гидравлическое сопротивление теплого пола
Калькулятор расчета водяного теплого пола
Информация по назначению калькулятора
О нлайн калькулятор водяного теплого пола предназначен для расчета основных тепловых и гидравлических параметров системы, расчета диаметра и длины трубы. Калькулятор предоставляет возможность осуществить расчет теплого пола, реализованного «мокрым» способом с обустройством монолитного пола из цементно-песчаного раствора или бетона, а также с реализацией «сухим» методом, с использованием тепло-распределяющих пластин. Устройство системы ТП «сухим» методом предпочтительно для деревянных полов и перекрытий.
Т епловые потоки, направленные снизу-вверх, являются наиболее предпочтительными и комфортными для человеческого восприятия. Именно поэтому обогрев помещений теплыми полами становится наиболее популярным решением по сравнению с настенными источниками тепла. Нагревательные элементы такой системы не занимают дополнительного места в отличие от настенных радиаторов.
П равильно спроектированные и реализованные системы теплого пола являются современным и комфортным источником обогрева помещений. Использование современных и качественных материалов, а также правильных расчетов, позволяет создать эффективную и надежную систему отопления со сроком службы не менее 50 лет.
С истема теплого пола может выступать единственным источником обогрева помещения только в регионах с теплым климатом и с использованием энерго-эффективных материалов. При недостаточном тепловом потоке обязательно применение дополнительных источников тепла.
П олученные расчеты будут особенно полезны тем, кто планирует реализовать систему отопления теплого пола своими руками в частном доме.
Общие сведения по результатам расчетов
Калькулятор работает в тестовом режиме. Дата добавления калькулятора 11.03.2018
Методика укрупненных расчетов «теплого пола»
А. Кузьмук
Водяной «теплый пол» все чаще проектируется в домах в Украине, как основной источник тепла. Его преимущества – экономия, комфорт, свобода в расстановке мебели. Попробую дать упрощенную, основанную на личном опыте, авторскую методику из нескольких пунктов о том, как проще, но, в то же время, максимально правильно спроектировать и создать систему поверхностного отопления, что называется «теплый пол водяной своими руками»
Точность теплопотерь – миссия невозможна
При проектировании любой системы отопления, включая «теплый пол», необходимо первым делом выполнить расчет потерь тепла. Он сложен и включает множество нюансов, которые необходимо учитывать: материал, толщина и теплопроводность стен; конструкция окон и размеры проемов; внутренний объем помещений; расположение по сторонам света; потери через вентиляцию и т.д.
Конечно, для упрощения можно применять компьютерные программы. Однако, дело в том, что точно рассчитать теплопотери практически невозможно. Ведь могут быть существенные отличия в характеристиках материалов на объекте от идеальных условий, в которых проходят их испытания при сертификации. Нередко встречаются отклонения от проекта, да и качество строительных работ также далеко не всегда на высоте. Есть ли смысл проводить подробные расчеты, если точно неизвестно как сделаны стены, к примеру, есть ли щели и мостики холода в местах примыканий? Строительная конструкция в любом случае несовершенна, поэтому подробные расчеты тоже могут быть неточными.
Исходя из этого во многих случаях можно обойтись ориентировочными укрупненными расчетами.
Для снижения нагрузки на систему «теплого пола» и покрытия пиковых потребностей в морозы можно дополнительно использовать приборы отопления (радиаторы или конвекторы). Их применение особенно важно, если в помещении есть большие оконные проемы, чтобы отсечь идущий от них холодный воздух.
Оптимальная длина = удобство запуска
Перейдем непосредственно к проектированию системы «теплого пола». Его контуры рекомендуется делать в виде «улитки» (рис. 1), по возможности одинаковыми по протяженности – около 80 м. Максимальная длина труб – до 120 м. Это объясняется тем, что при такой конфигурации упрощается ввод системы в эксплуатацию.
Рис. 1. Укладка труб «теплого пола» в виде «улитки»
Прежде всего, речь идет об удалении воздуха из системы «теплого пола». Для этого сначала заполняют систему водой, желательной умягченной. Затем закрывают все контура, кроме одного, при помощи клапанов на подаче и обратном трубопроводе. После включают циркуляционный насос «теплого пола» и дают ему поработать 2-3 минуты. Часто, если длина контура менее 80 м, эта операция получается успешно.
Если же таким способом воздух удалить не удалось – расходомер показывает 0 л/мин., – то необходимо его выдавить с помощью давления водопроводной сети или посредством насосной станции с емкостью для теплоносителя.
Шаг укладки – на грани комфорта и экономии
Таблица. Расход труб и площадь контура в зависимости от шага укладки
Соблюдение указанных оптимальных значений шага укладки, при условии, что температура поверхности «теплого пола» составляет рекомендуемые 25-26°С, позволяет обеспечить температуру воздуха в помещении 22°С.
Отмечу, что эти и прочие рекомендации в данной статье указаны для труб диаметром 16 или 17 мм. Естественно, они должны быть предназначены для систем поверхностного отопления, к примеру, в нашей стране часто используются полиэтиленовые трубы RAUTHERM S производства REHAU (Германия).
Гидравлические расчеты – по-простому
Важный параметр при выборе насосного оборудования – гидравлическое сопротивление системы «теплого пола». Оно, в основном, складывается из потерь в контуре (из расчета 150 Па/м для максимальной длины контура 120 м – около 18 000 Па), коллекторе (10 000 Па), в трехходовом смесительном клапане (5 000 Па). Таким образом, выходим на суммарную цифру 33 000 Па.
Десять тысяч паскалей соответствуют одному метру напора, который должен создавать насос. То есть сопротивление всей системы с одним контуром максимальной длины – не более 3,5 м. Именно такой максимальный напор должен создавать насос для такой системы «теплого пола».
Для определения расхода (G, м 3 /ч) необходимо знать мощность контура (Q, кВт) и температуры теплоносителя (Т, °С) на линиях подачи и обратки. Кроме того, учитывается коэффициент 1,163.
Расход определяется по формуле:
Балансировку системы «теплого пола» достаточно просто можно произвести путем установки определенных значений G на расходомерах коллектора. При этом для перевода м 3 /ч в л/м (градуировка расходомера) необходимо полученный выше расход умножить на 1000 и разделить на 60.
Конструкционные особенности: миф о фольге
Трубы «теплого пола» необходимо укладывать на слой теплоизоляции. При этом лучше всего использовать фирменный утеплитель. Часто в качестве него используется пенополистирол. В случае, если система укладывается на плиту межэтажного перекрытия, то толщина листа утеплителя должна составлять 30 мм. При монтаже непосредственно на грунт, желательно увеличить этот параметр до 50 мм.
Существует миф о том, что для снижения теплопотерь необходима еще укладка в основание фольгированного пенофола. Это является заблуждением, ведь в конструкции «теплого пола» все слои плотно прижаты друг к другу, следовательно, тепло передается за счет теплопроводности, а не излучения. В то же время, важна отстенная изоляция по периметру помещения, для ликвидации мостиков холода.
Заказчики часто интересуются тем, какой толщины должна быть стяжка над трубой «теплого пола». Отвечу, что оптимальный вариант – 50 мм плюс напольное покрытие (плитка, ламинат, ковролин, линолеум или паркет). При укладке стяжки вручную – а это наиболее распространенный в нашей стране способ – желательно использовать качественные материалы: цемент марки М400, чистый речной песок, можно добавить мелкий щебень (фракция до 10 мм, не гран отсев, поскольку в нем много пыли). Соотношение указанных компонентов – 1:3:3.
Когда нужны «организованные трещины»?
Деформационные швы, по сути, представляют собой «организованные трещины», которые предохраняют напольное покрытие от разрушения вследствие температурных расширений при эксплуатации. Их необходимо предусматривать в местах дверных проемов, а также в следующих случаях: если площадь комнаты больше 40 м 2 ; при длине стены свыше 8 м или при соотношении сторон больше, чем один к двум; при сильно изломанном периметре помещения (рис. 2). При этом нельзя делать шов, пересекая все трубы контура. Подробнее о том, как не навредить в процессе инсталляции можно прочитать в статье «Распространенные ошибки монтажа «теплого пола».
Рис. 2. Варианты расположения деформационных швов:
а) в помещениях сложной геометрии; б) неправильное расположение; в) правильное размещение
Для «теплых полов» нужен теплоноситель с пониженной температурой, поэтому для таких систем прекрасно подходят конденсационные котлы и тепловые насосы. Подключение к ним производится посредством различных смесительных узлов. Они позволяют регулировать температуру подачи, в том числе, в зависимости от погоды.
Видео. Проектирование «теплого пола»
В целях большей экономии энергоресурсов и достижения максимального комфорта систему на основе «теплого пола» можно дооснастить покомнатным регулированием.
Резюме
На основе вышеизложенных рекомендаций можно выделить следующие ключевые моменты экспресс-проектирования «теплого пола»:
Все остальное – на выбор и желание пользователя. Удачных вам решений и успехов в делах!
Читайте статьи и новости в Telegram-канале AW-Therm. Подписывайтесь на YouTube-канал.
Как сделать расчет теплого пола на примере водяной системы
На эффективность теплого пола оказывают влияние многие факторы. Без их учета даже при условии, что система правильно смонтирована, и для ее устройства применены самые современные материалы, реальная теплоэффективность не оправдает ожиданий.
По этой причине монтажным работам обязательно должен предшествовать грамотный расчет теплого пола, и только тогда можно гарантировать хороший результат.
Разработка проекта отопительной системы стоит недешево, поэтому многие домашние умельцы проводят вычисления самостоятельно. Согласитесь, идея сокращения расходов на обустройство теплого пола кажется очень заманчивой.
Мы подскажем вам, как создать проект, какие критерии учесть при выборе параметров отопительной системы и распишем пошаговую методику расчета. Для наглядности мы подготовили пример вычисления теплого пола.
Исходные данные для расчета
Изначально правильно спланированный ход проектных и монтажных работ избавит от неожиданностей и неприятных проблем в дальнейшем.
При расчете теплого пола необходимо исходить из следующих данных:
Для выполнения грамотного проектирования требуется обязательный учет установленного температурного режима и возможности его регулировки.
Существуют рекомендации по поводу температуры у пола, обеспечивающей комфортное пребывание в помещениях разного предназначения:
Превышение этих значений влечет за собой перегрев как самой системы, так и финишного покрытия с последующей неизбежной порчей материала.
Проведя предварительные расчеты, можно выбрать оптимальную по личным ощущениям температуру теплоносителя, определить нагрузку на обогревательный контур и приобрести насосное оборудование, безукоризненно справляющееся со стимулированием движения теплоносителя. Его подбирают с запасом по расходу теплоносителя в 20%.
На стадии проектирования следует решить, будет ли теплый пол основным поставщиком тепла или станет использоваться лишь как дополнение к радиаторной отопительной ветке. От этого зависит доля потерь тепловой энергии, которые ему предстоит возмещать. Она может составить от 30% до 60% с вариациями.
Время нагрева водяного пола находится в зависимости от толщины элементов входящих в стяжку. Вода как теплоноситель очень эффективна, но сама система отличается сложностью в монтаже.
Определение параметров теплого пола
Целью расчета является получение величины тепловой нагрузки. Результат этого расчета влияет на последующие предпринимаемые шаги. В свою очередь, на тепловую нагрузку влияет среднее значение зимней температуры в конкретном регионе, предполагаемая температура внутри комнат, коэффициент теплопередачи потолка, стен, окон и дверей.
Итоговый результат расчетов перед устройством теплого пола водяного типа будет зависеть и от наличия дополнительных нагревательных приборов, включая тепловыделение проживающих в доме людей и домашних питомцев. Обязательно учитывают в расчете наличие инфильтрации.
Одним из важных параметров является конфигурация комнат, поэтому потребуется поэтажный план дома и соответствующие разрезы.
Методика расчета потерь тепла
Определив этот параметр, вы узнаете, сколько тепла должен вырабатывать пол для комфортного самочувствия людей, находящихся в комнате, сможете подобрать котел, насос и пол по мощности. Другими словами: теплота, отдаваемая отопительными контурами, должна компенсировать теплопотери строения.
Связь между этими двумя параметрами выражает формула:
Mп = 1,2 х Q, где
Для определения второго показателя оформляют замеры и вычисления площади окон, дверей, перекрытий, наружных стен. Так как пол будет обогреваться, площадь этой ограждающей конструкции не учитывается. Замеры делают по внешней стороне с захватом углов здания.
В расчете будет учитываться и толщина, и коэффициент теплопроводности каждой из конструкций. Нормативные значения коэффициента теплопроводности (λ) для наиболее часто используемых материалов можно взять из таблицы.
Подсчет теплопотерь выполняют отдельно для каждого элемента здания, используя формулу:
Q = 1/R*(tв-tн)*S х (1+∑b), где
Показатель термического сопротивления (R) находят, разделив толщину конструкции на коэффициент теплопроводности материала, из которого она изготовлена.
Значение коэффициента b зависит от ориентации дома:
Если рассмотреть вопрос на любом примере расчета водяного теплого пола, он становится более понятным.
Конкретный пример расчета
Учитывая, что коэффициент теплопроводности блоков λ = 0,3 Вт/(м°*С), можно вычислить теплопотери через стены: R=0,2/0,3= 0,67 м²°С/Вт.
Наблюдаются потери тепла и через слой штукатурки. Если ее толщина 20 мм, то Rшт. = 0,02/0,3 = 0,07 м²°С/Вт. Сумма этих двух показателей даст значение потерь тепла через стены: 0,67+0,07 = 0,74 м²°С/Вт.
Имея все исходные данные, подставляют их в формулу и получают теплопотери комнаты с такими стенами: Q = 1/0,74*(20 — (-25)) *60*(1+0,05) = 3831,08 Вт.
Таким же образом вычисляют потери тепла через остальные ограждающие конструкции: окна, дверные проемы, кровлю.
Для определения теплопотерь через потолок принимают его термическое сопротивление равным значению для планируемого или имеющегося вида утеплителя: R = 0,18/0,041 = 4,39 м²°С / Вт.
Площадь потолка идентична площади пола и равна 70 м². Подставив эти значения в формулу, получают потери тепла через верхнюю ограждающую конструкцию: Q пот. = 1/4,39*(20 — (-25))* 70* (1+0,05) = 753,42 Вт.
Чтобы определить потери тепла через поверхность окон, нужно подсчитать их площадь. При наличии 4-х окон шириной 1,5 м и высотой 1,4 м их общая площадь составит: 4*1,5*1,4 = 8,4 м².
Если производитель указывает отдельно тепловое сопротивление для стеклопакета и профиля — 0,5 и 0,56 м²°С/Вт соответственно, то Rокон = 0,5*90+0,56*10)/100 = 0,56 м²°С/Вт. Здесь 90 и 10 — доля, приходящаяся на каждый элемент окна.
Исходя из полученных данных, продолжают дальнейшие вычисления: Qокон = 1/0,56*(20 — (-25))*8,4*(1+0,05) = 708,75 Вт.
Наружная дверь имеет площадь 0,95*2,04 = 1,938 м². Тогда Rдв. = 0,06/0,14 = 0,43 м²°С/Вт. Q дв. = 1/0,43*(20 — (-25))* 1,938*(1+0,05) = 212,95 Вт.
В итоге теплопотери составят: Q = 3831,08 +753,42 + 708,75 + 212,95 + 7406,25 = Вт.
К этому результату добавляют еще 10% на инфильтрацию воздуха, тогда Q = 7406,25+740,6 = 8146,85 Вт.
Теперь можно определить и тепловую мощность пола: Mп = 1,*8146,85 = 9776,22 Вт или 9,8 кВт.
Необходимое тепло на нагрев воздуха
Если дом оборудован вентиляционной системой, то какая-то часть тепла, выделяемая источником, должна расходоваться на нагрев, поступающего извне, воздуха.
Для вычисления применяют формулу:
Qв. = c*m*(tв—tн), где
Получают последний параметр путем умножения общего объема воздуха, равного объему всех помещений при условии, что воздух обновляется каждый час, на плотность, изменяющуюся в зависимости от температуры.
Если в здание поступает 400 м 3 /ч, то m=400*1,422 = 568,8 кг/ч. Qв. = 0,28*568,8*45 = 7166,88 Вт.
В этом случае необходимая тепловая мощность пола значительно увеличится.
Расчет необходимого количества труб
Для устройства пола с водяным обогревом выбирают разные методы укладки труб, отличающиеся формой: змейка трех видов – собственно змейка, угловая, двойная и улитка. В одном смонтированном контуре моет встречаться комбинация разных форм. Иногда для центральной зоны пола выбирают «улитку» а для краев — однин из видов «змейки».
Дистанцию между трубами называют шагом. Выбирая этот параметр нужно удовлетворить два требования: ступня ноги не должна чувствовать разницы температуры на отдельных зонах пола, а использовать трубы нужно максимально эффективно.
Для пограничных зон пола рекомендуют применять шаг в 100 мм. На остальных участках можно сделать выбор шага в пределах от 150 до 300 мм.
Для подсчета длины трубы есть простая формула:
L = S/N*1.1, где
К итоговому значению добавляют отрезок трубы, проложенной от коллектора до разводки теплого контура как на обратке, так и на подаче.
Пример расчета.
Решение задачи простое: 10/0,15*1,1+(6*2) = 85,3 м.
Используя металлопластиковые трубы длиной до 100 м, чаще всего выбирают диаметр 16 или 20 мм. При длине трубы 120-125 м сечение ее должно равняться 20 мм².
Одноконтурная конструкция подходит только для помещения с небольшой площадью. Пол в больших комнатах делят на несколько контуров в соотношении 1:2 – длина конструкции должна превышать ширину в 2 раза.
Вычисленное ранее значение — это протяженность трубы для пола в целом. Однако для полноты картины нужно выделить длину отдельного контура.
На этот параметр влияет гидравлическое сопротивление контура, определяемое диаметром выбранных труб и объемом воды подаваемой в единицу времени. Если этими факторами пренебречь, потери давления будут настолько большими, что никакой насос не заставит теплоноситель циркулировать.
Контуры одной длины — это случай идеальный, но на практике встречающийся нечасто, т.к площади помещений разного предназначения очень отличается и приводить длину контуров к одному значению просто нецелесообразно. Профессионалы допускают разницу в длине труб от 30 до 40%.
Величиной диаметра коллектора и пропускной способностью узла смешения определяется допустимое число петель, подключенных к нему. В паспорте на узел смешения всегда можно найти величину тепловой нагрузки, на которую он рассчитан.
Допустим, коэффициент пропускной способности (Kvs) равен 2,23 м 3 /ч. При таком коэффициенте определенные модели насоса выдерживают нагрузку от 10 до 15 Вт.
Чтобы определить количество контуров, нужно вычислить тепловую нагрузку каждого. Если площадь, занимаемая теплым полом, равняется 10 м², а теплоотдача 1 м², то показатель Kvs составляет 80 Вт, то 10*80 = 800 Вт. Значит, узел смешения сможет обеспечить 15 000/800 = 18,8 помещений или контуров площадью по 10 м².
Эти показатели максимальные, и применить их можно только теоретически, а в действительности цифру нужно уменьшить минимум на 2, тогда 18 – 2 = 16 контуров.
Нужно при подборе смесительного узла (коллектора) смотреть, есть ли у него такое количество выводов.
Проверка правильности подбора диаметра труб
Чтобы проверить, правильно ли было подобрано сечение труб, можно воспользоваться формулой:
υ = 4*Q*10ᶾ/n*d²
Когда скорость соответствует найденному значению, сечение труб выбрано верно. Нормативные документы допускают скорость максимум 3 м/сек. при диаметре до 0,25 м, но оптимальным значением является 0,8 м/сек., так как при росте ее величины повышается шумовой эффект в трубопроводе.
Дополнительная информация по расчету труб теплого пола приведена в этой статье.
Рассчитываем циркуляционный насос
Чтобы система получилась экономичной, нужно подобрать циркуляционный насос, обеспечивающий нужный напор и оптимальный расход воды в контурах. В паспортах насосов обычно указывают напор в контуре самой большой длины и суммарный расход теплоносителя во всех петлях.
На напор оказывают влияние гидравлические потери:
∆ h = L*Q²/k1, где
Зная величину напора, вычисляют расход в системе:
Q = k*√H, где
k — это коэффициент расхода. Профессионалы принимают расход на каждые 10 м² дома в пределах 0,3-0,4 л/с.
Цифры, касающиеся величины напора и расхода, указанные в паспорте, нельзя воспринимать буквально — это максимум, а фактически на них оказывает влияние протяженность, геометрия сети. При слишком большом напоре уменьшают длину контура или увеличивают диаметр труб.
Рекомендации по выбору толщины стяжки
В справочниках можно найти сведения о том, что минимальная толщина стяжки составляет 30 мм. Когда помещение довольно высокое, под стяжку подкладывают утеплитель, повышающий эффективность использования тепла, отдаваемого отопительным контуром.
Самым популярным материалом для подложки является экструдированный пенополистирол. У него сопротивление теплопередачи значительно ниже, чем у бетона.
При устройстве стяжки, чтобы уравновесить линейные расширения бетона, периметр помещения оформляют демпферной лентой. Важно правильно выбрать ее толщину. Специалисты советуют при площади помещения, не превышающей 100 м², устраивать 5 мм компенсирующий слой.
Если значения площади больше за счет длины, превышающей 10 м, толщину высчитывают по формуле:
b = 0,55*L, где
L – это длина комнаты в м.
Выводы и полезное видео по теме
О расчете и монтаже теплого гидравлического пола этот видеоматериал:
В видео предоставлены практичные рекомендации по укладке пола. Информация поможет избежать ошибок, которые обычно допускают любители:
Расчет делает возможным спроектировать систему «теплый пол» с оптимальными эксплуатационными показателями. Допустимо смонтировать отопление, пользуясь паспортными данными и рекомендациями.
Оно будет работать, но профессионалы советуют все таки потратить время на расчет, чтобы в итоге система расходовала меньше энергии.
Имеете опыт в проведении расчета теплого пола и подготовки проекта отопительного контура? Или остались вопросы по теме? Пожалуйста, делитесь своим мнением и оставляйте комментарии.
Примеры расчета насоса для водяного пола
Все большее число домовладельцев для отопления применяют системы теплого водяного отопления. Это не очень сложное инженерное сооружение, поэтому перед началом работ надо выполнить расчет насоса для теплого пола.
Такой расчет можно выполнить своими силам или воспользоваться онлайн-калькулятором. Они обычно располагаются на сайтах компаний, которые занимаются монтажом таких отопительных систем.
Данные необходимые для правильного расчета насоса
Принцип работы типовой отопительной системы замкнутого типа довольно прост.
Котельное оборудование нагревает теплоноситель, который проходит через отопительные приборы, отдавая тепловую энергию в окружающее пространство. Если при сооружении будет использована естественная циркуляция теплоносителя, то придется укладывать трубопровод под определенным углом к горизонту. Это позволит рабочей жидкости перемещаться самостоятельно.
Но при таком способе невозможно обеспечить достаточно высокую скорость передвижения теплоносителя из-за чего он возвращается в котел сильно охлажденным и это вынуждает его работать непрерывно с предельной нагрузкой. В связи с этим теплый пол без насоса, схема подключения которого находится на сайтах компаний, может доставлять определенные трудности в эксплуатации.
Для того чтобы увеличить скорость потока, используют циркуляционные насосы. Их использование позволяет добиться разницы температуры на входе и выходе из линии трубопровода в несколько градусов. Соответственно, котел перестает работать с полной нагрузкой, так снижаются затраты на энергию.
Конструктивно насос состоит из: корпуса, для изготовления которого применяют медные и нержавеющие сплавы; электрического двигателя; рабочего колеса (крыльчатки). При его вращении появляется центробежная сила. В итоге на выходе из корпуса формируется требуемый набор, и рабочая жидкость подается в трубопровод.
Существует два типа насосов — сухие и мокрые. Они отличаются друг от друга строением ротора. В конструкции мокрого колеса расположено непосредственно в рабочей среде, но электрическая часть узла надежно герметизирована в металлическом стакане, разделяющем статор и ротор.
Но такой тип агрегатов не стоит устанавливать для перекачивания горячей воды, с течением времени соли, растворенные в воде, забьют собой микронные зазоры между ротором и статором, в результате чего двигатель перестанет функционировать.
В двигателе сухого типа рабочее колесо также погружено в рабочую среду, но при этом элемент полностью от нее изолирован. Следует отметить, что устройства последнего типа отличаются высокой производительностью.
Домовладелец должен понимать, что расчет циркуляционного насоса для теплого пола, это довольно сложное дело и будет лучше, если его выполнят специалисты теплотехники. Кстати, после проведения расчетов будет ясна и схема подключения насоса теплого пола.
Как правило, в загородных домах применяют отопительные системы двух типов – с принудительной подачей теплоносителя и естественной. Первый тип обеспечивает циркуляционный насос. Его задача заключается в обеспечении подачи теплоносителя с заданной скоростью. Для проведения расчетов циркуляционного насоса потребуются следующие данные:
При выполнении расчета необходимо учесть разницу температуры в трубопроводе, то есть в трубе выходящей из нагревательного прибора и той, через которую она подаётся обратно. Для длинных трубопроводов разница может составлять до 20 град, если в отопительной системе использованы короткие контуры, такое значение составляет 10 град. Если обогревание теплого пола выполняют с небольшой площадью, то температурный перепад принимают равным 5 градусам.
Нельзя забывать и о типе теплоносителя. Если в трубопровод залита вода, то при расчете принимают коэффициент теплоемкости, он составляет 1,163. Если в системе применяют антифриз, то этот коэффициент имеет другое значение и его определяют по специальной литературе.
Кроме названных данных, при выполнении расчетов потребуются следующие данные:
Количество контуров
При укладке теплого пола применяют цельную трубу. Наличие соединений повышает вероятность повреждения трубы по стыку, а это приводит к дополнительным затратам на ремонт и восстановление отопительной системы.
То есть домовладелец должен знать общую длину теплового контура. По сути, это самый простой расчет, но для его проведения потребуется подготовить детальную схему помещения с указанием всех линий и расстоянием между ними.
Для проведения подобного расчета применяют несколько методик:
Следует обратить внимание на то, что оптимальная длина трубопроводной системы составляет 80 – 120 п.м. То есть при таких параметрах теплоноситель прогреет помещение, и при этом не остынет до той температуры, при которой произойдёт падение давление в системе. Если расчетная длина будет больше этой величины, то имеет смысл смонтировать второй контур подачи тепла.
Гидравлическое сопротивление трубы
Сопротивление перемещения потока теплоносителя, которое оказывает трубопроводная система, называют гидравлическим. Его оценивают как объем утерянной тепловой энергии, израсходованной на силы трения.
Любая трубопроводная конструкция состоит не только из прямых отрезков, но и поворотов, ответвлений и пр., для их формирования применяют различные соединительные устройства. Все это приводит к появлению гидравлического сопротивления. Оно зависит и от материала, использованного для производства трубопровода.
Проведение соответствующих расчетов позволит снизить тепловые потери и, таким образом, избежать ненужных затрат энергии. Гидравлический расчет проводят для достижения следующих целей:
В ходе движения по закрытому контуру поток должен преодолевать определенное сопротивление. С его увеличением должна быть повышена мощность насоса.
На самом деле нет смысла приобретать оборудование большой мощности, так как вырастут энергозатраты. Если она будет недостаточной, то насос не сможет обеспечить требуемое давление, а это приведет к росту тепловых потерь.
Маркировка насоса
Для правильного подбора насосного оборудования, который предназначен для обеспечения принудительного движения теплового носителя, требуется разбираться в его технических характеристиках. Еще необходимо понимать, какая информация зашифрована в его маркировке.
На деле требуется обращать внимание на два ключевых свойства- напор и производительность (расход).
Напором называют сопротивление, создаваемое системой, преодолеваемое агрегатом. Для измерения этой характеристики применяют метры водяного столба. По большей части предельное давление задано верхней точкой трубопровода, по которому происходит перемещение теплоносителя.
Производительность говорит о том, какое количество теплоносителя возможно передать по трубопроводу за определённое количество времени. Производительность измеряют в куб.м в час.
На шильдике, который закреплен на корпусе насоса, указываются следующие данные:
Длина насоса
При расчете длины трубопровода необходимо учитывать строительную длину насоса, то есть расстояние между торцами насоса. Если в расчете будет совершена ошибка или указан слишком короткий размер, то придется слишком сильно натягивать трубы. Это чревато повреждением рукава.
Пример расчета насоса
Исходя из того, что на один кв. м потребуется уложить пять погонных метров рукава – в помещении на 50 кв. м потребуется уложить 250 п. м рукава, плюс 37 метров запаса на повороты. Так как типовая поставка составляет 120 метров, придется устанавливать три отрезка, два по 120 метров и один на 37 м.
На 50 м.кв.(1 контур)
При использовании придется устанавливать один циркуляционный насос. Его производительность должна быть определена по выражению
Q = 0,86*Pн/(tпр.т — tобр.т, где
Pн — мощность отопительного контура, кВт,
tобр.т — температура теплоносителя в линии обратной подачи,
tпр.т — температура в линии прямой подачи.
На 50 м.кв. (2 контура)
В системе, где проложены два контура, придется проводить расчет по каждому из насосов по той же формуле, что приведена в предыдущем разделе
ВАЖНО! ПОДКЛЮЧЕНИЕ МОЖЕТ БЫТЬ ПРОВЕДЕНО ТОЛЬКО ПОСЛЕ ТОГО, КАК СМОНТИРОВАНА КОЛЛЕКТОРНАЯ ГРУППА ДЛЯ ТЕПЛОГО ПОЛА С НАСОСОМ.
В каких случаях можно обойтись без насоса
Перемещение теплоносителя в контуре может происходить благодаря законам физики. То есть, нагретая рабочая жидкость поднимается вверх, а охлажденная опускается вниз. Таким образом происходит нагрев помещения, так работает теплый пол без насоса от котла.
Больше всего такие системы применяют в загородных домах или на дачах. Это обусловлено тем, что в пригородных условиях электроснабжение не всегда отличается стабильностью или его нет вообще. Поэтому не всегда целесообразно использовать оборудование с принудительной циркуляцией.
На интернет-ресурсах компаний, которые заняты установкой подобного оборудования, можно найти схему подключения насоса для теплого пола.