грузовая площадь стены здания это
Механика грунтов является одной из основных инженерных дисциплин для студентов всех строительных специальностей
3. 2. 2. Определение грузовой площади и нагрузок на фундаменты
Грузовая площадь определяется различно для жилых, общественных и производственных зданий.
На рисунке 11 показаны две грузовые площади для сбора нагрузок на ленточные фундаменты внутренней (Б) и внешней (А) стен жилого дома.
Для внутренней несущей стены ширина грузовой площади принимается равной 100 см, а длина определяется половиной расстояния в чистоте между стенами в направлении длинной стороны плиты перекрытия. Из-за наличия оконных проемов в наружных стенах ширина грузовой площади принимается равной расстоянию между осями оконных проемов вдоль здания, а длина половине расстояния в чистоте между стенами поперек здания.
В отличие от жилых зданий с несущими наружными и внутренними стенами в промышленных зданиях несущий каркас выполняется из колонн, ригелей и плит перекрытия. Поэтому при сборе нагрузок на отдельно стоящие фундаменты под колонны ширина и длина грузовой площади определяются половиной расстояния между соседними осями здания.
Пример выполнения сбора нагрузок на фундамент крайней стены
Сбор нагрузок на фундамент предлагается оформить в виде таблиц по нижеприведенным формам.
Постоянные нормативные нагрузки
От веса чердачного перекрытия с утеплителем
От веса междуэтажного перекрытия
От веса перегородки
От веса 1 м 2 кирпичной кладки (или от веса стены из др.материала)
Временные нормативные нагрузки
Величина нагрузки кН/м 2
Снеговая на 1 м 2 горизонтальной проекции кровли ( IV снеговой район)
На 1 м 2 проекции чердачного перекрытия
На 1 м 2 проекции междуэтажного перекрытия
Определяем грузовую площадь (см. рис.11 б):
Нормативные нагрузки на 2,53 м длины фундамента на уровне спланированной отметки земли (кН):
Величина нагрузки кН
Вес чердачного покрытия с утеплителем
Вес n междуэтажных перекрытий
Вес перегородок на n этажах
Вес карниза и стены выше чердачного перекрытия
(Нормативная нагрузка на карниз + толщина стены *высота * нормативная нагрузка кирпичной кладки) * расстояние между осями оконных проемов
Вес цоколя и стены первого этажа за вычетом веса оконных проемов на длине, равной расстоянию между осями оконных проемов
Толщина стены первого этажа *(высота цоколя и первого этажа * расстояние между осями оконных проемов – высота оконного проема * длина оконного проема) * нормативная нагрузка кирпичной кладки
Вес стены со второго этажа и выше за вычетом веса оконных проемов
Итого постоянная нагрузка
Величина нагрузки кН
На чердачное перекрытие
На n междуэтажных перекрытий с учетом коэффициента
Итого временная нагрузка
Нормативное усилие на обрезе фундамента от вышележащих конструкций N о II определяется как сумма постоянной и временной нагрузок.
Фундамент передает усилия от веса вышележащих конструкций и воспринимаемых ими нагрузок на основание. Прочность конструкций наземной части зданий обеспечивается прочностью и долговечностью фундамента, его устойчивостью, наличием конструктивных мероприятий, ограничивающих осадки основания в пределах, допустимых СНиП 2.02.01-83, экономичной и целесообразной формой и конструкцией фундаментов.
Проектирование фундамента заключается в выборе его типа, размеров и способов устройства. Для этого необходимо определить: материал и конструкцию фундамента; глубину его заложения; давление под подошвой фундамента; осадки фундамента и способ выполнения работ по подземной части зданий. Кроме того, следует проверить устойчивость фундамента.
3.2.3. Определение глубины заложения подошвы фундамента
Глубина заложения фундаментов является одним из основных факторов, обеспечивающих необходимую несущую способность и деформации основания, не превышающие предельных по условиям нормальной эксплуатации.
Глубина заложения фундаментов определяется:
а) конструктивными особенностями зданий или сооружений (например, жилое здание с подвалом или без него), нагрузок и воздействий на их фундаменты;
б) глубиной заложения фундаментов примыкающих сооружений, а также глубиной прокладки инженерных коммуникаций;
в) инженерно-геологическими условиями площадки строительства (физико-механические свойства грунтов, характер напластования и пр.);
г) гидрогеологическими условиями площадки и возможными их изменениями в процессе строительства и эксплуатации зданий и сооружений;
д) глубиной сезонного промерзания грунтов.
При выборе глубины заложения фундаментов рекомендуется [1]:
а) предусматривать заглубление фундаментов в несущий слой грунта не менее чем на 10-15 см;
б) избегать наличия под подошвой фундамента слоя грунта, если его прочностные и деформационные свойства значительно хуже свойств подстилающего слоя грунта;
в) стремиться, если это возможно, закладывать фундаменты выше уровня грунтовых вод для исключения необходимости применения водопонижения при производстве работ.
Нормативная глубина сезонного промерзания грунта d fn принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) под открытой, оголенной от снега поверхностью горизонтальной площадки при уровне грунтовых вод, расположенном ниже глубины сезонного промерзания грунтов.
При отсутствии данных многолетних наблюдений нормативную глубину сезонного промерзания грунтов определяют на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение определяется по формуле:
Расчетная глубина сезонного промерзания грунта определяется по формуле:
Особенности сооружения
Коэффициент к h при расчетной среднесуточной температуре воздуха в помещении, примыкающем к наружным фундаментам, Сº
Сбор нагрузок на фундамент пример
Сбор нагрузок на фундамент пример. Введение.
Сбор нагрузок разберем на примере. Для расчета ленточного фундамента понадобится собрать нагрузки ото всех конструкций — от крыши до стен.
В нашем примере мы рассмотрим двухэтажный дом без подвала с несущими стенами вдоль цифровых осей. На эти стены опираются сборные плиты перекрытия над первым этажом и монолитное перекрытие над вторым этажом, также на них опираются стропила деревянной кровли. Вдоль буквенных осей — самонесущие стены.
Сбор нагрузок на свайный фундамент пример.
Каким образом собирается нагрузка? Если стена самонесущая, то считается просто вес одного погонного метра этой стены (окна и двери условно не учитываем). Если стена является несущей, и на нее опираются перекрытие, конструкции крыши или лестница, то к весу самой стены прибавляется еще и нагрузки от половины пролета перекрытия (крыши). Площадь, с которой собирается нагрузка называется грузовой площадью. Допустим, расстояние между двумя несущими стенами 4 метра. Нагрузку мы собираем на 1 погонный метр. Одна половина пролета придется на одну стену, вторая — на вторую. Значит, грузовая площадь для каждой стены от этого перекрытия равна 4*½ = 2 м 2. Если на стену опирается перекрытие с двух сторон, то эти две грузовые площади нужно складывать.
На рисунке показана схема дома и грузовые площади для каждой стены.
Нагрузка на стены по оси «1» и «3» одинаковая, это будет первый тип фундамента. Нагрузка на стену по оси «2» значительно больше, чем на наружные стены (во-первых, в два раза больше нагрузка от перекрытий и крыши, во-вторых, сама стена по оси «2» выше), это будет второй тип фундамента. И третий тип — нагрузка от самонесущих стен по осям «А» и «Б».
После того, как определились с количеством типов фундаментов, определим нагрузки от конструкций.
1. Нагрузка на 1 м 2 перекрытия над первым этажом.
Сбор нагрузок на фундамент: порядок выполнения расчетов, особенности и рекомендации.
Основная задача фундамента — это передача нагрузки от строения к почве. Поэтому сбор нагрузок на фундамент — одна из важнейших задач, которая должна быть решена еще перед началом строительства здания.
Сбор нагрузок на фундамент пример.
Что нужно учитывать при расчете нагрузки.
Правильность расчета — это одна из ключевых ступеней в строительстве, которая должна быть решена. При проведении неверных расчетов, скорее всего, под давлением нагрузок фундамент просто осядет и «уйдет под землю». При расчете и сборе нагрузок на фундамент нужно учитывать, что существует две категории — временные и постоянные нагрузки.
Сбор нагрузок на фундамент пример таблица.
Пример сбора нагрузок на фундамент.
Для того чтобы точно рассчитать все нагрузки, которые будут приходиться на фундамент, необходимо располагать точным планом проектировки здания, а также знать, из каких материалов будет строиться здание. Для того чтобы более наглядно описать процесс сбора нагрузок на фундамент, будет рассмотрен вариант строительства дома с обитаемоей мансандрой, который будет располагаться в Уральском регионе Российской Федерации.
Сбор нагрузок на ленточный фундамент пример.
Расчет нагрузок на фундамент.
После того как был произведен сбор нагрузок на фундамент дома, можно приступать к расчету.
После проведения этих расчетов необходимо воспользоваться таблицей сбора нагрузок на фундамент, в которой представлены усредненные значения для тех материалов, которые будут использоваться при возведении здания.
Сбор нагрузок на фундамент пример таблица.
Ленточный фундамент.
Так как существует несколько типов фундамента, который можно использовать при строительстве объекта, будут рассмотрены и несколько вариантов. Первый вариант — это сбор нагрузок на ленточный фундамент. В перечень нагрузок будет входить масса всех элементов, использующихся при строительстве здания.
Эти несколько пунктов являются примером сбора нагрузок на фундамент для любого строения, которое будет возводиться на опоре ленточного типа.
Сбор нагрузок на фундамент пример ЖБ цех.
Методы расчета при ленточном фундаменте.
Производить расчет ленточного фундамента можно двумя способами. Первый способ предполагает расчет по несущей способности грунта под подошвой фундамента, а второй — по деформации все того же грунта. Так как рекомендуется использовать именно первый способ для расчетов, то он и будет рассмотрен. Всем известно, что непосредственное строительство начинается с фундамента, однако проектировка этого участка осуществляется в последнюю очередь. Это происходит из-за того, что основная цель этой конструкции — передать нагрузку от дома к почве. А сбор нагрузок на фундамент можно осуществить лишь после того, как будет известен подробный план будущего строения. Непосредственно расчет фундамента можно условно разбить на 3 этапа:
Фундамент под колонну.
При строительстве домов могут использоваться колонны в качестве опор. Однако проводить расчет для такого типа несущей конструкции довольно сложно. Вся сложность расчета заключается в том, что сбор нагрузок на фундамент колонны осуществить самостоятельно довольно трудно. Для этого необходимо иметь специальное строительное образование и определенные навыки. Для того чтобы решить вопрос о расчете нагрузки на фундамент колонны, необходимо располагать следующими данными:
Сбор нагрузок на столбчатый фундамент пример.
Сбор нагрузок на колонну фундамента пример.
Как провести расчет фундамента для колонны.
При расчете фундамента для колонны подразумевается расчет нагрузки на квадратный сантиметр площади этого фундамента. Другими словами, для того, чтобы рассчитать необходимый фундамент для колонны, нужно знать все о здании, грунте и грунтовых водах, которые протекают поблизости. Необходимо собрать всю эту информацию, систематизировать ее, и на основе полученных результатов можно будет провести полный расчет нагрузок на фундамент под колонну. Для того чтобы иметь всю необходимую информацию, нужно сделать следующее:
Обрез фундамента.
Сбор нагрузок на фундамент.
Как можно было заметить, для того, чтобы рассчитать нагрузку на фундамент любого типа, необходимо располагать всеми данными о здании, а также знать множество формул для расчета.
Сбор нагрузок на фундамент.
Однако в настоящее время эта задача несколько упрощена тем, что существуют электронные калькуляторы, которые выполняют все расчеты вместо людей. Но для их правильной и продуктивной работы необходимо загрузить в устройство все сведения о здании, о материале, из которого оно будет возводиться, и т. д.
Сбор нагрузок на фундамент.
Сбор нагрузок на плитный фундамент пример.
Представьте себе ситуацию, которая иногда встречается в наше время. Приходит человек в строительную компанию и говорит: «Я хочу заказать у вас строительство кирпичного двухэтажного дома с гаражом. Только у меня одно условие. Так как я располагаю небольшим бюджетом, не могли бы вы построить дом без фундамента, его все равно ведь не видно?» Как вы думаете, что ему могут ответить? С вероятностью в 99% ответ будет звучать так: «Извините, но это не возможно, ведь фундамент — это основа любого дома. без которой он просто развалится».
Данная процедура выполняется согласно СНиП 2.01.07-85* (СП 20.13330.2011) «Актуализированная редакция» [1].
Общая нагрузка на фундамент складывается из следующих нагрузок:
Сюда входят вес конструкций крыши (стропила, обрешетка, железобетонная плита покрытия и т.д.), вес кровельного «пирога» (утеплитель, профнастил, металлочерепица, ондулин и т.д.), а также снеговая и ветровая нагрузки.
О том, как собирается нагрузка на кровлю. вы также можете найти на данном сайте.
2. Межэтажные перекрытия.
Данный раздел включает вес несущих элементов перекрытия (железобетонные плиты перекрытия, деревянные и металлические балки), вес элементов покрытия пола и отделки (доски, ламинат, линолеум, штукатурка потолка и т.д). Кроме этого, здесь необходимо учитывать временные нагрузки от перегородок, людей, мебели и т.д.
В том случае, если, например, ваш дом имеет холодный чердак, т.е. комнат для проживания там не предусматривается и утеплитель располагается не в крыше, а над последним этажом, то это нужно учесть в отдельной категории.
Обычно здесь учитывается вес несущих элементов перекрытия и теплоизоляционного материала (минплита, пенополистирол, керамзит и т.д.). Редко к ним прибавляется цементно-песчаная стяжка.
4. Подвальное перекрытие.
Если пол первого этажа опирается на стены, то его необходимо учитывать при сборе нагрузок на фундамент. В том случае, если пол устроен по грунту, то он передает нагрузку непосредственно на грунт, а не на фундамент. И, следовательно, его учитывать не нужно.
Данная нагрузка получается суммированием следующих масс: конструкции перекрытия (ж/б плита, балки и т.д.), «пирог» пола (ламинат, паркет, Ц/П стяжка, гидроизоляционные и теплоизоляционные материалы), временные нагрузки (перегородки, люди, мебель и т.д.).
Примечание: для того, чтобы перенести перечисленные выше нагрузки на фундамент необходимо знать грузовую площадь. Грузовая площадь — это нагрузка, которая воспринимается несущими конструкциями. Например, для здания с двумя несущими стенами, расположенными на расстоянии 5 метров друг от друга и, на которые опирается перекрытие, грузовая площадь для каждой стены будет равна 2,5м · 1м = 2,5м 2. Потом эта цифра умножается на нагрузку, выраженную в кг/м 2 для того, чтобы получить кг или, другими словами, получить тот вес, который должен восприниматься фундаментом. Если же вы хотите получить равномерно распределенную нагрузку (кг/м), то просто разделите эту величину на 1м.
Грузовая площадь фундамента.
В том же случае, если у вас 4 несущих стены при тех же условиях, то грузовая площадь на стены собирается следующим образом.
Грузовая площадь для сбора нагрузок на фундамент.
Ну, а если дом снабжен внутренними несущими стенами, то необходимо сложить 2 грузовых площади с каждого полупролета. Но об этом в примере ниже.
5. Вертикальные конструкции.
К таким конструкциям относятся несущие стены и колонны, а также, собственно, фундамент.
Далее рассмотрим пример сбора нагрузок на ленточный фундамент.
Пример сбора нагрузок на фундамент.
Исходные данные:
Предполагается строительство жилого 2-х этажного дома с холодным чердаком и двухскатной крышей. Опирание крыши производится на две крайних стены и одну стену под коньком. Подвал не предусмотрен.
Место строительства — г. Нижегородская область.
Тип местности — поселок городского типа.
Размеры дома — 9,5×10 м по наружным граням фундамента.
Угол наклона крыши — 35°.
Высота здания — 9,93 м.
Фундамент — железобетонная монолитная лента шириной 500 и 400 мм и высотой 1 900 мм.
Цоколь — керамический кирпич, толщиной 500 и 400 мм и высотой 730 мм.
Наружные стены — газосиликат плотностью 500 кг/м 3. толщина стеной 500 мм и высотой 6 850 мм.
Внутренние несущие стены — газосиликат плотностью 500 кг/м 3. толщиной стены 400 м и высота 6 850 мм.
Перекрытия и крыша — деревянные.
Конструкции, которые могли бы задержать снег на крыше, не предусмотрены.
Сбор нагрузок на фундамент каркасного здания пример.
Разрез дома, с действующими нагрузками.
Сбор нагрузок на ленточный фундамент пример.
Требуется:
Сбор нагрузок на внутреннюю несущую стену.
Определяем нагрузки, действующие на 1 м 2 грузовой площади (кг/м 2 ) всех конструкций, нагрузка которых передается на фундамент.
Рекомендация: Хорошая обзорная статья, из нее узнаете о том как сделать сбор примерный расчет нагрузок на фундамент. Вы можете изучить для общего развития, чтобы знать как происходит сбор нагрузок. Но если у вас нет опыта и практики, чтобы не потерять свои деньги, вы должны обратиться к профессионалам, т.е. к работающим инженерам или проектировщикам. Не нужно бездумно рисковать своим строением!
Определение грузовых площадей
Грузовая площадь определяется из расчета передачи на две стены с расчетного пролета плиты, т.е. грузовая площадь будет равна половине пролета плиты. По длине принимаем 1 м.п. Расчет ведется по рисунку 2.
Сечение 1-1: выбирается по наружней несущей стене по оси Д:
— грузовая площадь для сбора нагрузок с перекрытия:
.
Сечение 2-2: выбирается по внутренней несущей стене по оси Г:
— грузовая площадь для сбора нагрузок с перекрытия:
.
Сечение 3-3: выбирается по наружной несущей стене по оси 3:
— грузовая площадь для сбора нагрузок с перекрытия:
.
Сечение 4-4: выбирается по внутренней несущей стене по оси 2:
— грузовая площадь для сбора нагрузок с перекрытия:
.
Сечение 5-5: выбирается по наружной несущей стене по оси Б:
— грузовая площадь для сбора нагрузок с перекрытия:
.
Сечение 6-6: выбирается по внутренней несущей стене по оси 2:
— грузовая площадь для сбора нагрузок с перекрытия:
.
Грузовые площади с перекрытий сведем в таблицу
Расчетные сечения | 1-1 | 2-2 | 3-3 | 4-4 | 5-5 | 6-6 |
3,0 | 4,65 | 1,5 | 1,5 | 1,65 |
Постоянные нагрузки
Нагрузки от собственного веса стен на 1 м.п.
Нагрузки от собственного веса стен на 1м.п.
Определение нормативных нагрузок от собственного веса стен
Исходные данные:
удельный вес стен ;
удельный вес стен .
В запас прочности дверные проемы не учитываются.
a) Наружная стена без проемов, ось 3
— высота стены,м;
— толщина стены, м;
— длина стены, м.
Для стен без проемов =1 м, т.е. определяется погонный вес стены. При расчете, в запас прочности, толщину парапета принимаем равной толщине стены.
b) Внутренняя стена без проемов, оси 2,В,Г
c) Наружная стена с проемами(окнами), ось Д
Р- вес одного погонного метра глухой наружной стены, кН;
Р=239,616 ;
— площадь окон по фасаду на одном этаже в пределах , ;
=6*1,81*2,11+0,5*1,81*2,11=24,82415
0,7 — вес 1 двойного остекления.
кН
Нагрузка на 1 м.п.: .
d) Наружная стена с проемами(окнами), ось 1
Р=239,616 ;
= 1,21*2,11=2,5531 ;
= 6;
кН
.
e) Наружная стена с проемами(окнами), ось А
Р=239,616 ;
= 3*1,51*2,11=9,5583 ;
= 6;
кН
.
f) Наружная стена с проемами(окнами), ось Б
Р=239,616 ;
= 3*1,81*2,11=11,4573 ;
= 6;
кН
.
Определение расчетных нагрузок от собственного веса стен
Результаты сводим в таблицу
Нормативная нагрузка | Расчетные нагрузки, кН/м | ||||
Стена по оси «3» | 239,616 | 1,0 | 239,616 | 1,1 | 263,5776 |
Стена по осям «2,В,Г» | 135,432 | 1,0 | 135,432 | 1,1 | 148,9752 |
Стена по оси «Д» | 154,347 | 1,0 | 154,347 | 1,1 | 169,7817 |
Стена по оси «1» | 228,201 | 1,0 | 228,201 | 1,1 | 251,0211 |
Стена по оси «А» | 169,894 | 1,0 | 169,894 | 1,1 | 186,8834 |
Стена по оси «Б» | 165,235 | 1,0 | 165,235 | 1,1 | 181,7585 |
Временные нагрузки
Нагрузки на перекрытие и снеговые нагрузки, согласно СП 20.13330.2011 «Нагрузки и воздействия», могут относиться к длительным и кратковременным. При расчёте по первой группе предельных состояний они учитываются как кратковременные, а при расчете второй группы – как длительные. Для определения длительных нагрузок берем пониженное нормативное давление, для определения кратковременных нагрузок берем полное нормативное значение.
Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.