Что значит сравнение с промежуточным числом

Как сравнивать числа с промежуточным числом?

Как сравнивать числа с промежуточным числом?

И как его находить?

Что значит сравнение с промежуточным числом

Приводятся к общему знаменателюкогда знаменатели одинаковые.

Сравниваете числители и делаете вывод.

Что значит сравнение с промежуточным числом

Сравните числа используя прием сравнения с промежуточным числом 11 / 18 и 10 / 23?

Сравните числа используя прием сравнения с промежуточным числом 11 / 18 и 10 / 23.

Что значит сравнение с промежуточным числом

Определите между какими целыми числами находится число √11?

Определите между какими целыми числами находится число √11.

Что значит сравнение с промежуточным числом

Сравните числа, используя приём сравнения с» промежуточным » числом одиннадцать двенадцатых и десять двадцать третьих можно с решением плиз?

Сравните числа, используя приём сравнения с» промежуточным » числом одиннадцать двенадцатых и десять двадцать третьих можно с решением плиз.

Что значит сравнение с промежуточным числом

Между какими числами находится число «три корня из одиннадцати»?

Между какими числами находится число «три корня из одиннадцати».

Что значит сравнение с промежуточным числом

Между какими натуральными числами находится число √35?

Между какими натуральными числами находится число √35.

Что значит сравнение с промежуточным числом

Что значит сравнение с промежуточным числом

Сравните числа используя прием сравнения с промежуточным числом 5 / 28 и11 / 40, 29 / 15и25 / 12?

Сравните числа используя прием сравнения с промежуточным числом 5 / 28 и11 / 40, 29 / 15и25 / 12.

Что значит сравнение с промежуточным числом

Между какими целыми числами находится число корень из 7?

Между какими целыми числами находится число корень из 7.

Что значит сравнение с промежуточным числом

Между какими целыми числами находится число корень из 7?

Между какими целыми числами находится число корень из 7.

Что значит сравнение с промежуточным числом

Сравни числа найдя какое нибудь промежуточное число 60 / 26 и 38 / 12 желательно с объяснениями?

Сравни числа найдя какое нибудь промежуточное число 60 / 26 и 38 / 12 желательно с объяснениями.

Что значит сравнение с промежуточным числом

Что значит сравнение с промежуточным числом

Ответ фотоскан _______________.

Что значит сравнение с промежуточным числом

Что значит сравнение с промежуточным числом

Что значит сравнение с промежуточным числом

Что значит сравнение с промежуточным числом

6) tga / (tga + ctga) = Sina / Cosa : (Sina / Cosa + Cosa / Sina) = = Sina / Cosa : [(Sin²a + Cos²a) / Sina * Cosa] = Sina / Cosa * Sina * Cosa = Sin²a.

Что значит сравнение с промежуточным числом

Что значит сравнение с промежуточным числом

Что значит сравнение с промежуточным числом

2. = (5¹⁵ * 5⁷) / 5²⁰ = 5²² / 5²⁰ = 5² = 25 Ответ : 25.

Источник

Сравнение чисел при решении уравнений, неравенств и задач с модулями

При решении уравнений и неравенств, а также задач с модулями требуется расположить найденные корни на числовой прямой.

Как ты знаешь, найденные корни могут быть разными.

А могут быть и вот такими: \( \sqrt<6>\), \( \left( 4-\sqrt <3>\right)\), \( \frac<\sqrt[6]<6>><\sqrt<13>+\frac<4><13>>\).

Если числа не рациональные, а иррациональные, или представляют собой сложные математические выражения, то расположить их на числовой прямой весьма проблематично.

Для этого нужно уметь их сравнивать.

Калькуляторами на экзамене пользоваться нельзя, а приближенный подсчет не дает 100% гарантий, что одно число меньше другого (вдруг разница между сравниваемыми числами \( 0,000001\)?).

Прочитай эту статью и все поймешь!

Что значит сравнение с промежуточным числом

Но всегда ли все так легко? Где на числовой оси мы отметим \( \sqrt<6>\), \( \left( 4-\sqrt <3>\right)\), \( \frac<\sqrt[6]<6>><\sqrt<13>+\frac<4><13>>\).

Как их сравнить, например, с числом \( 5\)? Вот в этом-то и загвоздка … )

Для начала поговорим в общих чертах как и что сравнивать.

Если надо сравнить числа \( a\) и \( b\), между ними ставим знак \( \vee \) (происходит от латинского слова Versus или сокращенно vs. – против): \( a\vee b\).

Этот знак заменяет неизвестный нам знак неравенства (\( >\text

5 вариантов сравнения дробей

Например, нам необходимо сравнить две дроби: \( 1,6\) и \( 1\frac<6><13>\).

Давай разберем каждый вариант

Вариант 1. Сравнение дробей с помощью приведения к общему знаменателю

Запишем \( 1,6\) в виде обыкновенной дроби:

\( 1,6=1\frac<6><10>=1\frac<3><5>\) — (как ты видишь, я также сократила на \( 2\) числитель и знаменатель).

Теперь нам необходимо сравнить дроби:

Сейчас мы можем продолжить сравнивать также двумя способами. Мы можем:

Способ 1. Числитель больше знаменателя

Просто приведите все к общему знаменателю, представив обе дроби как неправильные (числитель больше знаменателя):

Какое число больше? Правильно, то, у которого числитель больше, то есть первое.

Способ 2. Отбросьте единицу

«Отбросьте» \( 1\) (считай, что мы из каждой дроби вычли единицу, и соотношение дробей друг с другом, соответственно, не изменилось) и будем сравнивать дроби:

Приводим их также к общему знаменателю:

Заметь, в принципе мы можем не считать знаменатель. Мы итак видим, что он одинаков и нам необходимо сравнивать числитель. Тогда зачем мы будем тратить время на подсчет знаменателя?

Мы получили абсолютно точно такой же результат, как и в предыдущем случае – первое число больше, чем второе:

Проверим также, правомерно ли мы вычли единицу? Посчитаем разницу в числителе при первом расчете и втором:

1) \( 104-95=9\)

2) \( 39-30=9\)

Итак, мы рассмотрели, как сравнивать дроби, приводя их к общему знаменателю. Перейдем к другому методу – сравнение дробей приводя их к общему… числителю.

Вариант 2. Сравнение дробей с помощью приведения к общему числителю

Да, да. Это не опечатка. В школе редко кому рассказывают этот метод, но очень часто он весьма удобен. Чтобы ты быстро понял его суть, задам тебе только один вопрос – «в каких случаях значение дроби наибольшее?»

Конечно, ты скажешь «когда числитель максимально большой, а знаменатель максимально маленький».

Например, ты же точно скажешь, что \( \frac<8> <13>\frac<6><28>\).

Как ты видишь, знаменатели здесь разные, а вот числители одинаковы. Однако, для того, чтобы сравнить эти две дроби, тебе не обязательно искать общий знаменатель. Хотя… найди его и посмотри, вдруг знак сравнения все же неправильный?

Вернемся к нашему изначальному заданию – сравнить \( 1\frac<3><5>\)и \( 1\frac<6><13>\). Будем сравнивать \( \frac<3><5>\) и \( \frac<6><13>\).

Приведем данные дроби не к общему знаменателю, а к общему числителю.

Для этого просто числитель и знаменатель первой дроби умножим на \( 2\). Получим:

Какая дробь больше? Правильно, первая.

Вариант 3. Сравнение дробей с помощью вычитания

Как сравнивать дроби с помощью вычитания? Да очень просто.

Мы из одной дроби вычитаем другую. Если результат получается положительным, то первая дробь (уменьшаемое) больше второй (вычитаемое), а если отрицательным, то наоборот.

В нашем случае попробуем из второй вычесть первую дробь: \( 1\frac<6><13>-1,6\).

Наше выражение приобретает вид:

Далее нам все равно придется прибегнуть к приведению к общему знаменателю.

Вопрос как: первым способом, преобразуя дроби в неправильные, или вторым, как бы «убирая» единицу? Кстати, это действие имеет вполне математическое обоснование. Смотри:

Мне больше нравится второй вариант, так как перемножение в числителе при приведении к общему знаменателю становится в разы проще.

Приводим к общему знаменателю:

Здесь главное не запутаться, какое число и откуда мы отнимали. Внимательно посмотреть ход решения и случайно не перепутать знаки. Мы отнимали от второго числа первое и получили отрицательный ответ, значит.

Правильно, первое число больше второго.

Вариант 4. Сравнение дробей с помощью приведения к виду десятичной дроби

Разобрался в предыдущем примере? А теперь попробуй сравнить дроби:

Стоп, стоп. Не спеши приводить к общему знаменателю или вычитать.

Посмотри: \( 1\frac<3><5>\) можно легко перевести в десятичную дробь. Сколько это будет? Правильно. Что в итоге больше?

Сравним ответы:

Читать далее…

Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:

Сравнение степеней

Теперь представим, что нам необходимо сравнить не просто числа, а выражения, где существует степень (читай раздел про степени).

Конечно, ты без труда поставишь знак:

\( <<2>^<4>> Что значит сравнение с промежуточным числом

Раскроем скобки и сравним то, что получится:

Введем некоторое натуральное число \( k\), как разницу между \( m\) и \( n\).

Логично, неправда ли?

А теперь еще раз обратим внимание на условие — \( 0

Как ты понял, мы рассмотрели случай, когда основания степеней равны.

Теперь посмотрим, когда основание находится в промежутке от \( 0\) до \( 1\), но равны показатели степени. Здесь все очень просто.

Запомним, как это сравнивать на примере:

Конечно, ты быстро посчитал:

Поэтому, когда тебе будут попадаться похожие задачи для сравнения, держи в голове какой-нибудь простой аналогичный пример, который ты можешь быстро просчитать, и на основе этого примера проставляй знаки в более сложном.

Выполняя преобразования, помни, что если ты домножаешь, складываешь, вычитаешь или делишь, то все действия необходимо делать и с левой и с правой частью (если ты умножаешь на \( 2\), то умножать необходимо и то, и другое).

Кроме этого, бывают случаи, когда делать какие-либо манипуляции просто невыгодно. Например, тебе нужно сравнить \( <<5>^<2>>\vee <<4>^<3>>\). В данном случае, не так сложно возвести в степень, и расставить знак исходя из этого:

Источник

Как найти промежуточное число при сравнении дробей. Сравнение обыкновенных дробей

В этом уроке мы научимся сравнивать дроби между собой. Это очень полезный навык, который необходим для решения целого класса более сложных задач.

Для начала напомню определение равенства дробей:

Во всех остальных случаях дроби являются неравными, и для них справедливо одно из следующих утверждений:

Конечно, в приведенных примерах с нулями был явный перебор, но смысл именно такой: заполнить недостающие разряды слева, а затем сравнить.

По определению имеем:

Данная статья рассматривает сравнение дробей. Здесь мы выясним, какая из дробей больше или меньше, применим правило, разберем примеры решения. Сравним дроби как с одинаковыми, так и разными знаменателями. Произведем сравнение обыкновенной дроби с натуральным числом.

Сравнение дробей с одинаковыми знаменателями

Отсюда следует правило сравнения дробей с одинаковыми знаменателями:из имеющихся дробей с одинаковыми показателями считается большей та дробь, у которой числитель больше и наоборот.

Это говорит о том, что следует обратить внимание на числители. Для этого рассмотрим пример.

Сравнение дробей с разными знаменателями

Сравнение таких дробей можно соотнести со сравнением дробей с одинаковыми показателями, но имеется различие. Теперь необходимо дроби приводить к общему знаменателю.

Если имеются дроби с разными знаменателями, для их сравнения необходимо:

Рассмотрим данные действия на примере.

Сравнение дробей с одинаковыми числителями

Если дроби имеют одинаковые числители и разные знаменатели, тогда можно выполнять сравнение по предыдущему пункту. Результат сравнения возможет при сравнении их знаменателей.

Имеется правило сравнения дробей с одинаковыми числителями: из двух дробей с одинаковыми числителями больше та дробь, которая имеет меньший знаменатель и наоборот.

Рассмотрим на примере.

Сравнение дроби с натуральным числом

И действительно, если вы съедите 3 куска пиццы, разделенной на 4 части, то будете более сыты, чем если бы съели 3 куска пиццы, разделенной на 8 частей.

Что значит сравнение с промежуточным числом
Что значит сравнение с промежуточным числом

Сравнение дробей с разными числителями и знаменателями

Применяем третье правило:

Сравнение дробей с разными знаменателями нужно привести к сравнению дробей с одинаковыми знаменателями. Для этого необходимо привести дроби к общему знаменателю и использовать первое правило.

Не только простые числа можно сравнивать, но и дроби тоже. Ведь дробь — это такое же число как, к примеру, и натуральные числа. Нужно знать только правила, по которым сравнивают дроби.

Сравнение дробей с одинаковыми знаменателями.

Если у двух дробей одинаковые знаменатели, то такие дроби сравнить просто.

Чтобы сравнить дроби с одинаковыми знаменателями, нужно сравнить их числители. Та дробь больше у которой больше числитель.

Знаменатели у обоих дробей одинаковые равны 26, поэтому сравниваем числители. Число 13 больше 7. Получаем:

Если мы до решаем эти дроби, то получим числа \(\frac<20> <4>= 5\) и \(\frac<20> <10>= 2\). Получаем, что 5 > 2

В этом и заключается правило сравнения дробей с одинаковыми числителями.

Рассмотрим еще пример.

Так как числители одинаковые, больше та дробь, где знаменатель меньше.

Пример №2:
Сравните правильную дробь с единицей?

Решение:
Любая правильная дробь всегда меньше 1.

Задача №1:
Сын с отцом играли в футбол. Сын из 10 подходов в ворота попал 5 раз. А папа из 5 подходов попал в ворота 3 раза. Чей результат лучше?

Решение:
Сын попал из 10 возможных подходов 5 раз. Запишем в виде дроби \(\frac<5> <10>\).
Папа попал из 5 возможных подходов 3 раз. Запишем в виде дроби \(\frac<3> <5>\).

Сравним дроби. У нас разные числители и знаменатели, приведем к одному знаменателю. Общий знаменатель будет равен 10.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *