.
Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:
.
Закон сохранения момента импульса: момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени.
Это один из фундаментальных законов природы.
Аналогично для замкнутой системы тел, вращающихся вокруг оси z:
отсюда или .
Если момент внешних сил относительно неподвижной оси вращения тождественно равен нулю, то момент импульса относительно этой оси не изменяется в процессе движения.
Момент импульса и для незамкнутых систем постоянен, если результирующий момент внешних сил, приложенных к системе, равен нулю.
Закон сохранения момента импульса вытекает из основного уравнения динамики вращательного движения тела, закрепленного в неподвижной точке (уравнение 4.8), и состоит в следующем:
— если результирующий момент внешних сил относительно неподвижной точки тождественно равен нулю, то момент импульса тела относительно этой точки с течением времени не изменяется.
(4.14)
Другими словами, момент импульса замкнутой системы с течением времени не изменяется.
Из основного закона динамики тела, вращающегося вокруг неподвижной оси z (уравнение 4.13), следует закон сохранения момента импульса тела относительно оси:
— если момент внешних сил относительно неподвижной оси вращения тела тождественно равен нулю, то момент импульса тела относительно этой оси не изменяется в процессе движения, т.е. если Mz = 0, то dLz / dt = 0, откуда
(4.15)
Закон сохранения момента импульса является фундаментальным законом природы. Справедливость этого закона обусловливается свойством симметрии пространства – его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета.
Изменение импульса материальной точки вызывается действием на нее силы.
Умножая уравнение (1.7) слева векторно на радиус-вектор , Получаем
(1.8)
Где вектор называется Моментом импульса материальной точки, а вектор — Моментом силы. Изменение момента импульса материальной точки вызывается моментом действующей на нее силы.
Несколько тел, каждое из которых можно рассматривать как материальную точку, составляют Систему материальных точек. Для каждой материальной точки можно записать уравнение второго закона Ньютона
(1.13)
В уравнении (1.13) индексы дают номер материальной точки. Действующие на материальную точку силы разделены на внешние и внутренние . Внешние силы — это силы, действующие со стороны тел, не входящих в систему материальных точек. Внутренние силы — это силы, действующие на материальную точку со стороны других тел, составляющих систему материальных точек. Здесь — сила, действующая на материальную точку, индекс которой , со стороны материальной точки с номером .
Из уравнений (1.13) вытекают несколько важных законов. Если просуммируем их по всем материальным точкам системы, то получим
Величина (1.15)
Называется Импульсом системы материальных точек. Импульс системы материальных точек равен сумме импульсов отдельных материальных точек. В уравнении (1.14) двойная сумма для внутренних сил обращается в нуль. Для каждой пары материальных точек в нее входят силы, которые по третьему закону Ньютона равны и противоположно направлены. Для каждой пары векторная сумма этих сил обращается в нуль. Поэтому равна нулю и сумма для всех сил.
В результате получим:
(1.16)
Уравнение (1.16) выражает закон изменения импульса системы материальных точек. Изменение импульса системы материальных точек вызывается только внешними силами. Если на систему не действуют внешние силы, то импульс системы материальных точек сохраняется. Систему материальных точек, на которую не действуют внешние силы, называют Изолированной, или замкнутой, системой материальных точек.
Аналогичным образом для каждой материальной точки записываются уравнения (1.8) моментов импульсов
(1.17)
При суммировании уравнений (1.17) по всем материальным точкам системы материальных точек сумма моментов внутренних сил обращается в нуль и получается Закон изменения момента импульса системы материальных точек:
(1.18)
Где введены обозначения: — момент импульса системы материальных точек, — момент внешних сил. Изменение момента импульса системы материальных точек вызывается внешними силами, действующими на систему. Для замкнутой системы материальных точек момент импульса сохраняется
.
Момент импульса
Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Пожалуй, наибольшую роль, момент импульса играет при описании собственно вращательного движения. Однако крайне важен и для гораздо более широкого класса задач (особенно — если в задаче есть центральная или осевая симметрия, но не только в этих случаях).
Замечание: момент импульса относительно точки — это псевдовектор, а момент импульса относительно оси — псевдоскаляр.
Момент импульса замкнутой системы сохраняется. Момент импульса является одним из трёх аддитивных (энергия, импульс, момент импульса) интегралов движения.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
Эта статья — об энергетическом спектре квантовой системы. О распределении частиц по энергиям в излучении см. Спектр, Спектр излучения. Об энергетическом спектре сигнала см. Спектральная плотность.Энергетический спектр — набор возможных энергетических уровней квантовой системы.
В теории поля представление системы зарядов в виде некоторых квадрупо́лей, аналогично представлению её в виде системы диполей, используется для приближённого расчёта создаваемого ей поля и излучения. Более общим представлением является разложение системы на мультиполи, соответствующее разложению потенциалов в ряд Тейлора по некоторым переменным. Квадруполь — частный случай мультиполя. Квадрупольное рассмотрение системы оказывается особенно важным в том случае, когда её дипольный момент и заряд равны.
Импульс и момент импульса в физике: формулы, описывающие закон сохранения этих величин
Задачи с движущимися телами в физике, когда скорость много меньше световой, решаются с помощью законов ньютоновской, или классической механики. В ней одним из важных понятий является импульс. Основные формулы импульса в физике приводятся в данной статье.
Импульс или количество движения?
Вам будет интересно: Ярославский политехнический университет (ЯГТУ): сведения, факты, поступление
Под количеством движения понимают произведение скорости перемещения тела на инерционный коэффициент, то есть на массу. Соответствующая формула имеет вид:
Вам будет интересно: Формулировка третьего закона Ньютона: примеры, связь с ускорением системы и с ее импульсом
Изменение величины p¯
Понятие о количестве движения в настоящее время используют реже, чем об импульсе. И связан этот факт непосредственно с законами ньютоновской механики. Запишем его в форме, которая приводится в школьных учебниках по физике:
Заменим ускорение a¯ на соответствующее выражение с производной скорости, получим:
Перенося dt из знаменателя правой части равенства в числитель левой, получаем:
Мы получили интересный результат: помимо того, что действующая сила F¯ приводит к ускорению тела (см. первую формулу этого пункта), она также изменяет количество его движения. Произведение силы на время, которое стоит в левой части, называется импульсом силы. Он оказывается равным изменению величины p¯. Поэтому последнее выражение называют также формулой импульса в физике.
Закон сохранения импульса
Формулы в физике, которые описывают сохранение величины p¯, могут быть приведены в нескольких вариантах. Прежде чем их записывать, ответим на вопрос о том, когда сохраняется импульс.
Обратимся к выражению из предыдущего пункта:
Оно говорит о том, что если сумма внешних сил, оказывающих воздействие на систему, равна нулю (закрытая система, F¯= 0), тогда dp¯= 0, то есть никакого изменения количества движения не будет происходить:
Это выражение является общим для импульса тела и закона сохранения импульса в физике. Отметим два важных момента, о которых следует знать, чтобы с успехом применять это выражение на практике:
Упругое и неупругое взаимодействие двух тел
Частным случаем использования формулы импульса в физике и его сохранения является движение двух тел, которые сталкиваются друг с другом. Рассмотрим два принципиально разных случая, о которых упоминалось в пункте выше.
m1*v1 + m2*v2 = m1*u1 + m2*u2
Здесь важно помнить, что знак скорости должен подставляться с учетом ее направления вдоль рассматриваемой оси (противоположные скорости имеют разные знаки). Эта формула показывает, что при условии известного начального состояния системы (величины m1, v1, m2, v2) в конечном состоянии (после столкновения) имеется две неизвестных (u1, u2). Найти их можно, если воспользоваться соответствующим законом сохранения кинетической энергии:
m1*v12 + m2*v22 = m1*u12 + m2*u22
m1*v1 + m2*v2 = (m1 + m2)*u
Как видно, речь идет всего об одной неизвестной (u), поэтому для ее определения достаточно этого одного равенства.
Импульс тела во время движения по окружности
Все, что было сказано выше об импульсе, относится к линейным перемещениям тел. Как быть в случае вращения объектов вокруг оси? Для этого в физике введено другое понятие, которое аналогично линейному импульсу. Оно называется моментом импульса. Формула в физике для него принимает следующий вид:
Закон сохранения L¯
Формула для L¯, которая приведена выше, является определением этой величины. На практике же предпочитают использовать несколько иное выражение. Не будем вдаваться в подробности его получения (это несложно, и каждый может проделать это самостоятельно), а приведем его сразу:
Если на вращающую систему не действуют никакие внешние силы (в действительности момент сил), то произведение I на ω¯ будет сохраняться независимо от процессов, происходящих внутри системы. То есть закон сохранения для L¯ имеет вид:
Примером его проявления является выступление спортсменов в фигурном катании, когда они совершают вращения на льду.
Закон сохранения момента импульса: формула, применение и особенности
При решении задач на движение тел в пространстве часто используют формулы сохранения кинетической энергии и импульса. Оказывается, что аналогичные выражения существуют и для вращающихся тел. В данной статье подробно рассматривается закон сохранения момента импульса (формулы соответствующие также приводятся) и дается пример решения задачи.
Процесс вращения и момент импульса
Перед тем как перейти к рассмотрению формулы закона сохранения момента импульса, необходимо познакомиться с этим физическим понятием. Проще всего его можно ввести, если воспользоваться рисунком ниже.
Вам будет интересно: Нарративный анализ: понятие и применение
На рисунке видно, что на конце вектора r¯, направленного от оси вращения и перпендикулярного ей, имеется некоторая материальная точка массой m. Эта точка движется по окружности названного радиуса с линейной скоростью v¯. Из физики известно, что произведение массы на линейную скорость называется импульсом (p¯). Теперь стоит ввести новую величину:
Вам будет интересно: Сульфат стронция: нахождение в природе, растворимость, применение
Здесь векторная величина L¯ представляет собой момент импульса. Чтобы перейти к скалярной форме записи, необходимо знать модули соответствующих значений r¯ и p¯, а также угол θ между ними. Скалярная формула для L имеет вид:
L = r*m*v*sin(θ) = r*p*sin(θ).
На рисунке выше угол θ является прямым, поэтому можно просто записать:
Из записанных выражений следует, что единицей измерения для L будут кг*м2/с.
Направление вектора момента импульса
Поскольку рассматриваемая величина является вектором (результат векторного произведения), то она будет иметь определенное направление. Из свойств произведения двух векторов следует, что их результат даст третий вектор, перпендикулярный плоскости, образованной первыми двумя. При этом направлен он будет таким образом, что если смотреть с его конца, то тело будет вращаться против часовой стрелки.
Результат применения этого правила показан на рисунке в предыдущем пункте. Из него видно, что L¯ направлен вверх, поскольку, если смотреть на тело сверху, его движение будет происходить против хода стрелки часов. При решении задач важно учитывать направление во время перехода к скалярной форме записи. Так, рассмотренный момент импульса считается положительным. Если бы тело вращалось по часовой стрелке, тогда в скалярной формуле перед L следовало бы поставить знак минуса (-L).
Аналогия с линейным импульсом
Вам будет интересно: Самые старые горы в мире: где находятся, фото, названия
В итоге формула для момента импульса преобразуется в следующую форму записи:
L¯ = I *ω¯, где ω¯= v¯/r и I=m*r2.
Выражение демонстрирует, что направление момента импульса L¯ и угловой скорости ω¯ совпадают для системы, состоящей из вращающейся материальной точки. Особый интерес представляет величина I. Ниже она рассмотрена подробнее.
Момент инерции тела
Введенная величина I характеризует «сопротивляемость» тела любому изменению скорости его вращения. То есть она играет точно такую же роль, что и инерция тела при линейном перемещении объекта. По сути I для кругового движения с физической точки зрения означает то же самое, что и масса при линейном движении.
Как было показано, для материальной точки с массой m, вращающейся вокруг оси на расстоянии от нее r, момент инерции рассчитать просто (I = m*r2), однако для любых других тел этот расчет будет несколько сложным, поскольку предполагает использование интеграла.
Для тела произвольной формы I можно определить при помощи следующего выражения:
Вам будет интересно: Архаический период Древней Греции (IX–VIII вв. до н.э.)
Выражения выше означают, что для вычисления момента инерции следует разбить все тело на бесконечно малые объемы dV, умножить их на квадрат расстояния до оси вращения и на плотность и просуммировать.
Для тел разной формы эта задача решена. Ниже приводятся данные для некоторых из них.
Материальная точка: I = m*r2.
Диск или цилиндр: I = 1/2*m*r2.
Стержень длиной l, закрепленный по центру: I = 1/12*m*l2.
Момент инерции зависит от распределенной массы тела относительно оси вращения: чем дальше от оси будет находиться большая часть массы, тем больше будет I для системы.
Изменение момента импульса во времени
Рассматривая момент импульса и закон сохранения момента импульса в физике, можно решить простую проблему: определить, как и за счет чего он будет изменяться во времени. Для этого следует взять производную по dt:
dL¯/dt = d(r¯*m*v¯)/dt = m*v¯*dr¯/dt+r*m*dv¯/dt.
Первое слагаемое здесь равно нулю, поскольку dr¯/dt = v¯ и произведение векторов v¯*v¯ = 0 (sin(0) = 0). Второе же слагаемое может быть переписано следующим образом:
dL¯/dt =r*m*a¯, где ускорение a = dv¯/dt, откуда:
Величина M¯, согласно определению, называется моментом силы. Она характеризует действие силы F¯ на материальную точку массой m, расположенную на расстоянии r от оси вращения.
Какие моменты сил могут изменить L¯ системы?
Существует два вида моментов сил M¯: внешние и внутренние. Первые связаны с силовым воздействием на элементы системы со стороны любых внешних сил, вторые же возникают за счет взаимодействия частей системы.
Согласно третьему закону Ньютона, любой силе действия соответствует направленная противоположно сила противодействия. Это означает, что суммарный момент силы любых взаимодействий внутри системы всегда равен нулю, то есть он не может повлиять на изменения момента импульса.
Величина L¯ может измениться только за счет внешних моментов сил.
Формула закона сохранения момента импульса
Формула для записи выражения сохранения величины L¯ в случае, если сумма внешних моментов сил равна нулю, имеет следующий вид:
Любые изменения момента инерции системы пропорционально отражаются на изменении угловой скорости таким образом, что произведение I*ω не меняет своего значения.
Применение закона сохранения момента импульса находит себя в целом ряде процессов и явлений, которые кратко охарактеризованы ниже.
Примеры использования закона сохранения величины L¯
Следующие примеры закона сохранения момента импульса имеют важное значение для соответствующих сфер деятельности.
Решение задачи на закон сохранения L¯
Учеными установлено, что через несколько миллиардов лет Солнце, исчерпав энергетические запасы, превратится в «белого карлика». Необходимо рассчитать, с какой скоростью оно будет вращаться вокруг оси.
Для начала необходимо выписать значения необходимых величин, которые можно взять из литературы. Итак, сейчас данная звезда имеет радиус 696 000 км и один оборот вокруг своей оси делает за 25,4 земных суток (значение для области экватора). Когда она подойдет к концу своего эволюционного пути, то сожмется до размеров 7000 км (порядка радиуса Земли).
L = I*ω = 2/5*m*r12*ω1 = 2/5*m*r22*ω2.
ω2 = (r1/r2)2*ω1 = (696000000/7000000)2*2*3,1416/(25,4*24*3600)= 0,0283 рад/с.
То есть в конце своего жизненного цикла данная звезда будет делать один оборот вокруг своей оси быстрее, чем за 222 секунды.