движущийся проводник в магнитном поле формула

ЭДС при движении проводника в поле

ЭДС при движении проводника в магнитном поле.

При движении перемычки К на электроны действует сила Лоренца, совершающая работу. Электроны перемещаются отС к А. Перемычка – источник ЭДС. Следовательно

движущийся проводник в магнитном поле формула

движущийся проводник в магнитном поле формула

Эта формула используется в любом проводнике, движущемся в магнитном поле, если движущийся проводник в магнитном поле формула ↑↑ движущийся проводник в магнитном поле формула.

Если между векторами движущийся проводник в магнитном поле формулаи движущийся проводник в магнитном поле формула есть угол, то используется формула

движущийся проводник в магнитном поле формула

движущийся проводник в магнитном поле формула

движущийся проводник в магнитном поле формула

Другой способ вывода формулы эдс в движущемся проводнике.

Т.к. – электроны начинают под действием силы Лоренца перемещаться к одному из концов проводника, то возникает электрическое поле. Оно будет возрастать до тех пор, пока электрическая сила не уравновесит силу Лоренца. движущийся проводник в магнитном поле формула.

Учитывая, что движущийся проводник в магнитном поле формула, получим: движущийся проводник в магнитном поле формула.

Явление существенно при движении проводников значительной длины или с большой скоростью, например, при полете самолета (в магнитном поле Земли).

Знак можно определить по правилу правой руки Правило правой руки для индукционного тока. Если правую руку расположить так, чтобы линии магнитной индукции (В) входили в ла­донь, а отогнутый большой палец по­казывал направление движения провод­ника, то четыре вытянутых пальца ука­жут направление индукционного тока в проводнике.

Вихревое электрическое поле

Электроны в проводниках вторичной обмотки приводятся в движение элект­рическим полем (ЭП), которое порож­дается переменным магнитным полем (МП).

движущийся проводник в магнитном поле формула

Фундаментальное свойство поля.

ЭП, порождаемое переменным МП, не связано с зарядом; силовые линии нигде не начинаются и не кончаются, т. е. линии замкнутые. Такое поле — вихревое электрическое.

движущийся проводник в магнитном поле формула

Токи Фуко

Индукционный ток в массивных проводниках называют то­ками Фуко.

Используют: плавка металлов в вакууме. Вредное действие: бесполезная потеря энергии в сердечниках трансформаторов и в генераторах.

Источник

Закон электромагнитной индукции. ЭДС индукции в движущихся проводниках.

ЭДС индукции в проводниках, которые движутся в постоянном магнитном поле, соответствует 2му типу электромагнитной индукции, который обусловлен не переменным внешним магнитным полем, а действием сил Лоренца на свободные заряды проводника.

ЭДС индукции, которая возникает на концах проводника имеющего длину l, и который движется с постоянной скоростью v под определнным углом α к вектору индукции движущийся проводник в магнитном поле формулаоднородного магнитного поля, равна:

движущийся проводник в магнитном поле формула.

где A — работа силы Лоренца по перемещению заряда q на пути l, FL — сила Лоренца, которая действу­ет на заряд, что движется.

Если такой проводник является частью замкнутой цепи, осталь­ные части которой неподвижны, то в цепи образуется электрический ток.

движущийся проводник в магнитном поле формула

движущийся проводник в магнитном поле формула.

где R — сопротивление нагрузки (лампочки); r — сопротивление проводника, который играет роль внутреннего сопротивления источни­ка тока (сопротивлением соединяющих проводников пренебрегаем).

С другой стороны, эту же ЭДС индукции можно получить, применив основной закон электромагнитной индукции:

движущийся проводник в магнитном поле формула.

Источник

Закон электромагнитной индукции

движущийся проводник в магнитном поле формула

Магнитный поток

Прежде, чем разобраться с тем, что такое электромагнитная индукция, нужно определить такую сущность, как магнитный поток.

Представьте, что вы взяли обруч в руки и вышли на улицу в ливень. Чем сильнее ливень, тем больше через этот обруч пройдет воды — поток воды больше.

движущийся проводник в магнитном поле формула

Если обруч расположен горизонтально, то через него пройдет много воды. А если начать его поворачивать — уже меньше, потому что он расположен не под прямым углом к вертикали.

движущийся проводник в магнитном поле формула

Теперь давайте поставим обруч вертикально — ни одной капли не пройдет сквозь него (если ветер не подует, конечно).

движущийся проводник в магнитном поле формула

Магнитный поток по сути своей — это тот же самый поток воды через обруч, только считаем мы величину прошедшего через площадь магнитного поля, а не дождя.

Магнитным потоком через площадь ​S​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​B​, площади поверхности ​S​, пронизываемой данным потоком, и косинуса угла ​α​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

движущийся проводник в магнитном поле формула

Магнитный поток

движущийся проводник в магнитном поле формула

Ф — магнитный поток [Вб]

B — магнитная индукция [Тл]

S — площадь пронизываемой поверхности [м^2]

n — вектор нормали (перпендикуляр к поверхности) [-]

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​α магнитный поток может быть положительным (α 90°). Если α = 90°, то магнитный поток равен 0. Это зависит от величины косинуса угла.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура, магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Электромагнитная индукция

Электромагнитная индукция — явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

Майкл Фарадей провел ряд опытов, которые помогли открыть явление электромагнитной индукции.

Опыт раз. На одну непроводящую основу намотали две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй — подключены к источнику тока.

При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.

Опыт два. Первую катушку подключили к источнику тока, а вторую — к гальванометру. При этом вторая катушка перемещалась относительно первой. При приближении или удалении катушки фиксировался ток.

Опыт три. Катушка замкнута на гальванометр, а магнит движется вдвигается (выдвигается) относительно катушки

движущийся проводник в магнитном поле формула

Вот, что показали эти опыты:

Почему возникает индукционный ток?

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС.

Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Закон электромагнитной индукции

Закон электромагнитной индукции (закон Фарадея) звучит так:

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром.

Математически его можно описать формулой:

Закон Фарадея

движущийся проводник в магнитном поле формула

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре всегда направлен так, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​N витков (то есть он — катушка), то ЭДС индукции будет вычисляться следующим образом.

Закон Фарадея для контура из N витков

движущийся проводник в магнитном поле формула

Ɛi — ЭДС индукции [В]

ΔФ/Δt — скорость изменения магнитного потока [Вб/с]

N — количество витков [-]

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​R​:

Закон Ома для проводящего контура

движущийся проводник в магнитном поле формула

Ɛi — ЭДС индукции [В]

I — сила индукционного тока [А]

R — сопротивление контура [Ом]

Если проводник длиной l будет двигаться со скоростью ​v​ в постоянном однородном магнитном поле с индукцией ​B​ ЭДС электромагнитной индукции равна:

ЭДС индукции для движущегося проводника

движущийся проводник в магнитном поле формула

Ɛi — ЭДС индукции [В]

B — магнитная индукция [Тл]

v — скорость проводника [м/с]

l — длина проводника [м]

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

Правило Ленца

Чтобы определить направление индукционного тока, нужно воспользоваться правилом Ленца.

Академически это правило звучит следующим образом: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

движущийся проводник в магнитном поле формула

Давайте попробуем чуть проще: катушка в данном случае — это недовольная бабуля. Забирают у нее магнитный поток — она недовольна и создает магнитное поле, которое этот магнитный поток хочет обратно отобрать.

Дают ей магнитный поток, забирай, мол, пользуйся, а она такая — «Да зачем сдался мне ваш магнитный поток!» и создает магнитное поле, которое этот магнитный поток выгоняет.

Источник

Что такое ЭДС индукции и когда возникает?

В материале разберемся в понятии ЭДС индукции в ситуациях ее возникновения. Также рассмотрим индуктивность в качестве ключевого параметра возникновения магнитного потока при появлении электрического поля в проводнике.

движущийся проводник в магнитном поле формула

Электромагнитная индукция представляет собой генерирование электрического тока магнитными полями, которые изменяются во времени. Благодаря открытиям Фарадея и Ленца закономерности были сформулированы в законы, что ввело симметрию в понимание электромагнитных потоков. Теория Максвелла собрала воедино знания об электрическом токе и магнитных потоках. Благодаря открытия Герца человечество узнало о телекоммуникациях.

Магнитный поток

Вокруг проводника с электротоком появляется электромагнитное поле, однако параллельно возникает также обратное явление – электромагнитная индукция. Рассмотрим магнитный поток на примере: если рамку из проводника поместить в электрическое поле с индукцией и перемещать ее сверху вниз по магнитным силовым линиям или вправо-влево перпендикулярно им, тогда магнитный поток, проходящий через рамку, будет постоянной величиной.

При вращении рамки вокруг своей оси, тогда через некоторое время магнитный поток изменится на определенную величину. В результате в рамке возникает ЭДС индукции и появится электрический ток, который называется индукционным.

ЭДС индукции

Разберемся детально, что такое понятие ЭДС индукции. При помещении в магнитное поле проводника и его движении с пересечением силовых линий поля, в проводнике появляется электродвижущая сила под названием ЭДС индукции. Также она возникает, если проводник остается в неподвижном состоянии, а магнитное поле перемещается и пересекается с проводником силовыми линиями.

Когда проводник, где происходит возникновение ЭДС, замыкается на вешнюю цепь, благодаря наличию данной ЭДС по цепи начинает протекать индукционный ток. Электромагнитная индукция предполагает явление индуктирования ЭДС в проводнике в момент его пересечения силовыми линиями магнитного поля.

Электромагнитная индукция являет собой обратный процесс трансформации механической энергии в электроток. Данное понятие и его закономерности широко используются в электротехнике, большинство электромашин основывается на данном явлении.

Законы Фарадея и Ленца

Законы Фарадея и Ленца отображают закономерности возникновения электромагнитной индукции.

Фарадей выявил, что магнитные эффекты появляются в результате изменения магнитного потока во времени. В момент пересечения проводника переменным магнитным током, в нем возникает электродвижущая сила, которая приводит к возникновению электрического тока. Генерировать ток может как постоянный магнит, так и электромагнит.

Ученый определил, что интенсивность тока возрастает при быстром изменении количества силовых линий, которые пересекают контур. То есть ЭДС электромагнитной индукции пребывает в прямой зависимости от скорости магнитного потока.

Согласно закону Фарадея, формулы ЭДС индукции определяются следующим образом:

Знак «минус» указывает на взаимосвязь между полярностью индуцированной ЭДС, направлением потока и изменяющейся скоростью.

Согласно закону Ленца, можно охарактеризовать электродвижущую силу в зависимости от ее направленности. Любое изменение магнитного потока в катушке приводит к появлению ЭДС индукции, причем при быстром изменении наблюдается возрастающая ЭДС.

Если катушка, где есть ЭДС индукции, имеет замыкание на внешнюю цепь, тогда по ней течет индукционный ток, вследствие чего вокруг проводника появляется магнитное поле и катушка приобретает свойства соленоида. В результате вокруг катушки формируется свое магнитное поле.

Э.Х. Ленц установил закономерность, согласно которой определяется направление индукционного тока в катушке и ЭДС индукции. Закон гласит, что ЭДС индукции в катушке при изменении магнитного потока формирует в катушке ток направления, при котором данный магнитный поток катушки дает возможность избежать изменения постороннего магнитного потока.

Закон Ленца применяется для всех ситуаций индуктирования электротока в проводниках, вне зависимости от их конфигурации и метода изменения внешнего магнитного поля.

Движение провода в магнитном поле

Значение индуктированной ЭДС определяется в зависимости от длины проводника, пересекаемого силовыми линиями поля. При большем количестве силовых линий возрастает величина индуктируемой ЭДС. При увеличении магнитного поля и индукции, большее значение ЭДС возникает в проводнике. Таким образом, значение ЭДС индукции в движущемся в магнитном поле проводнике находится в прямой зависимости от индукции магнитного поля, длины проводника и скорости его движения.

Данная зависимость отражена в формуле Е = Blv, где Е — ЭДС индукции; В — значение магнитной индукции; I — длина проводника; v —скорость его перемещения.

Отметим, что в проводнике, который движется в магнитном поле, ЭДС индукции появляется, только когда он пересекает силовые линии магнитного поля. Если проводник движется по силовым линиям, тогда ЭДС не индуктируется. По этой причине формула применяется только в случаях, когда движением проводника направлено перпендикулярно силовым линиям.

Направление индуктированной ЭДС и электротока в проводнике определяется направлением движения самого проводника. Для выявления направления разработано правило правой руки. Если держать ладонь правой руки таким образом, чтобы в ее направлении входили силовые линии поля, а большой палец указывает направление движения проводника, тогда остальные четыре пальца показывают направление индуктированной ЭДС и направление электротока в проводнике.

Вращающаяся катушка

Функционирование генератора электротока основывается на вращении катушки в магнитном потоке, где имеется определенное количество витков. ЭДС индуцируется в электрической цепи всегда при пересечении ее магнитным потоком, на основании формулы магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на площадь поверхности, через которую проходит магнитный поток, и косинус угла, сформированный вектором направления и перпендикулярной плоскости линии).

Согласно формуле, на Ф воздействуют изменения в ситуациях:

Допускается индуцирование ЭДС при неподвижном магните или неизменном токе, а просто при вращении катушки вокруг своей оси в пределах магнитного поля. В данном случае магнитный поток изменяется при смене значения угла. Катушка в процессе вращения пересекает силовые линии магнитного потока, в итоге появляется ЭДС. При равномерном вращении возникает периодическое изменение магнитного потока. Также число силовых линий, которые пересекаются ежесекундно, становится равным значениям через равные временные промежутки.

На практике в генераторах переменного электротока катушка остается в неподвижном состоянии, а электромагнит выполняет вращения вокруг нее.

ЭДС самоиндукции

При прохождении через катушку переменного электротока генерируется переменное магнитное поле, которое характеризуется меняющимся магнитным потоком, индуцирующим ЭДС. Данное явление называется самоиндукцией.

В силу того, что магнитный поток пропорционален интенсивности электротока, тогда формула ЭДС самоиндукции выглядит таким образом:

Ф = L x I, где L – индуктивность, которая измеряется в Гн. Ее величина определяется числом витков на единицу длины и величиной их поперечного сечения.

Источник

Физика. 10 класс

§ 32-1. Вихревое электрическое поле. ЭДС индукции в движущихся проводниках

Вихревое электрическое поле. При изменении магнитного потока через поверхность, ограниченную проводящим замкнутым неподвижным (относительно выбранной инерциальной системы отсчёта) контуром, в нём возникает электрический ток. Это свидетельствует о том, что на свободные заряженные частицы в контуре действуют силы. Но для беспорядочно движущихся заряженных частиц усреднённое значение силы Лоренца равно нулю, следовательно, на такие частицы действует электрическое поле. Дж. Максвелл первым предположил, что при любом изменении во времени магнитного поля в окружающем пространстве возникает электрическое поле. Его называют индукционным или индуцированным. Именно это индукционное электрическое поле действует на заряженные частицы, приводя их в упорядоченное движение и создавая индукционный электрический ток. Подчеркнём, что индукционное электрическое поле не связано с электрическими зарядами, его источником является изменяющееся со временем магнитное поле. Линии напряжённости индукционного электрического поля замкнуты.

Электрическое поле, возникающее при любом изменении во времени магнитного поля, является одним из вихревых полей.

Вихревой, т. е. непотенциальный, характер индукционного электрического поля — причина того, что при перемещении заряда по замкнутой цепи это поле совершает работу, не равную нулю.

Таким образом, ЭДС индукции, возникающая в неподвижном замкнутом контуре, находящемся в изменяющемся во времени магнитном поле, равна работе сил вихревого электрического поля по перемещению вдоль этого контура единичного положительного заряда. Если такой контур оказывается проводящим, то возникшая в нём ЭДС индукции приводит к появлению индукционного тока.

Максвелл в 1873 г. установил, что ЭДС индукции, возникающая в неподвижном контуре при изменении во времени магнитного поля, не зависит от характеристик этого контура (вещества, вида свободных носителей заряда, сопротивления, температуры и др.). На основании этого он сделал вывод, что роль контура сводится только к индикации вихревого электрического поля, создаваемого переменным магнитным полем.

Итак, сущность явления электромагнитной индукции заключается в том, что вихревое электрическое поле возникает в любой точке пространства, если в этой точке существует изменяющееся во времени магнитное поле, независимо от того, есть там проводящий контур или нет.

Линии напряжённости вихревого электрического поля охватывают линии индукции изменяющегося во времени магнитного поля. Направление линий напряжённости вихревого электрического поля определяют по правилу Ленца. Действительно, если поместить в изменяющееся во времени магнитное поле замкнутый проводящий контур, то по нему в направлении линий напряжённости электрического поля пойдёт индукционный электрический ток.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *