вращающееся эллиптическое магнитное поле

Вращающееся эллиптическое магнитное поле

На рис. 1.2. показаны векторы прямо и обратно вращающихся НС (F1 и F2), а также вектор результирующей НС (FР) в различные моменты времени. Из рисунка видно, что большая ось эллипса равна удвоенной сумме, а малая ось удвоенной разности намагничивающих сил F1 и F2:

Из последнего выражения легко увидеть, что при равенстве нулю одной из НС (F1 или F2), поле становится круговым, а при равенстве НС друг другу (F1 = F2) оно превращается в пульсирующее, т.е. эллипс вырождается в линию.

вращающееся эллиптическое магнитное поле

Рис. 1.2. К вопросу о частоте вращения эллиптического поля

§ 1.5. Пусковые моменты несимметричных двухфазных микромашин

Известно, что пусковые моменты асинхронных и синхронных двигателей при асинхронном пуске пропорциональны квадрату фазного напряжения, т. е. Mn

вращающееся эллиптическое магнитное поле

Подставляя (1.5), (1.6) в последнее равенство, получим:

вращающееся эллиптическое магнитное поле

окончательно будем иметь:

вращающееся эллиптическое магнитное поле(1.10)

Следовательно, пусковой момент несимметричного двухфазного двигателя пропорционален произведению амплитуд намагничивающих сил и синусам углов их пространственного и временного сдвигов. Важно отметить, что максимум момента будет при θ = 90º и β = 90º.

§ 1.6. Метод симметричных составляющих применительно к несимметричным двухфазным микромашинам.

Для исследования несимметричных двухфазных микромашин могут использоваться различные методы.

Подавляющее большинство современных микромашин переменного тока имеют на статоре две обмотки, сдвинутые в пространстве на 90 эл. градусов, что продиктовано стремлением получить максимальное круговое поле при минимальных токах в обмотках. Вместе с тем, редко удается сдвинуть токи в обмотках на угол, равный 90 о во времени. Поэтому на практике чаще приходится иметь дело с несимметричными временными системами токов, намагничивающих сил, магнитных потоков и т.д.

Согласно методу симметричных составляющих любую систему двух векторов А и В разных по величине, сдвинутых во времени на произвольный угол, можно разложить на две симметричные составляющие системы равных по величине векторов и сдвинутых во времени на 90º.

вращающееся эллиптическое магнитное поле

Рис. 1.4. Несимметричная система векторов (а) и ее симметричные составляющие (б, в, г).

Одна из симметричных систем имеет порядок чередования векторов, совпадающий с исходной, и называется прямой последовательностью, другая имеет обратный порядок чередования векторов и называется обратной последовательностью (рис. 1.4).

Выразим заданные векторы A и B через симметричные составляющие

вращающееся эллиптическое магнитное поле(1.11)

Как видно из рис. 1.4, симметричные составляющие связаны между собой соотношением:

вращающееся эллиптическое магнитное поле(1.12)

Подставляя (1.12) в (1.11) и решая уравнения с двумя неизвестными, получим выражения симметричных составляющих через векторы исходной системы [1]:

вращающееся эллиптическое магнитное поле(1.13)

На рис. 1.5 выполнено графическое разложение несимметричной системы векторов A и B на симметричные составляющие с использованием уравнений (1.12) и (1.13).

вращающееся эллиптическое магнитное поле

Рис.1.5. Графическое разложение несимметричной системы векторов на симметричные составляющие

Метод симметричных составляющих пригоден не только для анализа несимметричных двухфазных микромашин, но и как предельный случай несимметрии – однофазных микромашин, полагая, что ток и его симметричные составляющие в одной из обмоток, которой фактически нет, равен нулю.

Задача 1.5. Разложить графически несимметричные системы векторов на симметричные составляющие.

Источник

Вращающееся эллиптическое магнитное поле

Мелкосерийное литье изделий из пластика на термопластавтоматах
Узнать цену!

2.4.4. Эллиптическое поле

Круговое вращающееся магнитное поле возникает только при симметрии токов, проходящих по катушкам (симметрии НС катушек отдельных фаз), при симметричном расположении этих катушек в пространстве и при сдвиге во времени между фазовыми токами, равном пространственному сдвигу между катушками. При несоблюдении хотя бы одного из этих условий возникает не круговое, а эллиптическое вращающееся поле (рис.2.22а), у которого максимальное значение результирующей индукции для различных моментов времени не остается постоянным, как при круговом поле. В таком поле пространственный вектор НС или индукции описывает эллипс. Эллиптическое поле можно представить в виде

Рис. 2.22. Эллиптическое магнитное поле в рабочем зазоре машины (а) и его разложение на два составляющих круговых поля: прямое (б) и обратное (в)

двух эквивалентных круговых полей, вращающихся в противоположных направлениях рис.2.22б, в). Разложение эллиптического поля на прямое и обратное круговые поля производится методом симметричных составляющих, с помощью которого определяются НС прямой и обратной последовательностей. Рассмотрим, как осуществляется это разложение на примере двухфазной обмотки при питании ее несимметричными токами.

Представим каждый из векторов НС и в виде суммы двух векторов прямой и обратной последовательностей:

Рис. 2.23. Диаграмма разложения векторов НС двухфазной обмотки на систему векторов прямой (а) и обратной (б) последовательностей

Величины векторов прямой и обратной последовательностей найдем, подставив последнюю систему в выражения для и (2.34):

Умножим первое уравнение системы на :

то уравнения бегущей волны для прямого и обратного круговых полей имеют вид:

При рассмотрении работы многофазных электрических машин, обычно заданными величинами являются напряжения, подводимые к машине, и сопротивления фаз. В общем случае для определения свойств машины требуется разложить на симметричные составляющие подводимые напряжения, по которым затем определяются токи и НС прямой и обратной последовательностей.

Перейдем от системы НС (2.34) к системе токов:

Источник

Вращающееся эллиптическое магнитное поле

Как было показано ранее, одним из важнейших преимуществ многофазных систем является получение вращающегося магнитного поля с помощью неподвижных катушек, на чем основана работа двигателей переменного тока. Рассмотрение этого вопроса начнем с анализа магнитного поля катушки с синусоидальным током.

Магнитное поле катушки с синусоидальным током

При пропускании по обмотке катушки синусоидального тока она создает

вращающееся эллиптическое магнитное поле

магнитное поле, вектор индукции которого изменяется (пульсирует) вдоль этой катушки также по синусоидальному закону Мгновенная ориентация вектора магнитной индукции в пространстве зависит от намотки катушки и мгновенного направления тока в ней и определяется по правилу правого буравчика. Так для случая, показанного на рис. 1, вектор магнитной индукции направлен по оси катушки вверх. Через полпериода, когда при том же модуле ток изменит свой знак на противоположный, вектор магнитной индукции при той же абсолютной величине поменяет свою ориентацию в пространстве на 1800. С учетом вышесказанного магнитное поле катушки с синусоидальным током называют пульсирующим.

Круговое вращающееся магнитное поле
двух- и трехфазной обмоток

Круговым вращающимся магнитным полем называется поле, вектор магнитной индукции которого, не изменяясь по модулю, вращается в пространстве с постоянной угловой частотой.

Для создания кругового вращающегося поля необходимо выполнение двух условий:

Рассмотрим получение кругового вращающегося магнитного поля в случае двухфазной системы Тесла (рис. 2,а).

При пропускании через катушки гармонических токов каждая из них в соответствии с вышесказанным будет создавать пульсирующее магнитное поле. Векторы вращающееся эллиптическое магнитное полеи вращающееся эллиптическое магнитное поле, характеризующие эти поля, направлены вдоль осей соответствующих катушек, а их амплитуды изменяются также по гармоническому закону. Если ток в катушке В отстает от тока в катушке А на 90 0 (см. рис. 2,б), то вращающееся эллиптическое магнитное поле.

Найдем проекции результирующего вектора магнитной индукции вращающееся эллиптическое магнитное полена оси x и y декартовой системы координат, связанной с осями катушек:

вращающееся эллиптическое магнитное поле

вращающееся эллиптическое магнитное поле

Модуль результирующего вектора магнитной индукции в соответствии с рис. 2,в равен

вращающееся эллиптическое магнитное поле,(1)

вращающееся эллиптическое магнитное поле,

вращающееся эллиптическое магнитное поле.(2)

Полученные соотношения (1) и (2) показывают, что вектор результирующего магнитного поля неизменен по модулю и вращается в пространстве с постоянной угловой частотой вращающееся эллиптическое магнитное поле, описывая окружность, что соответствует круговому вращающемуся полю.

Покажем, что симметричная трехфазная система катушек (см. рис. 3,а) также позволяет получить круговое вращающееся магнитное поле.

Каждая из катушек А, В и С при пропускании по ним гармонических токов создает пульсирующее магнитное поле. Векторная диаграмма в пространстве для этих полей представлена на рис. 3,б. Для проекций результирующего вектора магнитной индукции на

вращающееся эллиптическое магнитное поле

оси декартовой системы координат, ось y у которой совмещена с магнитной осью фазы А, можно записать

вращающееся эллиптическое магнитное поле;(3)
вращающееся эллиптическое магнитное поле.(4)

Приведенные соотношения учитывают пространственное расположение катушек, но они также питаются трехфазной системой токов с временным сдвигом по фазе на 1200. Поэтому для мгновенных значений индукций катушек имеют место соотношения

вращающееся эллиптическое магнитное поле; вращающееся эллиптическое магнитное поле; вращающееся эллиптическое магнитное поле.

Подставив эти выражения в (3) и (4), получим:

вращающееся эллиптическое магнитное поле;(5)
вращающееся эллиптическое магнитное поле(6)

В соответствии с (5) и (6) и рис. 2,в для модуля вектора магнитной индукции результирующего поля трех катушек с током можно записать:

вращающееся эллиптическое магнитное поле,

вращающееся эллиптическое магнитное поле,

вращающееся эллиптическое магнитное поле.

Таким образом, и в данном случае имеет место неизменный по модулю вектор магнитной индукции, вращающийся в пространстве с постоянной угловой частотой вращающееся эллиптическое магнитное поле, что соответствует круговому полю.

Магнитное поле в электрической машине

С целью усиления и концентрации магнитного поля в электрической машине для него создается магнитная цепь. Электрическая машина состоит из двух основных частей (см. рис. 4): неподвижного статора и вращающегося ротора, выполненных соответственно в виде полого и сплошного цилиндров.

На статоре расположены три одинаковые обмотки, магнитные оси которых сдвинуты по расточке магнитопровода на 2/3 полюсного деления вращающееся эллиптическое магнитное поле, величина которого определяется выражением

вращающееся эллиптическое магнитное поле

вращающееся эллиптическое магнитное поле,

На рис. 4 сплошными линиями (А, В и С) отмечены положительные направления пульсирующих магнитных полей вдоль осей обмоток А, В и С.

Приняв магнитную проницаемость стали бесконечно большой, построим кривую распределения магнитной индукции в воздушном зазоре машины, создаваемой обмоткой фазы А, для некоторого момента времени t (рис. 5). При построении учтем, что кривая изменяется скачком в местах расположения катушечных сторон, а на участках, лишенных тока, имеют место горизонтальные участки.

вращающееся эллиптическое магнитное поле

Заменим данную кривую синусоидой (следует указать, что у реальных машин за счет соответствующего исполнения фазных обмоток для результирующего поля такая замена связана с весьма малыми погрешностями). Приняв амплитуду этой синусоиды для выбранного момента времени t равной ВА, запишем

вращающееся эллиптическое магнитное поле(7)
вращающееся эллиптическое магнитное поле;(8)
вращающееся эллиптическое магнитное поле.(9)

С учетом гармонически изменяющихся фазных токов для мгновенных значений этих величин при сделанном ранее допущении о линейности зависимости индукции от тока можно записать

вращающееся эллиптическое магнитное поле.

Подставив последние соотношения в (7)…(9), получим

вращающееся эллиптическое магнитное поле;(10)
вращающееся эллиптическое магнитное поле;(11)
вращающееся эллиптическое магнитное поле.(12)

Просуммировав соотношения (10)…(12), с учетом того, что сумма последних членов в их правых частях тождественно равна нулю, получим для результирующего поля вдоль воздушного зазора машины выражение

вращающееся эллиптическое магнитное поле,

представляющее собой уравнение бегущей волны.

Магнитная индукция вращающееся эллиптическое магнитное полепостоянна, если вращающееся эллиптическое магнитное поле. Таким образом, если мысленно выбрать в воздушном зазоре некоторую точку и перемещать ее вдоль расточки магнитопровода со скоростью

вращающееся эллиптическое магнитное поле,

то магнитная индукция для этой точки будет оставаться неизменной. Это означает, что с течением времени кривая распределения магнитной индукции, не меняя своей формы, перемещается вдоль окружности статора. Следовательно, результирующее магнитное поле вращается с постоянной скоростью. Эту скорость принято определять в оборотах в минуту:

вращающееся эллиптическое магнитное поле.

Принцип действия асинхронного и синхронного двигателей

Устройство асинхронного двигателя соответствует изображению на рис. 4. Вращающееся магнитное поле, создаваемое расположенными на статоре обмотками с током, взаимодействует с токами ротора, приводя его во вращение. Наибольшее распространение в настоящее время получил асинхронный двигатель с короткозамкнутым ротором ввиду своей простоты и надежности. В пазах ротора такой машины размещены токонесущие медные или алюминиевые стержни. Концы всех стержней с обоих торцов ротора соединены медными или алюминиевыми же кольцами, которые замыкают стержни накоротко. Отсюда и произошло такое название ротора.

вращающееся эллиптическое магнитное поле

называется относительным скольжением. Для двигателей нормального исполнения S=0,02…0,07. Неравенство скоростей магнитного поля и ротора становится очевидным, если учесть, что при вращающееся эллиптическое магнитное полевращающееся магнитное поле не будет пересекать токопроводящих стержней ротора и, следовательно, в них не будут наводиться токи, участвующие в создании вращающегося момента.

Принципиальное отличие синхронного двигателя от асинхронного заключается в исполнении ротора. Последний у синхронного двигателя представляет собой магнит, выполненный (при относительно небольших мощностях) на базе постоянного магнита или на основе электромагнита. Поскольку разноименные полюсы магнитов притягиваются, то вращающееся магнитное поле статора, которое можно интерпретировать как вращающийся магнит, увлекает за собой магнитный ротор, причем их скорости равны. Это объясняет название двигателя – синхронный.

В заключение отметим, что в отличие от асинхронного двигателя, вращающееся эллиптическое магнитное полеу которого обычно не превышает 0,8…0,85, у синхронного двигателя можно добиться большего значения вращающееся эллиптическое магнитное полеи сделать даже так, что ток будет опережать напряжение по фазе. В этом случае, подобно конденсаторным батареям, синхронная машина используется для повышения коэффициента мощности.

Источник

Вращающееся магнитное поле

Вы будете перенаправлены на Автор24

В 1824 г. французский ученый. Д.Ф Араго открыл явление, которое назвали «магнетизмом вращения». Оно заключалось в том, что при вращении магнитной стрелки (магнита), медный диск, подвешенный на оси над стрелкой (или находящийся под ней) начинал вращаться.

Это явление объяснил М. Фарадей тем, что вращающееся магнитное поле порождает в диске вихревые токи, и эти токи взаимодействуют с магнитом.

Вращающимся магнитным полем называют магнитное поле, которое характеризуется вектором магнитной индукции постоянным по величине, но изменяющим свое направление, а именно вращающимся с неизменной угловой скоростью.

Иногда вращающимися считают магнитные поля, которые создают постоянные магниты, совершающие вращательные движения относительно оси, которая не совпадает с осью их симметрии.

Вращающееся магнитное поле можно получить, если наложить два и более магнитных поля:

Вращающееся магнитное поле может быть получено в многофазных системах. При этом используются неподвижные катушки. Допустим, что магнитное поле в катушке создает синусоидальный электрический ток. Для того, чтобы система катушек с током создавала круговое вращающееся магнитное поле необходимо:

Система Тесла для получения вращающегося магнитного поля

Одним из первых вращающееся магнитное поле было получено Н. Тесла. Ученый использовал двухфазную систему. Он пропускал через две катушки (рис.1), расположенные под углом в 90° переменные электрические токи, изменяющиеся по гармоническим законам. При этом каждая катушка создавала пульсирующее магнитное поле.

Готовые работы на аналогичную тему

Рисунок 1. Система Тесла для получения вращающегося магнитного пол. Автор24 — интернет-биржа студенческих работ

В проекциях на оси декартовой системы координат ($XOY$) рис.1 уравнения (1) и (2) дают:

Найдем величину полученного поля по теореме Пифагора:

$tg\, \left( \alpha \right)=\frac>>=\frac\sin \left( \omega t \right)>\cos <(\omega t)>>=tg\left( \omega t \right)\to \alpha =\omega t\left( 6 \right)$

Эллиптическое магнитное поле

Если возникает асимметрия токов, порождающих магнитное поле или магнитных свойств сердечников катушек, то появляется асимметрия магнитного поля. При этом годограф вектора магнитной индукции покажет эллипс. Эллиптический годограф отвечает сумме пары векторов, имеющих круговые годографы, совершающих вращения в противоположных направлениях.

При совпадении прямого и обратного вращения, годограф вектора магнитной индукции выродится в прямую линию. При этом полученное поле называют пульсирующим.

Круговое магнитное поле можно считать частным случаем эллиптического. Такое становится возможным, если отсутствует одна из фаз.

Применение вращающегося магнитного поля

Взаимодействие вращающегося магнитного поля и электрического тока лежит в основании действия асинхронного двигателя. При этом электрический ток течет в обмотке ротора, вращающееся магнитное поле создается обмотками статора.

Статор имеет трехфазную обмотку. Ее оси сдвинуты в пространстве на 120° по окружности. В обмотках статора текут токи, изменяющиеся в соответствии с законами:

Переменные токи порождают магнитные поля с индукциями, направленными по осям обмоток:

По принципу суперпозиции результирующее поле в сердечнике статора получается, как сумма отдельных полей. Используя векторную диаграмму сложения:

и подход с проектированием на оси (XYZ) декартовой системы координат (как выше в двухфазной системе), величину результирующего поля имеем:

При этом вектор магнитной индукции образует с осью ординат угол, равный:

$tg\, \left( \hat<\vec\vec> \right)=tg\, \left( \omega t \right)\to\alpha =\omega t\left( 10 \right)$

Мы получили, что постоянный по величине вектор магнитной индукции вращается с неизменной угловой скоростью ω, то есть имеем вращающееся по кругу магнитное поле.

Направление вращения магнитного поля определено очередностью фаз. Если переключить любые две обмотки, то поле станет вращаться в противоположную сторону.

При увеличении количества пазов сердечника, и делении каждой обмотки надвое (причем ее пазы следует разместить так, что начала и концы частей обмоток находятся в пазах, которые смещены по окружности статора на π/2), то при включении сети возникнет магнитное поле с удвоенным количеством полюсов. Частота такого поля станет вдвое меньше.

Чаще всего частоту вращения магнитного поля называют скоростью вращения ($n$). Единицей вращения этой скорости считают оборот в минуту.

Каждая фазная обмотка отдельно создает пульсирующее поле. Пульсирующее поле появляется при авариях, например, обрыве какой – то фазы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *