Что значит решить уравнение с объяснением 3 класс
Как научить ребенка решать уравнения
Одна и самых сложных тем в начальной школе — решение уравнений.
Усложняется она двумя фактами:
Во-первых, дети не понимают смысл уравнения. Зачем цифру заменили буквой и что это вообще такое?
Во-вторых, объяснение, которое предлагается детям в школьной программе, непонятно в большинстве случаев даже взрослому:
Для того чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.
Для того чтобы найти неизвестный делитель, нужно делимое разделить на частное.
Для того чтобы найти неизвестное уменьшаемое, нужно к вычитаемому прибавить разность.
И вот, придя домой ребенок чуть ли не плачет.
На помощь приходят родители. И посмотрев в учебник, решают научить ребенка решать «проще».
Нужно же всего лишь перекинуть на одну сторону цифры, поменяв знак на противоположный, понимаешь?
Минус три переносим с плюсом к семерке, считаем и получается х=10
В этом месте у детей обычно происходит сбой программы.
Знак? Поменять? Перенести? Что?
— Мама, папа! Вы ничего не понимате! Нам в школе по-другому объясняли.
— Тогда и решай как объясняли!
А в школе, тем временем, продолжается тренировка темы.
1. Вначале нужно определить какой компонент действия нужно найти
5+х=17 — нужно найти неизвестное слагаемое.
х-3=7 — нужно найти неизвестное уменьшаемое.
10-х=4 — нужно найти неизвестное вычитаемое.
2. Теперь нужно вспомнить правило, упомянутое выше
Для того чтобы найти неизвестное слагаемое, нужно…
Как Вы думаете, трудно ли маленькому ученику все это запомнить?
А еще нужно добавить сюда тот факт, что с каждым классом уравнения становятся все сложнее и больше.
В итоге и получается что уравнения для детей одна из самых сложных тем математики в начальной школе.
И даже если ребенок уже в четвертом классе, но у него трудности с решением уравнениями, скорее всего у него проблема с пониманием сути уравнения. И надо просто вернуться назад, к основам.
Сделать это можно за 2 простых шага:
Шаг первый — Надо научить детей понимать уравнения.
Нам потребуется простая кружка.
Напишите пример 3 + 5 = 8
А на дне кружки «х». И, перевернув кружку, закройте цифру «5»
Уверены, ребенок сразу угадает!
Теперь закройте цифру «5». Что под кружкой?
Так можно писать примеры на разные действия и играть. У ребенка происходи понимание, что х = это не просто непонятный знак, а «спрятанная цифра»
Подробнее о технике — в видео
Шаг второй — Научите определять, х в уравнении является целым или частью? Самым большим или «маленьким»?
Для этого нам подойдет техника «Яблоко»
Задайте ребенку вопрос, где в данном уравнении самое большое?
Отлично! Это будет наше яблоко!
Самое большое число — это всегда целое яблоко. Обведем в кружок.
А целое всегда состоит из частей. Давай подчеркнем части.
5 и х — части яблока.
А раз х — это часть. Она больше или меньше? х большое — или маленькое? Как его найти?
Важно отметить, что в таком случае ребенок думает, и понимает, почему, чтобы найти х в данном примере, нужно из 17 вычесть 5.
После того, как ребенок поймет, что ключем к правильному решению уравнений является определить, х — целое или часть, он легко будет решать уравнения.
Потому что запомнить правило, когда понимаешь его гораздо проще, чем наоборот: вызубрить и учиться применять.
Данные техники «Кружка» и «Яблоко» позволяют научить ребенка понимать, что он делает и зачем.
Учите ребенка понимать программу и тогда процесс учебы станет отнимать у Вас значительно меньше времени и сил.
Вам понравилось объяснение данной темы?
Именно так, просто и легко, мы учим родителей объяснять школьную программу в «Школе умных детей».
Хотите научиться объяснять материалы ребенку также доступно и легко, как в этой статье?
Тогда регистрируйтесь бесплатно на 40 уроков школы умных детей прямо сейчас по кнопке ниже.
Вам понравилась статья? Сохраните себе на стену, чтобы не потерять
Похожее
Автор
Рената Кирилина
Эксперт №1 по эффективному обучению детей в школе, мама троих детей, прошла путь от учителя до директора школы Посмотреть все записи автора Рената Кирилина
Как научить ребенка решать уравнения: 3 комментария
А если Х это 17? Т.е. самое большое как раз не известно?
Хороший пример. Завтра попробую с мученицей.
Решение сложных уравнений. 3 класс.
Овладение детьми способом решения уравнений в начальной школе создает прочную основу для дальнейшего обучения алгебры, химии, физики и других предметов.
Начиная с 3-го класса, ученикам встречаются сложные уравнения, но справиться с ними очень просто.
Дети уже умеют решать простые уравнения, читай об этом здесь.
А эта статья будет посвящена решению сложных уравнений в 2-3 действия.
Очень часто родители, желая помочь, объясняют так: вот смотри, сейчас вот это число перенести в другую часть от знака равенства, надо поменять знак на противоположный: было умножение, меняем на деление; было сложение меняем на вычитание.
В начальной школе это объяснение не срабатывает, т.к. ребенок не знаком с законами алгебры.
Как сложное уравнение привести к тому, которые мы уже умеем решать, а именно к уравнению в 1 действие?
Рассмотрим уравнение в 2 действия:
х + 56 = 98 — 2 — оно достаточно легкое.
Здесь особого труда не будет в решении, потому что ребенок сразу догадается, что сначала надо 98-2.
х + 56 = 98 — 2
х + 56 = 96 – это простое уравнение. А его решаем очень быстро!
Сейчас мы рассмотрим уравнение:
Такое уравнение можно решить несколькими способами.
А когда к х + 5 – это число тоже известно.
Мы видим, что у нас получилось самое простое уравнение в 1 действие.
2 • b = 30
А чтобы найти а, нам нужно 30 : на 2.
А b не что иное, как х + 5.
х + 5 = 30 : 2
х + 5 = 15
х = 15 – 5
х = 10
Проверку делаем как обычно: переписываем первое уравнение: 2 • (10 + 5) = 30.
30 – переписываем, а левую часть считаем — будет 30.
30 = 30, значит, уравнение решили правильно.
При решении таких сложных уравнений самое главное – понять, что заменить на другое неизвестное число. Когда в уравнении всего 2 действия – это очень просто.
Наше уравнение 2 • (х + 5) = 30 читаем так: число 2 умножить на сумму х и пяти, получится 30. В данном случае – нам неизвестна сумма, чтобы ее найти, надо 30:2.
48 : (16 – а) = 4.
Если опять заменять часть уравнения другим неизвестным числом, можно запутаться. Поэтому легче использовать взаимосвязи компонентов и результата действия: число 48 разделить на разность.
Нам неизвестна разность, поэтому сначала нужно узнать чему она равна. Надо 48 : 4.
16 — а = 48 : 4
16 — а = 12 – это простое уравнение.
а = 16 — 12
а = 4
Проверка: 48 : (16 — 4) = 4
Давайте посмотрим еще одно:
Из 96 надо вычесть разность с и 16. Чтобы найти разность, надо 96-94.
Проверка: 96 — (16 — 14) = 94
А сейчас мы переходим к тем уравнениям, у которых не 2, а 3 действия. Как же нам поступать в этом случае? При решении таких сложных уравнения используем знания порядка выполнения действий в выражениях со скобками и без них.
Рассмотрим уравнение: 36 – (8 • у + 5) = 7
Прежде всего, нужно внимательно оценить левую часть уравнения: ту, которая с неизвестным числом. Вы должны четко себе представить какое вы будете делать действие первым, какое – вторым, какое – третьим: сначала делается умножение, потом сложение и последним – вычитание.
И вот то, которое вы будете делать третьим, с него и начнем, т.е. начинаем упрощать уравнение с последнего действия. Последнее действие – вычитание. С него и начнем: из числа 36 вычесть то, что в скобках и получим 7.
Значит, то что в скобках – вычитаемое, чтобы его найти, надо 36 — 7.
По правилам математики в данной записи скобки – не ставим.
8 • у + 5 = 29 – уравнение сложное. Нужно его упростить. Данное уравнение читаем так: к произведению 8 и у прибавили 5 и получилось 29. Нам неизвестно произведение, чтобы его найти, надо 29-5.
8 • у = 24 – это уравнение простое.
Итак: 7 = 7. Значит, уравнение решили правильно.
(36 + d) : 4 + 8 = 18. Определяем порядок действий: первое – сложение в скобках, второе – деление, третье сложение вне скобок. Значит, все, что до 8 – это первое слагаемое, чтобы его найти, надо 18 — 8
(36 + d) : 4 = 10 – уравнение сложное, теперь последнее действие — :, значит
36 + d = 40 – уравнение простое и его мы решаем легко!
Для удобства и быстроты решения сложных уравнений можете пользоваться данной памяткой
Дело в том, что при кажущейся сложности, если внимательно изучить все приемы, которые я вам сегодня показала, эти уравнения дети будете щелкать как семечки. Обязательно напишите в комментариях, какой способ вам более удобен.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 5 / 5. Количество оценок: 57
Решение задач с помощью уравнения. 3-й класс
Класс: 3
Презентация к уроку
Урок я построила на содержании учебника математики для 3-го класса из УМК “Начальная школа ХХI века” под редакцией авторов – Виктории Наумовны Рудницкой и Татьяны Владимировны Юдачёвой. (Авторский коллектив УМК “Начальная школа ХХI века” удостоен премии Президента Российской Федерации в области образования. УМК “Начальная школа ХХI века” входит в федеральный перечень учебников, рекомендованных (допущенных) Министерством образования и науки Российской Федерации к использованию в образовательном процессе общеобразовательных учреждений.)
Объяснительная часть урока не перегружена лишней информацией. Она имеет справочный характер. Ученики узнают, что многие трудные арифметические задачи можно решить с помощью составления уравнений. Сведения из истории математики, высказывание И.Ньютона (см. слайд презентации урока), приводят к возникновению проблемы: “Как перевести условие задачи с родного языка на язык алгебры?” и побуждают учащихся к поиску путей разрешения возникшего вопроса.
Использование презентации к данному уроку по изучению темы: “Решение задач с помощью уравнения” помогло учащимся не только наглядно разобраться, но и научиться переводить условие задачи на язык алгебры, а также приобрести универсальные умения грамотно оформлять решение задачи уравнением. (Хотя в учебнике 3 класса и предлагается упрощённый образец оформления решения задачи уравнением, но я считаю, что рациональнее в целях преемственности и непрерывности содержания образования начинать раньше учить ребят более грамотной записи решения задач такого вида так, как этого требуют в среднем звене. Тогда у преподавателя математики не возникает проблемы переучивания, что даётся порой не всегда легко. Постепенно ученики привыкают к такому виду оформления решения задачи, и не испытывают трудности). Прослеживается система опережающего обучения
Цель урока: “Провести исследование условия нескольких задач и найти новый способ решения”
Ведущие задачи урока: познакомить учащихся с новым видом решения задач
Время проведения урока: 2-я четверть, 3 класс.
Возраст учащихся: 10 лет.
Количество часов: 1 час (из четырёх).
Тип урока: урок открытия новых знаний.
Вид урока: урок-диалог.
1 уровень: Вова задумал число. Если к этому числу прибавить 23, то получится 52. Какое число задумал Вова?
2 уровень. У Оли было 82 рубля. Несколько рублей она заплатила за мороженое, после чего у неё осталось 63 рубля. Сколько рублей стоит мороженое?
3 уровень. В лагере 322 человека. Несколько человек ушло в поход, и в лагере осталось 275 человек. Сколько человек ушло в поход?
Ход урока
I. Вводная часть. Знакомство со Смекалкиным. Слайд 2.
– Ребята, к нам с вопросом обратился Смекалкин. Это внимательный и очень любознательный ученик. Сегодня на уроке он будет вам помогать обсуждать написанное в учебнике, объяснять и спрашивать. Смекалкин любит не только отвечать на ваши вопросы, но и задавать вопросы вам. А иногда и предлагать что-нибудь интересное.
Хотя он иногда и попадает впросак, я всё-таки советую вам брать с него пример: не стесняться спрашивать учителя, если что-то будет непонятно.
Вам желаю научиться догадываться, как Смекалкин, и проявлять инициативу.
Смекалкин бы обязательно спросил: “Что такое инициатива?”
Ответить можно так: инициатива – это когда ученик не только не ленится, но и не останавливается на достигнутых знаниях, всегда старается узнать как можно больше, выполнить задания как можно лучше. Инициатива в учении, да и в любом деле, – вещь важная. (Математика 5 – 6. Учебник-собеседник. Авторы: Л.Н.Шеврин, А.Г.Гейн и др. из серии “Библиотека учителя математики”, 1989 г.)
II. Актуализация опорных знаний. Слайд 3.
– Кто готов ответить на вопрос Смекалкина?
(Мы знаем, что называется уравнением; умеем отличать уравнения от других видов выражений; умеем решать уравнения;
проверять, какие числа
являются корнем уравнения; определять, имеет ли данное уравнение корни)
– Выбирайте себе посильное задание и, решая его, продумайте, как можно грамотно оформить ответ на заданный им вопрос.
III. Проверка выполнения заданий.
– Проверим, умеете ли вы рассуждать?
Каждая группа доказывает правильность своего выбора и решения уравнения, нахождение корня уравнения (на экране проецируется слайд с последовательным раскрытием ответов группы)
у – 45 = 35 | х + 27 = 55 |
у = 35 + 45 | х = 55 – 27 |
у = 80 | х =28 |
Ответ: у =80 | Ответ: х = 28 |
Вывод: ваши ответы были убедительными. Вы правильно выбрали и решили именно уравнения, верно определили, какое из чисел 5, 2, 6, 3 является корнем уравнения а+ 7 = 10 и 15 – х = 9. И, конечно же, точно узнали, может ли уравнение 16 + а = 7 иметь корень.
Смекалкин остался вами доволен.
– А готовы ли вы пройти ещё одно испытание, которое он для вас подготовил?
IV. Исследование условия нескольких задач.
а) ученики записывают решение задач;
б) проверка решения задач с сопроводительным объяснением.
– Вызвала ли затруднение какая-нибудь задача? Каким образом вы решили 3-ю задачу? (сли покажут решение задачи так: 43 – 35 = 8 (книг), то это неплохо; тогда обратить внимание учащихся на слова в условии задач)
– Есть ли разница в условии задач? Какая?
(В третьей есть слово, не называющее число).
– Слово несколько ключевое. Оно-то нам и будет давать сигнал к тому, как нужно действовать при решении задач такого содержания).
– Смекалкин опять остался вами доволен.
– А можете уже сейчас определить тему урока? ( могут и назвать, т. к. умеют пользоваться учебником: подсмотреть дома заранее; им это нравится)
V. Работа с учебником.
Определение темы и цели урока.
– Определите тему урока.
– Какие цели мы можем перед собой поставить?
(ответы детей: научиться решать задачи уравнением;
познакомиться с новым способом решения задач ).
– Очень хорошо. Выдвинутые вами цели оказались удачными. Мы их объединим в одну и сформулируем так:
Тема урока: “Решение задач с помощью уравнения”
Цель: “Провести исследование условия нескольких задач и найти новый способ решения”
– А чтобы каждый из Вас остался доволен результатом познания и изучения нового материала, вам нужно поставить перед собой задачи.
(Дети: научиться решать задачи, составляя уравнение;
научиться находить неизвестную величину.)
– Задачи тоже поставлены вами нужные, но познакомившись с исторической справкой, вы поймёте, что на уроке мы будем решать задачи гораздо серьёзнее, чем вы думали. Сейчас поймёте, почему.
(Задача, которую можно решить уравнением)
- Многие трудные арифметические задачи легко решаются с помощью уравнений.
Если вы освоите искусство составлять уравнение по условию задачи и научитесь их безошибочно решать, то эти задачи будут вам по плечу.
– Как можно перевести задачу с родного (а наш родной язык….русский) языка на
язык алгебры (раздел математики). Вот как поступили наши герои Волк и Заяц.
(см. стр.75, учебник математики-4 кл,. задача 1)
– Вспомните, какую задачу можно решить уравнением? (Третью задачу)
На полке стояло несколько книг,
когда на полку поставили ещё 35 книг,
то на ней стало 43 книги
Образец оформления решения задачи
– Обратите внимание на оформление задачи 1 в учебнике на стр.75.
Мы же научимся решение задачи записывать так, как это делают ребята в старших классах.
– Оформление решения задачи уравнением обычно начинают с чтения вопроса и вместо слова “сколько” пишут выражение : Пусть х…
Отработка алгоритма письменного оформления задачи
VI. Работа по учебнику:
– На стр.76 найдите задачу 2 про Петю. (Оформление решения задачи в тетради)
VII. Работа в тетради на печатной основе.
Стр.61, задача №245 (запись на доске)
Ученики читают условие задачи и переводят самостоятельно на язык алгебры. Затем по алгоритму записывают решение задачи уравнением под руководством учителя.
VIII. Итог урока. Пожелания учащимся.
– Как можно решать задачи? Чему вы научились сегодня? Назовите задачи урока, которые мы ставили перед собой? Какую задачу вы ещё не до конца усвоили?
IX. Домашнее задание. Слайд 16
Чтение задач, обмен мнениями, раздача карточек с задачей (каждый берёт карточку того уровня, какого уже достиг).
Решение уравнений
Урок 34. Математика 3 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Решение уравнений»
Сегодня я хочу вам напомнить о том, что такое уравнения, и как решать уравнения, в которых стоят знаки умножения и деления. А начну я с того, почему уравнение так называется.
Уравнение – это математическое равенство, в котором есть одно или даже несколько неизвестных. Эти неизвестные обычно обозначаются буквами латинского алфавита (а + 12 = 17, 78 – в = 24, с – 32 = 19, х × 4 = 56, 98 : у = 7, k : 3 = 19, 3z – 2r = 2).
Видите, во всех этих записях стоит знак равно.
Это значит, что при решении уравнений надо найти такое значение неизвестного, при котором левая часть уравнения будет равна правой.
Вы уже умеете решать уравнения, в которых стоят знаки плюс или минус. Помните, для решения таких уравнений мы пользуемся правилами:
* Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.
* Чтобы найти неизвестное уменьшаемое, надо сложить вычитаемое и разность.
* Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.
А ещё решать уравнения нам помогали схемы.
На первой из них видно, что слагаемые являются частями. Поэтому их мы находим вычитанием. Ведь если нам, например, надо взять часть яблока или груши, мы её отрежем, то есть вычтем.
А вот сумма – это целое, получить которое можно сложением частей.
Вторая схема нам подсказывает, что целым является уменьшаемое. А так как это целое, то его мы будем находить действием сложения. А вот вычитаемое – часть, поэтому его мы найдём вычитанием.
А как же решать уравнения, если в них не действия сложения или вычитания, а умножение и деление? Вот, например, такое уравнение.
В нём надо найти такое значение икс, при умножении которого на четыре получится пятьдесят шесть. Ещё во втором классе мы с вами говорили о связи между компонентами и результатом действия умножения:
Если произведение двух множителей разделить на один из них, то получится другой множитель.
Значит, неизвестный множитель надо находить действием деления. Найдём его. Решение будем записывать под уравнением.
Пишем: икс равен частному чисел пятьдесят шесть и четыре. Так-так, надо посчитать. Все расчёты можно записывать справа от уравнения.
Пятьдесят шесть это сорок и шестнадцать. Делим каждое на четыре. Десять и четыре. Четырнадцать. Отступаю клеточку вниз и пишу: икс равен четырнадцати. Но, конечно, не забываю и про проверку. Черта, под которой пишу наше уравнение точно такое же, как оно было записано в верхней строчке, только вместо буквы подставляю её значение. Получился решённый пример. Но мы обязательно должны проверить, правильно ли он решён. Для этого выполним действие, которое находится слева от знака равно. Умножим четырнадцать на шесть.
Полученное число пишем внизу под левой частью уравнения. А число из правой части уравнения просто переносим. Видите, результат действия в левой части и правая часть между собой равны. Значит, уравнение решено верно. Корень уравнения равен четырнадцати.
А как же решать уравнения, в которых стоит знак деления?
И тут нам на помощь придут правила связи между компонентами и результатом действия деления.
Вот посмотрите на это уравнение.
В нём неизвестно делимое. Вспоминаем правило: Чтобы найти неизвестное делимое, надо частное умножить на делитель.
Принимаемся за работу. К равно девятнадцать умножить на три. Получилось пятьдесят семь. Значит, k равно пятидесяти семи.
Подчёркиваю, и списываю наше уравнение, заменив букву k полученным значением. А теперь обязательно выполняю действие из левой части нашего уравнения. Пятьдесят семь разделить на три. Получилось девятнадцать. И справа тоже число девятнадцать. Есть равенство. Значит, уравнение решено верно и корень его равен пятидесяти семи.
А если в уравнении на деление надо найти неизвестный делитель, как вот в этом уравнении?
И вновь на помощь приходит правило: Чтобы найти неизвестный делитель, надо делимое разделить на частное.
Решаем уравнение: 98 : у = 7.
Игрек равен частному чисел девяносто восемь и семь. Игрек равен четырнадцати. Проверяем. Записываем уравнение, заменив букву на число четырнадцать. Здесь придётся воспользоваться методом подбора, то есть умножить четырнадцать на такое однозначное число, чтобы в ответе получилось девяносто восемь. Но, так как справа записано число семь, попробую-ка я сразу умножить четырнадцать на семь. Отлично, произведение чисел четырнадцать и семь равно девяносто восьми. Все получилось. Корень уравнения равен четырнадцати.
Для решения этих уравнений мы воспользовались правилами связи между компонентами и результатом действий умножения и деления.
* Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
* Чтобы найти неизвестный делитель, надо делимое разделить на частное.
* Чтобы найти неизвестное делимое, надо частное умножить на делитель.
Но вот некоторым ребятам бывает трудно запоминать все правила. А нельзя ли воспользоваться какой-нибудь короткой схемой, как мы это сделали при решении уравнений на сложение и вычитание? А почему бы и нет.
Для решения уравнений с действием умножения воспользуемся схемой, которой пользовались при решении уравнений, в которых стоит знак плюс. А для решения уравнений с действием деления воспользуемся схемой, которой пользовались при решении уравнений, в которых стоит знак минус. Просто заменим в схемах знаки.
Посмотрите, в первой схеме множители – это части, а произведение – целое. Части мы будем находить действием, обратным умножению – делением. А ведь наше правило об этом и говорит.
Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
Вот, допустим, надо решить такое уравнение: три умножить на икс равно тридцать шесть.
Подставляем его в нашу схему.
Икс – это часть. Находим делением. Икс равен двенадцати. Проверяем. Умножаем три на двенадцать. Тридцать шесть. И справа тридцать шесть. Уравнение решено верно. Схема работает!
А теперь проверим вторую схему. Игрек разделить на семь равно одиннадцать
Подставили его в схему.
Найти надо делимое. Это целое. Находим умножением. И правило об этом говорит.
Чтобы найти неизвестное делимое, надо частное умножить на делитель.
И здесь схема сработала. А справится ли наша схема с неизвестным делителем, попробуйте проверить сами. Решите вот это уравнение.
Ну вот и всё. Пришла пора нам с вами прощаться. Но я думаю, вы запомните правила, которые помогут вам решить любое уравнение.
* Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.
* Чтобы найти неизвестное делимое, надо частное умножить на делитель.
* Чтобы найти неизвестный делитель, надо делимое разделить на частное.
А если вдруг забудете его, вы всегда сможете воспользоваться схемами.
А я сегодня прощаюсь с вами. До встречи, ребята!