Что значит треугольник в дискретной математике

Треугольники, множества и алгебра

Что значит треугольник в дискретной математике

Иногда кажется, что некоторые математические темы изучены вдоль и поперек, например, треугольники. Ну что в этих треугольниках может быть нового и интересного? Тем не менее, даже такие, казалось бы, тривиальные объекты могут предстать под неожиданным углом. Давайте возьмем какую-нибудь простенькую задачку и попробуем ее решить. Постараемся найти треугольник с целочисленными сторонами, медианами и площадью. Мало ли, вдруг у нас получится.

Как перечислить все треугольники?

Как видим, первая сторона неизменна, а третья не превосходит суммы двух первых, на графике это будет выглядеть так:

Что значит треугольник в дискретной математике

Перед нами две ступенчатые функции, а значит мы можем задать стороны всех таких треугольников следующим образом:

Что значит треугольник в дискретной математике

Если заменить тройку на Что значит треугольник в дискретной математикеа Что значит треугольник в дискретной математикена Что значит треугольник в дискретной математике, то получим следующее:

Что значит треугольник в дискретной математике

Теперь любой треугольник можно изображать в виде точки на координатной плоскости, преобразуя стороны треугольников в координаты по двум простым формулам:

Что значит треугольник в дискретной математике

Чтобы перейти от координат к номерам достаточно воспользоваться канторовской нумерацией:

Что значит треугольник в дискретной математике

Или, если вместо координат использовать стороны треугольника:

Что значит треугольник в дискретной математике

Не знаю как вы, а я очень удивился, когда понял, что у каждого треугольника с целыми сторонами может быть свой номер. Есть что-то необычное в том, что подмножества треугольников, например, равнобедренные, могут выглядеть вот так:

Что значит треугольник в дискретной математике

Причем тут алгебра?

Очень похоже, что номера равнобедренных треугольников представляют собой множество парабол, нарисованных на одном графике. Так и есть, каждая из них может быть задана уравнением вида:

Что значит треугольник в дискретной математике

То же самое можно сказать и про многие другие подмножества треугольников. Например, вот так будут выглядеть треугольники с целыми, четными сторонами и одной целой медианой, проведенной к стороне Что значит треугольник в дискретной математике:

Что значит треугольник в дискретной математике

На графике с координатами расположено множество кубических функций вида:

Что значит треугольник в дискретной математике

Не знаю, можно ли задать функции Что значит треугольник в дискретной математикедля всех кубических функций, но некоторые из них могут быть заданы, например, так:

Что значит треугольник в дискретной математике

Можно взять какую-то отдельную из них, например при j=0 и получить следующие формулы для координат треугольников:

Что значит треугольник в дискретной математике

Используя данные координаты можем задать функции для сторон и медианы:

Что значит треугольник в дискретной математике

Мы можем попробовать провернуть то же самое для треугольников, у которых две целые медианы:

Что значит треугольник в дискретной математике

Хоть этого и не видно на графике, но координаты треугольников с двумя целыми медианами задаются кубическими, квадратичными и линейными функциями. К сожалению, не могу привести все выкладки куда−то потерялись записи.

Если мы нарисуем график для треугольников с тремя целыми медианами, то получим следующее:

Что значит треугольник в дискретной математике

Таких треугольников очень мало, они очень сильно разрежены, но любопытно, что если найти хотя бы один такой треугольник, то все последующие могут быть заданы как:

Что значит треугольник в дискретной математике

Например, если взять треугольник 136, 170, 172 и умножить его стороны на 5, то мы снова получим треугольник с целыми сторонами и медианами.

Почему это все бесполезно?

Сначала кажется, что нумерация треугольников это шажок в сторону создания системы диофантовых уравнений, которые определяли бы стороны треугольников с целыми сторонами и медианами. Затем эти уравнения можно было бы подставить в формулу Герона и потом попытаться доказать возможность получения или неполучения треугольников с целой площадью. Но, к сожалению, нумерация треугольников абсолютно бесполезна в этом направлении. Все дело в том, что сама задача поиска треугольников с целыми сторонами и медианами связана с простыми числами. Сначала это кажется не совсем очевидным, но если следующее тождество является верным

Что значит треугольник в дискретной математике

то медиана не может быть целым числом. А это значит, что сама задача поиска треугольников с целыми сторонами и медианами наверняка может быть переведена на язык теории чисел, правда не знаю как.

В заключение

Сама идея того, что можно навести какой-никакой порядок в неупорядоченных множествах, очень любопытна. Например, можно попытаться каким-нибудь образом упорядочить матрицы из натуральных чисел, или графы определенного типа. Можно ли извлечь какую-то пользу от такого упорядочивания, это уже другой вопрос.

Источник

Что означает ΔT?

Принимая это во внимание, какой символ у подсудимого?

Греческая буква дельта, треугольник, является сокращенным обозначением Ответчика. Это символ раздела, также известный как «двойная S».

Также знайте, что означает Y в физике? Что должность значить? В физика, мы любим точно описывать движение объекта. Переменная y часто используется для обозначения вертикального положения. [А как насчет z?] Переменная zz zz используется для описания третьей перпендикулярной оси, которая обычно указывает «за пределы экрана / страницы».

Как вставить дельту?

Что это за символ ψ?

Пси (/ (p) sa? /; Прописные буквы Ψстрочные ψ; Греческий: ψι psi [ˈpsi]) является 23-й буквой греческого алфавита и имеет числовое значение 700. И в классическом, и в современном греческом языке буква обозначает комбинацию / ps / (как в английском слове «lapse»).

Какой альтернативный код у треугольника?

кодсимволописание
30?Треугольник вверх
31?Треугольник вниз
16?Треугольник вправо
17?Треугольник слева

Как использовать альтернативные коды?

Что означает различие?

Какой код символа у Дельты?

ХарактерОписаниеКлавиатура Alt + #
ΓЗаглавная гамма (греческий)* Альтернативный 226
δМалая дельта, (греческий)* Альтернативный 235
ΔCapital Delta, (греческий)N / A
èМалая е, ударение могилыAlt 138 или Alt 0232

Что означает символ треугольника?

треугольник будет представлять воду, потому что в этом положении она течет вниз. Он может символизировать небесную благодать и утробу. В треугольник что указывает вниз is один из старейших Символы божественной силы женщины. Это is древний символ который представляет гениталии богини.

Где в Word находится символ треугольника?

Как набрать треугольник?

Нажмите «30», чтобы вставить вертикаль треугольник лицом вверх. Нажмите «31», чтобы вставить вертикальную треугольник лицевой стороной вниз, ”16 ″ для вставки треугольник лицом влево или «17», чтобы вставитьтреугольник лицом вправо. Вы должны удерживать кнопку «Alt», пока нажимаете цифры.

Почему Delta используется для сдачи?

Как сделать этот символ?

Что означает этот символ в химии?

Как вы набираете Ø?

Введите Æ, Ø, Å и ß, используя клавиатуру 10 и клавишу Alt.

Что такое дельта продаж?

Объяснение клавиш компьютерной клавиатуры.

Уровень моря Нет.СимволИмя и фамилия
1&амперсанд или и
2«апостроф или одинарная кавычка
3*звездочка
4@at

Что такое дельта продаж?

Нажмите и удерживайте клавишу ALT и введите 0 1 7 6 на цифровой клавиатуре вашей клавиатуры. Убедитесь, что NumLock включен, и введите 0176 с нулем в начале. Если нет цифровой клавиатуры, нажмите и удерживайте Fn, прежде чем вводить цифры 0176степень символ.

Что означает перемены?

Где находится Дельта в Word?

Существуют различные методы ввода дельта в Microsoft Word, например, вы можете использовать код alt + numpad, чтобы ввести его прямо с клавиатуры, или вы можете использовать Microsoftслово функции на вкладке вставки, где расположены символы.

Что такое символ Юникода?

Что такое символ Сигмы?

Альтернативный код. В качестве обходного пути вы можете добавить твердый треугольник имитировать дельту символ. Все, что вам нужно сделать, это зажать кнопку Alt, а затем ввести ее код. Удерживая нажатой клавишу Alt, нажмите 30, чтобы добавить треугольник.

Что такое дельта-анализ?

Дельта-анализ инструмент для определения дисперсии анализ по габаритным данным. Дельта-анализ доступен в Ad Hoc Анализ и приложения Template Studio.

Что означает стоимость Delta?

дельта. Отношение изменения цены опциона к изменению цены базового актива. Для опциона колл на акции дельта из 0.50 означает что на каждые 1.00 доллар, когда акции растут, цена опциона повышается на 0.50 доллара.

Что означает стоимость Delta?

Означает ли Дельта изменение?

Верхний регистр дельта (Δ) часто означает «изменение» или изменение в »по математике.

В чем разница между D и дельтой?

d используется для точного дифференцирования функции от функции. дельта используется для демонстрации большого и конечного изменения. символ частной производной используется, когда функция с несколькими переменными должна дифференцироваться только по определенной переменной, а другие переменные рассматриваются как константы.

Какой символ у Кельвина?

Что подразумевается под символами Юникода?

Unicode. Unicode универсальныйперсонаж стандарт кодирования. Он определяет способ индивидуальногосимволы представлены в текстовых файлах, веб-страницах и других типах документов. В то время как ASCII использует только один байт для представления каждого персонаж, Unicode поддерживает до 4 байтов для каждого персонаж.

Где в Excel находится символ треугольника?

d используется для точного дифференцирования функции от функции. дельта используется для демонстрации большого и конечного изменения. символ частной производной используется, когда функция с несколькими переменными должна дифференцироваться только по определенной переменной, а другие переменные рассматриваются как константы.

Как написать температуру?

Что это за символ ψ?

Альтернативный код. В качестве обходного пути вы можете добавить твердый треугольник имитировать дельту символ. Все, что вам нужно сделать, это зажать кнопку Alt, а затем ввести ее код. Удерживая нажатой клавишу Alt, нажмите 30, чтобы добавить треугольник.

Источник

Основы дискретной математики

Привет, хабр. В преддверии старта базового курса «Математика для Data Science» делимся с вами переводом еще одного полезного материала.

Об этой статье

Эта статья содержит лишь малую часть информации по заявленной теме. Рассматривайте ее как вводный курс перед началом всестороннего изучения предмета. Надеюсь, вы найдете в ней полезную информацию. Знание дискретной математики помогает описывать объекты и задачи в информатике, особенно когда дело касается алгоритмов, языков программирования, баз данных и криптографии. В дальнейшем я планирую подробнее раскрыть темы, затронутые в этой статье. Приятного чтения!

ЧТО ТАКОЕ ДИСКРЕТНАЯ МАТЕМАТИКА?

Это область математики, изучающая объекты, которые могут принимать только уникальные отдельные значения.

Мы рассмотрим пять основных разделов в следующем порядке.

ЛОГИКА

Что такое логика?

Это наука о корректных рассуждениях. Мы будем использовать приемы идеализации и формализации. Неформальная логика изучает использование аргументов в естественном языке.

Формальная логика анализирует выводы с чисто формальным содержанием. Примерами формальной логики являются символическая логика и силлогистическая логика (о которой писал Аристотель).

Начнем с азов. Рассмотрим следующее высказывание на естественном языке:

«Если я голоден, я ем».

Пусть «голоден» будет посылкой A, а «ем» — следствием B. Попробуем формализовать:

A => B (то есть из A следует B)

NB. Посылка и следствие являются суждениями.

Логические выражения

Для нас важна форма, а НЕ содержание. Значение будет истинным, если оно соответствует форме.

Например, 10 4 — ИСТИНА.

Логические операции

Суждение P — это утверждение, которое может быть как истинным, так и ложным.

Обозначим истинное значение P единицей (1), а ложное значение P нулем (0).

Существует другое суждение; обозначим истинное значение Q единицей (1), а ложное значение Q нулем (0).

Рассмотрим логические операции с суждениями, значение которых истинно. Они могут сами образовывать истинные значения путем выполнения соответствующих операций над истинными значениями.

Источник

Операции над множествами

Для любых двух множеств и определены новые множества, называемые объединением, пересечением, разностью и симметрической разностью:

Легко показать, что

Сопоставляя определение подмножества и определение равенства множеств, мы видим, что множество равно множеству тогда и только тогда, когда есть подмножество и наоборот, т.е.

Замечание. Равенство множеств и означает, что предикаты Р(х) и Q(x) эквивалентны, т.е. предикат Р(х) О Q

Собственное подмножество и булеан множества

Пример. а. Булеан множества состоит из четырех множеств

Свойства операций над множествами

Введенные выше операции над множествами обладают следующими свойствами:

Каждое из написанных выше равенств, верное для любых входящих в них множеств, часто называют теоретико-множественным тождеством. Любое из них может быть доказано методом двух включений. Докажем этим методом тождество 19.

Оба включения имеют место, и тождество 19 доказано.

Метод двух включений является универсальным и наиболее часто применяемым методом доказательства теоретико-множественных тождеств. Помимо метода двух включений для доказательства теоретико-множественных тождеств могут быть использованы другие методы, например метод характеристических функций.

Кроме того, теоретико-множественные тождества можно доказывать, используя ранее доказанные тождества для преобразования левой части к правой или наоборот. Такой метод доказательства часто называют методом эквивалентных преобразований.

Докажем этим методом тождество 22, пользуясь тождествами 1-19. Преобразуем левую часть к правой:

Источник

Что значит треугольник в дискретной математике

Основная формула

Строки треугольника обычно нумеруются, начиная со строки n = 0 в верхней части. Записи в каждой строке целочисленные и нумеруются слева, начиная с k = 0, обычно располагаются в шахматном порядке относительно чисел в соседних строчках. Построить фигуру можно следующим образом:

История открытия

Что значит треугольник в дискретной математике

Паскаль ввёл в действие многие ранее недостаточно проверенные способы использования чисел треугольника, и он подробно описал их в, пожалуй, самом раннем из известных математических трактатов, специально посвящённых этому вопросу, в труде об арифметике Traité du triangle (1665). За столетия до того обсуждение чисел возникло в контексте индийских исследований комбинаторики и биномиальных чисел, а у греков были работы по «фигурным числам».

Из более поздних источников видно, что биномиальные коэффициенты и аддитивная формула для их генерации были известны ещё до II века до нашей эры по работам Пингала. К сожалению, бо́льшая часть трудов была утеряна. Варахамихира около 505 года дал чёткое описание аддитивной формулы, а более подробное объяснение того же правила было дано Халаюдхой (около 975 года). Он также объяснил неясные ссылки на Меру-прастаара, лестницы у горы Меру, дав первое сохранившееся определение расположению этих чисел, представленных в виде треугольника.

Примерно в 850 году джайнский математик Махавира вывел другую формулу для биномиальных коэффициентов, используя умножение, эквивалентное современной формуле. В 1068 году Бхаттотпала во время своей исследовательской деятельности вычислил четыре столбца первых шестнадцати строк. Он был первым признанным математиком, который уравнял аддитивные и мультипликативные формулы для этих чисел.

Что значит треугольник в дискретной математике

Примерно в то же время персидский учёный Аль-Караджи (953–1029) написал книгу (на данный момент утраченную), в которой содержалось первое описание треугольника Паскаля. Позднее работа была переписана персидским поэтом, астрономом и математиком Омаром Хайямом (1048–1131). Таким образом, в Иране фигура упоминается как треугольник Хайяма.

Известно несколько теорем, связанных с этой темой, включая биномы. Хайям использовал метод нахождения n-x корней, основанный на биномиальном разложении и, следовательно, на одноимённых коэффициентах. Треугольник был известен в Китае в начале XI века благодаря работе китайского математика Цзя Сианя (1010–1070). В XIII веке Ян Хуэй (1238–1298) представил этот способ, и поэтому в Китае он до сих пор называется треугольником Ян Хуэя.

На западе биномиальные коэффициенты были рассчитаны Жерсонидом в начале XIV века, он использовал мультипликативную формулу. Петрус Апиан (1495–1552) опубликовал полный треугольник на обложке своей книги примерно в 1527 году. Это была первая печатная версия фигуры в Европе. Майкл Стифель представил эту тему как таблицу фигурных тел в 1544 году.

В Италии паскалевский треугольник зовут другим именем, в честь итальянского алгебраиста Никколо Фонтана Тарталья (1500–1577). Вообще, современное имя фигура приобрела благодаря Пьеру Раймонду до Монтрмору (1708), который назвал треугольник «Таблица Паскаля для сочетаний» (дословно: Таблица мистера Паскаля для комбинаций) и Абрахамом Муавром (1730).

Отличительные черты

Треугольник Паскаля и его свойства — тема довольно обширная. Главное, в нём содержится множество моделей чисел. Обзор следует начать с простого — ряды:

Что значит треугольник в дискретной математике

Что значит треугольник в дискретной математике

Диагонали треугольника содержат фигурные числа симплексов. Например:

Существуют простые алгоритмы для вычисления всех элементов в строке или диагонали без вычисления других элементов или факториалов.

Общие свойства

Что значит треугольник в дискретной математике

Образец, полученный путём раскраски только нечётных чисел, очень похож на фрактал, называемый треугольником Серпинского. Это сходство становится всё более точным, так как рассматривается больше строк в пределе, когда число рядов приближается к бесконечности, получающийся в результате шаблон представляет собой фигуру, предполагающую фиксированный периметр. В целом числа могут быть окрашены по-разному в зависимости от того, являются ли они кратными 3, 4 и т. д.

В треугольной части сетки количество кратчайших путей от заданного до верхнего угла треугольника является соответствующей записью в паскалевском треугольнике. На треугольной игровой доске Плинко это распределение должно давать вероятности выигрыша различных призов. Если строки треугольника выровнены по левому краю, диагональные полосы суммируются с числами Фибоначчи.

Количество элементов симплексов фигуры можно использовать в качестве справочной таблицы для количества элементов (рёбра и углы) в многогранниках (треугольник, тетраэдр, квадрат и куб).

Шаблон, созданный элементарным клеточным автоматом с использованием правила 60, является в точности паскалевским треугольником с биномиальными коэффициентами, приведёнными по модулю 2. Правило 102 также создаёт этот шаблон, когда завершающие нули опущены. Правило 90 создаёт тот же шаблон, но с пустой ячейкой, разделяющей каждую запись в строках. Фигура может быть расширена до отрицательных номеров строк.

Секреты треугольника

Что значит треугольник в дискретной математике

Конечно, сейчас большинство расчётов для решения задач не в классе можно сделать с помощью онлайн-калькулятора. Как пользоваться треугольником Паскаля и для чего он нужен, обычно рассказывают в школьном курсе математики. Однако его применение может быть гораздо шире, чем принято думать.

Начать следует со скрытых последовательностей. Первые два столбца фигуры не слишком интересны — это только цифры и натуральные числа. Следующий столбец — треугольные числа. Можно думать о них, как о серии точек, необходимых для создания групп треугольников разных размеров.

Точно так же четвёртый столбец — это тетраэдрические числа или треугольные пирамидальные. Как следует из их названия, они представляют собой раскладку точек, необходимых для создания пирамид с треугольными основаниями.

Что значит треугольник в дискретной математике

Столбцы строят таким образом, чтобы описывать «симплексы», которые являются просто экстраполяциями идеи тетраэдра в произвольные измерения. Следующий столбец — это 5-симплексные числа, затем 6-симплексные числа и так далее.

Полномочия двойки

Если суммировать каждую строку, получатся степени основания 2 начиная с 2⁰ = 1. Если изобразить это в таблице, то получится следующее:

1
1+1=2
1+2+1=4
1+3+3+1=8
1+4+6+4+1=16
1+5+10+10+5+1=32
1+6+15+20+15+6+1=64

Суммирование строк показывает силы базы 2.

Силы одиннадцати

Треугольник также показывает силы основания 11. Всё, что нужно сделать, это сложить числа в каждом ряду вместе. Как показывает исследовательский опыт, этого достаточно только для первых пяти строк. Сложности начинаются, когда записи состоят из двузначных чисел. Например:

1=11°
11=11¹
121=11²
1331=11³

Оказывается, всё, что нужно сделать — перенести десятки на одно число слева.

Совершенные квадраты

Комбинаторные варианты

Что значит треугольник в дискретной математике

Чтобы раскрыть скрытую последовательность Фибоначчи, которая на первый взгляд может отсутствовать, нужно суммировать диагонали лево-выровненного паскалевского треугольника. Первые 7 чисел в последовательности Фибоначчи: 1, 1, 2, 3, 5, 8, 13… найдены. Используя исходную ориентацию, следует заштриховать все нечётные числа, и получится изображение, похожее на знаменитый фрактальный треугольник Серпинского.

Возможно, самое интересное соотношение, найденное в треугольнике — это то, как можно использовать его для поиска комбинаторных чисел, поскольку его первые шесть строк написаны с помощью комбинаторной записи. Поэтому, если нужно рассчитать 4, стоит выбрать 2, затем максимально внимательно посмотреть на пятую строку, третью запись (поскольку счёт с нуля), и будет найден ответ.

Действия с биномами

Что значит треугольник в дискретной математике

Например, есть бином (x + y), и стоит задача повысить его до степени, такой как 2 или 3. Обычно нужно пройти долгий процесс умножения (x + y)² = (x + y)(x + y) и т. д. Если воспользоваться треугольником, решение будет найдено гораздо быстрее. К примеру, нужно расширить (x + y)³. Поскольку следует повышать (x + y) до третьей степени, то необходимо использовать значения в четвёртом ряду фигуры Паскаля (в качестве коэффициентов расширения). Затем заполнить значения x и y. Получится следующее: 1 x³ + 3 x²y + 3 xy² + 1 y³. Степень каждого члена соответствует степени, до которой возводится (x + y).

Биномиальное распределение описывает распределение вероятностей на основе экспериментов, которые можно разделить на группы с двумя возможными исходами. Самый классический пример этого — бросание монеты. Например, есть задача выбросить «решку» — успех с вероятностью p. Тогда выпадение «орла» является случаем «неудачи» и имеет вероятность дополнения 1 – p.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *