Что значит сравнение в математике
Сравнение, в математике
Полезное
Смотреть что такое «Сравнение, в математике» в других словарях:
Сравнение в математике — Говорят, что a сравнимо с b по модулю n, если a b делится на n. Это обозначают так: a ≡ b (mod n). С. имеют много сходства с равенствами. Если f(x) целая функция с целыми коэффициентами и а ≡ b (mod n), то f(a) ≡ f(b) (mod n). Решить С. f(x) ≡ 0… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Сравнение — Сравнение многозначный термин. Сравнение процесс количественного или качественного сопоставления разных свойств (сходств, отличий, преимуществ и недостатков) двух объектов. Сравнение выяснение, какой из двух объектов лучше в… … Википедия
СРАВНЕНИЕ — познават. операция, лежащая в основе суждений о сходстве или различии объектов; с помощью С. выявляются количеств. и качеств. характеристики предметов, классифицируется, упорядочивается и оценивается содержание бытия и познания. Сравнить… … Философская энциклопедия
Сравнение по модулю натурального числа — В теории чисел сравнение[уточнить] по модулю натурального числа n задаваемое означенным числом отношение эквивалентности на множестве целых чисел, связанное с делимостью на него. Факторпространство по этому отношению называется «кольцом… … Википедия
Сравнение по модулю — Сравнение[1] по модулю натурального числа n в теории чисел отношение эквивалентности на кольце целых чисел, связанное с делимостью на n. Факторкольцо по этому отношению называется кольцом вычетов. Совокупность соответствующих тождеств и… … Википедия
Сравнение (философ.) — Сравнение, акт мышления, посредством которого классифицируется, упорядочивается и оценивается содержание бытия и познания; в С. мир постигается как «связное разнообразие». Акт С. состоит в попарном сопоставлении объектов с целью выявления их… … Большая советская энциклопедия
Сравнение — I Сравнение (математическое) соотношение между двумя целыми числами а и b, означающее, что разность а b этих чисел делится на заданное целое число т, называемое модулем С.; пишется а ≡ b (mod т). Например, 2 ≡ 8 (mod 3), т. к. 2 8 делится … Большая советская энциклопедия
Характер (в математике) — Характер в математике, функция специального вида, применяемая в чисел теории и теории групп. В теории чисел Х. называют функцию c(n) ¹ 0, определённую для всех целых чисел n и такую, что: 1) c(nm) = c(n)c(m) для всех n и m, 2) существует… … Большая советская энциклопедия
Класс вычетов — Сравнение по модулю натурального числа отношение эквивалентности на множестве целых чисел, связанное с делимостью. Оно даёт возможность работать с системой чисел, более простой чем целые числа, в которой значения «зацикливаются» (повторяются)… … Википедия
Классы вычетов — Сравнение по модулю натурального числа отношение эквивалентности на множестве целых чисел, связанное с делимостью. Оно даёт возможность работать с системой чисел, более простой чем целые числа, в которой значения «зацикливаются» (повторяются)… … Википедия
Сравнение натуральных чисел
Сравнить два числа — это значит определить, равны они или нет, если нет, то определить, какое из них больше, а какое — меньше.
Равные и неравные натуральные числа
Если записи двух натуральных чисел одинаковы, то говорят, что эти числа равны между собой. Числа, которые равны, называются равными. Если записи двух натуральных чисел отличаются, то говорят, что эти числа не равны. Числа, которые не равны, называются неравными.
Пример. Натуральное число 34 равно числу 34 (их записи одинаковы), а натуральные числа 63 и 67 не равны (их записи различны). Следовательно числа 34 и 34 — равные, а 63 и 67 — неравные.
Равенства и неравенства
Для записи результата сравнения чисел используются следующие знаки:
Запись, которая состоит из математических выражений, между которыми ставится знак = называется равенством.
2 + 3 = 5 — равенство.
2 + 2 = 1 + 1 + 2 — равенство (подобные записи представляют собой равенство двух числовых выражений, и означают равенство значений этих выражений).
Равенства могут быть как верными (например, 5 = 5 — верное равенство), так и неверными (например, 11 = 14 — неверное равенство).
Знаки > и должны быть обращены остриём к меньшему числу.
Запись, которая состоит из математических выражений, между которыми ставится знак > или называется неравенством.
2 8 — неверное неравенство).
Правила чтения равенств и неравенств
Равенства и неравенства читаются слева направо. Левая часть равенства читается в именительном падеже, а правая — в дательном.
Пример. 7 = 7 — семь равно семи.
Левая часть неравенства читается в именительном падеже, а правая — в родительном.
Пример. 11 > 9 — одиннадцать больше девяти, 3 Пример. Сравним числа 1 и 3, 7 и 4. Запишем все однозначные натуральные числа в одной строке в следующем порядке:
Число 1 меньше числа 3 (1 4), так как в натуральном ряду число 7 находится правее числа 4.
Для применения правил сравнения чисел по их десятичной записи необходимо принять одну условность: будем считать, что число 0 меньше любого натурального числа, и что нуль равен нулю.
Правила сравнения натуральных чисел по их десятичной записи:
Если записи сравниваемых чисел состоят из одинакового количества цифр, то числа сравниваются поразрядно слева направо. Большим будет считаться то число, у которого первая (слева направо) из неодинаковых цифр больше.
Когда говорят, что цифры равны (или одна цифра больше другой), то имеют ввиду, что соответствующие им числа равны (или одно число больше другого).
Пример. Сравним натуральные числа 4026 и 4019. Для удобства сравнения можно записать их одно под другим:
Сначала сравниваем значения разряда тысяч. Получаем равенство 4 = 4, поэтому переходим к сравнению значений следующего разряда. Опять получаем равенство 0 = 0, переходим к сравнению значений разряда десятков. Теперь имеем неравенство 2 > 1, из которого делаем вывод, что число 4026 больше числа 4019 (4026 > 4019), потому что у первого числа, цифра разряда десятков (2) больше, чем цифра разряда десятков (1) у второго числа.
Если количество цифр в записи сравниваемых чисел разное, то большим будет считаться то число, у которого количество цифр больше.
Пример. Сравним натуральные числа 347 503 и 34 503. Для удобства сравнения можно записать их одно под другим:
Записав числа одно под другим, можно наглядно заметить, что первое число имеет большее количество цифр, чем второе, следовательно 347 503 > 34 503.
Два натуральных числа равны, если у них одинаковое количество цифр и цифры одинаковых разрядов равны.
Пример. Сравним числа 38 526 734 и 38 526 734. Для удобства сравнения можно записать их одно под другим:
38 526 734
38 526 734
Записи данных чисел одинаковы (количество цифр и цифры одинаковых разрядов равны), следовательно эти числа равны.
Двойные неравенства, тройные неравенства и т. д.
Когда нужно записать, что одно число больше другого, но меньше третьего, часто используют двойные неравенства.
В виде двойного неравенства можно записывать результат сравнения трёх натуральных чисел.
Пример. Допустим, нужно сравнить три натуральных числа 11, 34 и 8. Сравнивая данные числа между собой, получим три неравенства 11 8, которые можно записать как двойное неравенство:
Сравнение натуральных чисел.
Определение, что такое сравнение натуральных чисел.
Сравнение в жизни мы используем постоянно. Например, длинная дорога или короткая, высокий или низкий человек, много игрушек или мало, большая емкость или маленькая. Так, что же такое сравнение натуральных чисел?
Сравнение натуральных чисел – это определение какое из натуральных чисел больше, а какое меньше.
Способы сравнения натуральных чисел.
1) Всегда числа, стоящие справа в натуральном ряду больше чисел, стоящих слева.
Например, сравним числа 7 и 9. Число 9 стоит правее числа 7, следовательно, число 9 больше 7.
Единица, является самым маленьким натуральным числом.
Любое натуральное число больше нуля.
2) Всегда больше то натуральное число, у которого разрядов больше.
Сравним два числа 45 и 190. Сразу понятно, что число 190 больше числа 45. Мы сделали такой вывод потому, что число 190 является трехзначным числом, а 45 – двухзначным числом. У числа 190 есть разряд сотен, десятков и единиц, а у числа 45 только разряд десятков и единиц.
3) Если количество разрядов одинаково, то мы будем сравнивать величины цифр разрядов, начиная с высшего разряда (слева направо).
Например, сравним числа 478 и 399. Оба числа являются трехзначными, поэтому подробно рассмотрим высший разряд сотен. У первого числа 478 разряд сотен равен 4, а у второго числа 399 разряд сотен равен 3. Следовательно, первое число 478 больше второго числа 399, потому что 4 больше 3.
Если высшие разряды одинаковые мы сравниваем следующий меньший разряд цифр.
Сравним числа 7890 и 7860. Начинаем сравнивать высший разряд единиц тысяч он у обоих чисел равен 7. Следующий разряд сотен, также равен у обоих чисел 8. А вот разряд десятков различен. У первого числа 7890 разряд десятков равен 9, а у второго числа 7860 равен 6. Далее делаем вывод, первое число 7890 больше 7860, потому что разряд десятков у первого числа больше чем у второго. Проще сказать, 9 больше 6.
4) Если при сравнении все цифры разрядов двух натуральных чисел одинаковы, значит числа равны.
Например, сравним числа 4890765 и 4890765. Видно, что у обоих чисел все цифры разрядов одинаковы, следовательно, они равны.
Неравенство и знаки неравенства.
Чтобы не писать словами больше, меньше или равно в математике придумали обозначения. Больше (>), меньше ( 2. Или 6 меньше 10, мы запишем как 6 2, 6 1 в) 7=7
Ответ: а) пять меньше двенадцати б) шесть больше одного в) семь равено семи.
Пример №2:
Запишите неравенство: а) 4 меньше 8 б) 10 больше 9 в) 11 равно 11.
Ответ: а) 4 9 в) 11=11.
Пример №3:
Верны ли неравенства? Проверьте знаки сравнения: а) 5 23 г) 5=55
Ответ: а) верно б) неверно в) неверно г) неверно.
Посмотрите на рисунок и составьте неравенство.
Ответ: 10>2 или 2 Category: 5 класс, Натуральные числа Leave a comment
Сравнение натуральных чисел
Вам уже известно, что натуральные числа используются для обозначения количества тех или иных предметов. Возьмем, к примеру, конфеты. Мама купила шоколадные батончики и высыпала их кучкой на столе. Дети пересчитали, и их оказалось 25 штук.
Пришел с работы папа и высыпает рядом еще конфеты. На первый взгляд, эта кучка не отличается от первой, но пересчитав количество папиных конфет, дети увидели, что их всего 23. Значит, эти кучки разные. Чтобы это выяснить, дети произвели два действия:
Сравнить натуральные числа – это означает узнать, отличаются ли они друг от друга или они одинаковые. Если сравниваемые числа отличаются, тогда мы может узнать, что одно число больше другого, а второе, соответственно, меньше первого.
Как сравнить натуральные числа
Сравнить натуральные числа можно такими способами:
В результате сравнения мы можем получить:
Равенство натуральных чисел
Если два натуральных числа имеют полностью одинаковую запись, то и записанные с их помощью числа одинаковы (говорят просто – они равны). Если их записи отличаются, тогда эти числа не равны.
Если мы определили, что числа не равны, тогда нам необходимо выяснить, какое положение они занимают по отношению друг к другу, большее или меньшее.
Запись и чтение неравенств
Неравенство – это запись чисел или математических выражений, которая содержит знаки неравенства.
Читается подобная запись следующим образом. Первое число называется в именительном падеже (кто? что?), а второе в родительном (кого? чего?). Например, так: «два меньше четырех», «восемьдесят девять больше семидесяти восьми».
Если стрелка смотрит влево: « меньше » и означает, что слева от него находится число меньшее, чем справа.
Если стрелка смотрит вправо: «>», такой знак называется « больше » и означает, что слева от него находится большее число, чем справа.
Стрелка знака всегда указывает на меньшее число, а двойная вилка – на большее!
Например, дано неравенство 5 верным (правильно отмеченным), например, 1 неверным (неправильно отмеченным), например, 5>6.
Сравнение однозначных натуральных чисел с помощью ряда
Этот способ лучше всего подходит для сравнения однозначных натуральных чисел.
Меньшим называют число, которое в натуральном ряду находится раньше другого, а большим – то, которое расположено позже другого.
Например, число 2 в натуральном ряду стоит раньше, чем число 4, значит, 2 8.
Число 1 (единица) – самое меньшее из натуральных чисел, поскольку стоит в натуральном ряду первым.
На координатном луче меньшее число обозначается раньше (левее), а большее число – позже (правее) другого числа.
Рис. 1. Большее и меньшее число на координатном луче.
Действительно, чем больше в числе цифр, тем выше разряд самой первой цифры в этом числе.
К примеру, 123456>12345, потому что в первом числе цифра 1 обозначает сотню тысяч, а во втором – десяток тысяч.
Поэтому, для решения задач на сравнение чисел с разным количеством цифр, из которых они состоят, нам достаточно сравнить эти количества:
123456 – шестизначное число, 6 цифр;
12345 – пятизначное число, 5 цифр;
Например, сравним два числа: 12336 и 12345. Оба числа пятизначные. Значит, сравниваем каждую цифру, начиная с 5 разряда (десятков тысяч):
Сравнение двух, трех, и более чисел
Сравнивать между собой можно не только два натуральных числа.
Вернемся к примеру с конфетами на столе. Бабушка тоже купила конфеты и высыпала их на столе. Дети пересчитали их, и в бабушкиной кучке оказалось 33 штуки. Количество конфет мы можем записать натуральными числами: 25, 23 и 33.
Сравнив их между собой, мы увидим три неравенства:
Гораздо удобнее записать результат сравнения в виде двойного неравенства :
23
Как видите, все неравенства верны.
Чтобы быстро записать двойное, тройное, и т.д. неравенство, нужно расставить данные числа слева направо в порядке возрастания (предварительно сравнив между собой), оставив небольшие промежутки между ними. А после этого в оставленные промежутки записать знаки
Что значит сравнение в математике
§ 1. Определение сравнения
Теория чисел имеет свою алгебру, известную, как теория сравнений. Обычная алгебра первоначально развивалась как стенография для операций арифметики. Аналогично, сравнения представляют собой символический язык для делимости, основного понятия теории чисел. Понятие сравнения впервые ввел Гаусс.
Прежде чем мы обратимся к понятию сравнения, сделаем одно замечание о числах, которые будем изучать в этой главе. Мы начали эту книгу, заявив, что будем рассматривать целые положительные числа 1, 2, 3…, и в предыдущих главах мы ограничивались только этими числами и дополнительным числом 0. Но теперь мы достигли стадии, на которой целесообразно расширить наши границы, рассматривая все целые числа:
Это никоим образом не повлияет на наши предыдущие понятия; далее, когда мы будем говорить о простых числах, делителях, наибольших общих делителях и тому подобном, мы будем считать их целыми положительными числами.
Теперь вернемся к языку сравнений. Если а и b — два целых числа и их разность а — b делится на число m, мы выражаем это записью
которая читается так:
а сравнимо с b по модулю m.
Делитель m мы предполагаем положительным; он называется модулем сравнения. Наше высказывание (7.1.1) означает, что
a — b = mk, где k — целое число. (7.1.2)
1) 23 ≡ 8 (mod 5), так как 23 — 8 = 15 = 5 3;
2) 47 ≡ 11 (mod 9), так как 47–11 = 36 = 9 4;
3) —11 ≡ 5 (mod 8), так как — 11 — 5 = —16 = 8 (-2);
4) 81 ≡ 0 (mod 27), так как 81 — 0 = 81 = 27 3.
Последний пример показывает, что вообще, вместо того, чтобы говорить: число а делится на число m, мы можем записать
так как это означает, что
где k — некоторое целое число. Например, вместо того, чтобы сказать, что а — четное число, мы можем записать
Таким же образом видно, что нечетное число является числом, удовлетворяющим сравнению
Эта несколько странная терминология является довольно обычной для математических работ.
§ 2. Некоторые свойства сравнений
Способ, которым мы записываем сравнения, напоминает нам уравнения, и в действительности, сравнения и алгебраические уравнения имеют много общих свойств. Простейшими из них являются три следующих свойства:
это является следствием того, что
Это следует из того, что b — a = — (а — b) = m(—k).
следует, что а ≡ c (mod m), потому что первые два утверждения означают, что
Пример. Из того, что 13 ≡ 35 (mod 11) и 35 ≡ — 9 (mod 11) следует, что 13 ≡ — 9 (mod 11).
Мы говорили, что сравнения похожи по своему свойству на равенства. В действительности, мы можем рассматривать равенства как тип сравнения, а именно, сравнения по модулю 0. По определению,
Вы почти никогда не встретите такую форму сравнения для записи уравнений в математической литературе. Но существует другое сравнение, очевидно, довольно тривиальное, которое иногда используется. Когда модуль есть число m = 1, мы имеем, что
для любой пары целых чисел а и b, так как это означает, что
есть целое число. Но предположим теперь на мгновение, что а и b — произвольные вещественные числа, необязательно целые. Тогда тот факт, что они сравнимы по модулю 1, означает, что их разность есть целое число, т. е. эти два числа имеют одинаковую дробную часть.
Пример. 8 1/3 ≡ 1 1/3 (mod 1), или
Вернемся к свойствам обычных сравнений целых чисел; с этого момента мы будем всегда считать, что модуль является целым числом т ≥ 2.
Мы можем разделить числовую ось, начиная от начала координат в обоих направлениях на отрезки длиной m, как на рис. 17. Тогда каждое целое число а, положительное или отрицательное, попадает на один из этих отрезков или на одну из точек деления; таким образом, мы можем записать
где k — некоторое целое число, а r— одно из чисел
Это является незначительным обобщением деления положительных чисел, описанного в § 3 главы 4. Здесь мы также называем число r в формуле (7.2.6) остатком при делении числа а на число m или остатком по модулю m.
1) а = 11, m = 7, 11 = 7 1 + 4,
2) а = —11, m = 7, —11 = 7 (—2) + 3.
Деление (7.2.6) может быть также записано как сравнение
Таким образом, каждое число сравнимо со своим остатком по модулю m. В приведенных выше примерах мы имеем
11 ≡ 4 (mod 7), — 11 ≡ 3 (mod 7).
Никакие два остатка в (7.2.7) не сравнимы по (mod m), так как разность между любыми двумя из них меньше, чем m. Поэтому два числа, которые не сравнимы по (mod m), должны иметь разные остатки. Итак, мы делаем вывод:
сравнение а ≡ b(mod m) выполняется тогда и только тогда, когда числа а и b имеют одинаковые остатки при делении на число m.
Существует другой способ представления этого сравнения. Предположим на мгновение, что а и b — целые положительные числа. Мы видели при обсуждении системы чисел в § 2 главы 6, что когда число а записано при основании m,
то последняя цифра а0 является остатком числа а при делении его на число m. Если мы используем этот факт, чтобы иначе выразить нашу интерпретацию сравнения, то можно сказать:
сравнение а ≡ b (mod m) выполняется для целых (положительных) чисел а и b тогда и только тогда, когда числа а и b имеют одинаковые последние цифры в записи при основании m.
так как эти два числа имеют одну и ту же последнюю цифру в десятичной системе чисел.
1. Найдите остатки —37(mod 7), — 111 (mod 11), — 365 (mod 30).
§ 3. Алгебра сравнений
Из алгебры мы помним, что уравнения можно складывать, вычитать, умножать. Точно такие же правила справедливы для сравнений. Предположим, что мы имеем сравнения
По определению, это означает, что
где k и l — целые числа. Сложим уравнения (7.3.2).
В результате получаем
что можем записать как
другими словами, два сравнения можно складывать. Таким же образом можно показать, что одно сравнение можно вычитать из другого, т. е. что
11 ≡ —5 (mod 8) и 7 = — 9 (mod 8). (7.3.5)
Складывая их, получаем
Оба эти сравнения справедливы.
Можно также перемножить два сравнения. Из (7.3.1) и (7.3.2) следует, что
Пример. Когда два сравнения из (7.3.5) перемножены, получается
Сравнение a ≡ b (mod m) может быть умножено на любое целое число с, при этом получаем
Это можно рассматривать как частный случай умножения сравнений (7.3.6) при с = d. Его можно также рассматривать как прямое следствие из определения сравнения.
Пример. Когда первое сравнение из (7.3.5) умножается на 3, получаем, что
Возникает естественный вопрос: в каком случае можно в сравнении (7.3.7) сократить общий множитель с и получить при этом верное сравнение
Именно здесь сравнения отличаются от уравнений. Например, верно, что
но сокращение на множитель 2 дало бы сравнение
В одном важном случае сокращение допустимо:
если ас ≡ bc (mod m), то a ≡ b (mod m) при условии, что числа m и с взаимно просты.
Доказательство. Первое сравнение означает, что
Если D(m, с) = 1, то отсюда следует, что а — b делится на m в соответствии с результатом, доказанным в § 2 главы 4.
мы можем сократить на множитель 4, так как D(11, 4) = 1. Это дает
1. Придумайте еще несколько примеров на использование изложенных правил действий со сравнениями.
§ 4. Возведение сравнений в степень
Предположим вновь, что имеется сравнение
Как мы только что видели, можно умножить это сравнение на себя, получив
Вообще можно, умножив это сравнение на себя нужное количество раз, получить
для любого целого положительного числа m.
после возведения в квадрат следует сравнение
а после возведения в куб получаем сравнение
Многие результаты теории сравнений связаны с остатками высоких степеней чисел, поэтому покажем, как можно продолжить процесс возведения в степень. Предположим, например, что мы хотим найти остаток сравнения
Одним из путей для выполнения этого является повторное возведение в квадрат. Мы находим:
89 = 64 + 16 + 8 + 1 = 2 6 + 2 4 + 2 3 + 1,
то отсюда следует, что
3 89 = 3 64 • З 16 • З 8 • 3 = 4 • 4 • 2 • 3 ≡ 5 (mod 7).
В действительности, для того чтобы найти этот остаток, мы записали показатель степени
89 = 2 6 + 2 4 + 2 3 + 1 = (1, 0, 1, 1, 0, 0, 1)
в двоичной системе счисления. Повторным возведением в квадрат мы нашли остатки (по модулю 7) тех степеней числа 89, которые сами являются степенями числа 2:
Соответствующий метод можно использовать для любых других оснований. Однако в частном случае бывает возможность упростить вычисление, если заметить особенности этого случая. Например, в случае, разобранном выше, мы можем отметить, что
откуда заключаем, что
3 84 = (3 6 ) 14 ≡ 1 (mod7).
В качестве другой иллюстрации сказанного можно рассмотреть числа Ферма, с которыми мы познакомились в § 3 гл. 2:
Первые пять чисел Ферма таковы:
Отсюда можно высказать предположение:
десятичная запись всех чисел Ферма, за исключением F0 и F1 оканчивается цифрой 7.
Докажем с помощью сравнений, что это действительно так. Очевидно, что оно равносильно утверждению, что числа
оканчиваются цифрой 6. Это можно доказать по индукции. Заметим, что
2 2³ = 256 ≡ 6 (mod 10),
2 2ˆ4 = 65536 ≡ 6 (mod 10),
Предположим, что для некоторого значения t
возводя в квадрат это сравнение, мы находим, что
Из алгебры мы знаем правила возведения бинома в степень:
Здесь первый и последний коэффициенты равны единице. Средними биномиальными коэффициентами являются
Так как эти коэффициенты получаются в результате последовательного умножения на бином (х + у), то ясно, что они являются целыми числами.
С этого момента будем считать, что р — простое число. Чтобы записать эти коэффициенты в целочисленном виде, необходимо сократить все общие множители знаменателя
Однако знаменатель не содержит простого множителя р, поэтому после сокращения число р останется множителем в числителе. Мы делаем вывод.
Все биномиальные коэффициенты (кроме первого и последнего) в выражении (7.5.2) делятся на р, если р — простое число.
Пусть теперь х и у в выражении (7.5.2) будут целыми числами. Если мы рассмотрим формулу (7.5.2) как сравнение по модулю р, то можно сделать вывод, что для любых целых чисел х и у и простого р
В качестве примера возьмем р = 5:
Так как все средние коэффициенты делятся на 5, то
в соответствии с (7.5.5).
Из сравнения (7.5.5) можно сделать важные выводы. Применим его для случая х = у = 1. Получаем
Возьмем затем х = 2, у = 1 и найдем, что
теперь, используя предыдущий результат, 2 p ≡ 2 (mod p), получаем
Итак, 3 p ≡ 3 (mod p). Далее для х = 3, у = 1 получаем
Используя этот процесс, можно доказать по индукции, что а p ≡ a (mod p) для всех значений числа
Случаи a = 0 и а = 1 очевидны. Так как каждое число сравнимо (mod р) с одним из остатков, записанных в (7.5.6), мы делаем вывод:
для любого целого числа а и любого простого числа р
Это утверждение обычно называют теоремой Ферма, хотя некоторые авторы называют ее малой теоремой Ферма, чтобы отличить от последней теоремы Ферма, или гипотезы Ферма, о которой мы упоминали в § 3 главы 5.
2 13 = 2 8 • 2 4 • 2 ≡ 9 • 3 • 2 ≡ 2 (mod 13),
как и утверждает теорема Ферма.
В соответствии с правилом сокращения для сравнений, сформулированном в конце § 3, мы можем сократить общий множитель а в обеих частях записи теоремы Ферма (7.5.7) при условии, что число а взаимно просто с числом р, являющимся модулем сравнения. Это дает следующий результат:
если а является целым числом, не делящимся на простое число р, то
Этот результат также называют теоремой Ферма.
Пример. Когда а = 7, р = 19, мы находим, что
7 2 = 49 ≡ 11 (mod 19)
7 4 ≡ 121 ≡ 7 (mod 19),
7 8 ≡ 49 ≡ 11 (mod 19),
7 16 ≡ 121 ≡ 7 (mod 19),
что соответствует утверждению (7.5.8).
В качестве приложения теоремы Ферма вновь рассмотрим треугольники Пифагора, обсужденные в гл. 5 и докажем следующее утверждение:
произведение длин сторон треугольника Пифагора делится на 60.
Доказательство. Очевидно, достаточно доказать это для простейших треугольников. В соответствии с формулой (5.2.7), это произведение есть
Число Р делится на 60 тогда и только тогда, когда оно делится на 4, на 3 и на 5. Так как одно из чисел m и n четно, то 2mn, а следовательно, и число Р, делится на 4. Оно делится на 3, если хотя бы одно из чисел m или n делится на 3, но если ни одно из них не делится на 3, то Р все же будет делиться на 3, так как из условий (7.5.8), а также D(m, 3) = 1 и D (n, 3) = 1 следует, что m 2 ≡ 1 (mod 3) и n 2 ≡ 1 (mod 3), так что
m 2 — n 2 ≡ 1 – 1 = 0 (mod 3).
Аналогично, число Р делится на 5. Это очевидно, если m или n делится на 5. Если ни одно из них не делится на 5, то вновь по теореме Ферма (7.5.8) получаем
m 4 — n 4 ≡ 1 – 1 = 0 (mod 5).