Что значит сонаправлены в геометрии
Определение сонаправленных лучей.
Тема: « Углы и расстояние в пространстве ».
1. Скрещивающиеся прямые. Теоремы о скрещивающихся прямых.
2. Углы с сонаправленными сторонами.
3. Угол между прямыми.
Скрещивающиеся прямые.
Определение. Две прямые в пространстве называются скрещивающимися, если они не лежат в одной плоскости.
Определение. Две прямые называются параллельными, если они лежат в одной плоскости и не пересекаются.
Определение. Две прямые, имеющие лишь одну общую точку, называются пересекающимися.
Итак, возможны три случая взаимного расположения двух прямых в пространстве:
1) прямые пересекаются, т.е. имеют только одну общую точку;
2) прямые параллельны, т.е. лежат в одной плоскости и не пересекаются;
3) прямые скрещиваются, т.е. не лежат в одной плоскости.
AB⊂α, CD α=C, C ∉ AB
Доказать: AB скрещивается с DC
Доказательство.
Доказательство будем вести методом от противного.
Допустим, АВ и CD лежат в некоторой плоскости β.
Тогда плоскость β проходит через прямую AB и точку C.
Через прямую AB и не лежащую на ней точку C можно провести плоскость, и притом только одну (следствие из аксиом).Следовательно, β≡α.
Но это невозможно, т.к. прямая CD пересекает α. Пришли к противоречию, ⇒ AB и CD лежат в разных плоскостях (скрещиваются). Теорема доказана.
Теорема 2.Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой прямой, и притом только одна.
Дано: АВ и CD – скрещивающиеся прямые.
Доказать: ∃ α: AB ⊂α, CD∥α
Доказательство.
2) Проведем плоскость α через пересекающиеся прямые AE и CD.
3) CD ∥ AE, AE ⊂ α ⇒ CD ∥ α.
Любая другая плоскость будет пересекать AB, а значит и параллельную ей прямую CD. Поэтому α – единственная. Теорема доказана
2. Углы с сонаправленными сторонами.
Определение сонаправленных лучей.
Любая прямая, например ОО1, рассекает плоскость на две
полуплоскости. Если лучи ОА и О1А1 параллельны и лежат
в одной полуплоскости, то они называются сонаправленными.
Лучи О2А2 и ОА не являются сонаправленными. Они параллельны, но не лежат в одной полуплоскости.
Теорема о равенстве углов с сонаправленными сторонами.Если стороны двух углов соответственно сонаправлены, то такие углы равны.
Пусть нам даны параллельные лучи ОА и О1А1 и параллельные
стороны лежат на сонаправленных лучах. Докажем, что эти
На стороне луча ОА и О1А1 выберем точки А и А1так, чтобы отрезки ОА и О1А1 были равны. Аналогично, точки В и В1 выберем так, чтобы отрезки ОВ и О1В1 были равны. Рассмотрим четырехугольник А1О1ОА. В этом четырехугольнике стороны ОА и О1А1 параллельны и равны. По признаку параллелограмма, четырехугольник А1О1ОА является параллелограммом. Так как А1О1ОА – параллелограмм, то стороны ОО1 и АА1 параллельны и равны.
Рассмотрим четырехугольник В1О1ОВ. В этом четырехугольнике
стороны ОВ и О1В1 параллельны и равны. По признаку
параллелограмма, четырехугольник В1О1ОВ является
параллелограммом. Так как В1О1ОВ – параллелограмм, то
стороны ОО1 и ВВ1 параллельны и равны.
Рассмотрим четырехугольник В1А1АВ. В этом четырехугольнике стороны АА1 и ВВ1 параллельны и равны. По признаку параллелограмма, четырехугольник В1А1АВ является параллелограммом. Так как В1А1АВ – параллелограмм, то стороны АВ иА1В1 параллельны и равны.
Рассмотрим треугольники АОВ и А1О1В1. Стороны ОА и О1А1 равны по построению. Стороны ОВ и О1В1 также равны по построению. А как мы доказали, и стороны АВ и А1В1 тоже равны. Значит, треугольники АОВ и А1О1В1 равны по трем сторонам. В равных треугольниках против равных сторон лежат равные углы. Значит, углы АОВ и А1О1В1 равны, что и требовалось доказать.
Угол между прямыми.
6.1 Угол между пересекающимися прямыми.
Если прямые пересекающиеся, то мы имеем четыре разных угла.
Углом между двумя прямыми, называется наименьший
из углов между двумя прямыми.
Угол между пересекающимися прямыми а и b обозначим α. Угол α такой, что .
6.2 Угол между скрещивающимися прямыми.
Пусть прямые а и b скрещивающиеся. Выберем произвольную точку О. Через точку О проведем прямую , параллельную прямой а, и прямую , параллельную прямой b. Прямые и пересекаются в точке О. Угол между двумя пересекающимися прямыми и , угол φ, и называется углом между скрещивающимися прямыми.
Решение задач.
Задача 1. Точка D не лежит в плоскости треугольника ABC, точки M, N, и P – середины отрезков DA, DB, и DC соответственно, точка K лежит на отрезке BN. Выясните взаимное расположение прямых:
а) ND и AB; б) PK и BC;
в) MN и AB; г) MP и AC;
д) NK и AC; е) MD и BC.
а) ND ∩ AB = B, поскольку N лежит между B и D;
б) PK пересекается с BC, поскольку PK не является средней линией BCD и поэтому не параллельна BC (PK ∩ BC = P1).
в) MN параллельна AB, т.к. MN – средняя линия ABD. Средняя линия треугольника параллельна основанию (MN AB).
г) MP параллельна AC, т.к. MP – средняя линия ACD (MP AC);
д) NK и AC скрещивающиеся, т.к. они не принадлежат одной плоскости;
е) MD и BC – скрещивающиеся, т.к. не принадлежат одной плоскости.
Задача 2.
Прямая с пересекает прямую а, параллельную прямой b. Докажите, что b и c – скрещивающиеся прямые.
Доказать: с и b – скрещиваются
Доказательство
1. .
Т.к., по условию задачи, , то через них можно провести плоскость, т.е. существует некоторая плоскость α, содержащая прямые a и b
2.
Прямые a и c пересекаются. Обозначим точку пересечения буквой M. Так как прямые a и b параллельны, то M не принадлежит b.
3. Ч.т.д.
1. Дайте определение скрещивающихся прямых.
2. Дайте определение параллельных прямых.
3. Дайте определение пересекающихся прямых.
4. Какие существуют варианты взаимного расположения двух прямых в пространстве.
5. Сформулируйте теоремы о скрещивающихся прямых.
6. Дайте определение сонаправленных лучей.
7. Сформулируйте теорему о равенстве углов с сонаправленными сторонами.
8. В случае пересекающихся прямых чему равен угол ?
Литература
1. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10-11 классы: учеб. для общеобразоват. организаций : базовый и углубл. уровни / [Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др.].- 3-е изд.- М.: Просвещение, 2016.- 255с.
1. Геометрия. 10-11 класс : учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е издание, исправленное и дополненное – М. : Мнемозина, 2008. – 288 с.
Углы с сонаправленными сторонами
Урок 8. Геометрия 10 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Углы с сонаправленными сторонами»
· введем понятие сонаправленных лучей;
· дадим определение сонаправленных лучей;
· докажем теорему о равенстве углов с сонаправленными сторонами.
На этом уроке нам понадобится одна из аксиом планиметрии, которая звучит следующим образом: «любая прямая разбивает плоскость на две полуплоскости».
Итак, пусть у нас есть некоторая прямая а, которая лежит в плоскости α. Согласно аксиоме, эта прямая разделяет плоскость α на две части. Каждую из которой, называют полуплоскостью.
Понятно, что наша прямая а разделила плоскость α на две полуплоскости. Одна из которых лежит слева от прямой а, вторая – справа. В свою очередь, прямую а называют границей каждой из этих полуплоскостей.
Обратите внимание, любые две точки одной и той же полуплоскости лежат по одну сторону от прямой а. А вот любые две точки разных полуплоскостей лежат по разные стороны от этой прямой.
Определение. Два луча ОА и О1А один в пространстве, не лежащие на одной прямой, называются сонаправленными (т.е. одинаково направленными), если они параллельны и лежат в одной полуплоскости с границей ОО1.
Напомню, что два луча называются параллельными, если они лежат на параллельных прямых.
Лучи ОА и O1A1, лежащие на одной прямой, называются сонаправленными, если они совпадают или один из них содержит другой.
Докажем теорему об углах с сонаправленными сторонами.
Теорема. Если стороны двух углов соответственно сонаправленны, то такие углы равны.
Доказательство. Рассмотрим случай, когда углы О и О1 с соответственно сонаправленными сторонами лежат в разных плоскостях.
Пусть нам даны параллельные лучи ОА и О1А1 и параллельные лучи ОB и
О1B1. Т.е. мы имеем два угла АОB и А1О1B1, стороны которых лежат на сонаправленных лучах. Докажем, что угол АОB равен углу А1О1B1.
Отметим на сторонах лучей ОА и O1A1 точки А и A1 так, чтобы отрезки ОА и O1A1 были равны. На сторонах лучей ОB и O1B1 отметим точки B и B1 так, чтобы отрезки ОB и O1B1 были равны.
Рассмотрим четырехугольник ОАA1O1. Так как лучи ОА и O1A1 параллельны по условию (сонаправленны ) и равны по построению, то четырехугольник ОАА1О1 является параллелограммом по признаку параллелограмма. Следовательно, АА1 параллельно ОО1 и АА1 равно ОО1.
Рассмотрим четырехугольник ОBB1O1. Его стороны ОB и O1B1 параллельны, т.к. лежат на сонаправленных лучах по условию и равны по построению. Значит, по признаку параллелограмма четырехугольник OBB1O1 является параллелограммом. Тогда, стороны BB1 и OO1 параллельны и равны.
Обратите внимание, мы получили, что прямая AA1 параллельна прямой OO1 и прямая BB1 параллельна прямой OO1. Тогда по признаку параллельности прямых в пространстве, прямые AA1 и BB1 параллельны.
Рассмотрим четырехугольник BAA1B1. В этом четырехугольнике стороны AA1 и BB1 параллельны и равны. А значит, BAA1B1 – параллелограмм по признаку параллелограмма. Следовательно, стороны АB и A1B1 тоже параллельны и равны.
Теперь рассмотрим треугольники АОB и A1O1B1. Стороны ОА и O1A1 равны по построению. Стороны ОB и O1B1 также равны по построению. Выше мы доказали, что стороны АB и A1B1 равны. Значит, треугольники АОB и A1O1B1 равны по трем сторонам. Напомню, что в равных треугольниках против соответственно равных сторон лежат равные углы. Значит, углы АОB и A1O1B1 равны. Теорема доказана.
Задание. Рассмотрите рисунок и
а) укажите лучи, которые являются сонаправленными;
б) укажите лучи, которые не являются сонаправленными.
Подведем итоги урока. На этом уроке мы ввели понятие сонаправленных лучей. Узнали, что два луча ОА и О один А один в пространстве, не лежащие на одной прямой, называются сонаправленными, если они параллельны и лежат в одной полуплоскости с границей О О один. Лучи ОА и О один А один, лежащие на одной прямой, называются сонаправленными, если они совпадают или один из них содержит другой. А также доказали теорему о равенстве углов с сонаправленными сторонами.
2. Скрещивающиеся прямые. Углы с сонаправленными сторонами. Угол между прямыми
Скрещивающиеся прямые
Нам известны два случая расположения прямых в пространстве a ∩ b; а || b. Общее для них: они лежат в одной плоскости (рис. 1, 2).
(по следствию из аксиомы)
(по определению параллельных прямых)
ЗАДАНИЕ №1 в рабочей тетради
Значит, в пространстве есть прямые, которые не пересекаются и не являются параллельными, так как они не лежат в одной плоскости. Такие прямые называются скрещивающимися.
Определение: Две прямые называются скрещивающимися, если они не лежат в одной плоскости.
Теорема (признак скрещивающихся прямых)
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.
Дано: АВ ⊂ α, CD ∩ α = С, С ∉ АВ (рис. 4).
Доказать, что АВ скрещивается с CD.
Допустим, что CD и АВ лежит в одной плоскости. Пусть это будет плоскость β.
Плоскости совпадают, чего быть не может, так как прямая CD пересекает α. Плоскости, которой принадлежат АВ и CD не существует и следовательно по определению скрещивающихся прямых АВ скрещивается с CD.
ЗАДАНИЕ №2 в рабочей тетради
Теорема :
Через каждую из двух скрещивающихся прямых проходит плоскость, параллельная другой плоскости, и притом только одна.
Доказательство: учащиеся разбирают по учебнику самостоятельно с последующей записью на доске и в тетрадях.
Дано: АВ скрещивается CD (рис. 6).
Построить α: АВ ⊂ α, CD || α.
1. Через точку А проведем прямую АЕ, АЕ || CD.
В доказательстве этой теоремы дается способ построения плоскости, проходящей через данную точку и параллельной двум скрещивающимся прямым. Рассмотреть задачу на построение.
Задание №3-№4 в рабочей тетради
Углы с сонаправленными сторонами. Угол между прямыми
Любая прямая а, лежащая в плоскости, разделяет плоскость на 2 части, называемые полуплоскостями. Прямая а называется границей каждой из этих полуплоскостей.
Геометрия
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Понятие скрещивающихся прямых
В пространстве можно построить две прямые так, что они не будут пересекаться, но и параллельными они также являться не будут. Для этого достаточно, чтобы прямые НЕ находились в одной плоскости. В этом случае их именуют скрещивающимися прямыми.
Здесь ребра ВС и АЕ как раз лежат на двух скрещивающихся прямых. Поэтому их можно так и называют – скрещивающиеся отрезки. По аналогии можно ввести понятие и скрещивающихся лучей.
Существует теорема, представляющая собой признак скрещивающихся прямых.
Действительно, пусть есть две прямые, НК и РМ. Обозначим как α плос-ть, проходящую через НК и точку М. Если РМ пересекает α, то это означает, что М – единственная общая точка у α и РМ. Получается, что Н, К, М и Р – это точки в различных плос-тях, и через них нельзя провести одну плос-ть. Значит, и прямые НК и РМ – скрещивающиеся.
Таким образом, в стереометрии возможно всего три случая взаимного расположения двух прямых в пространстве:
1) прямые пересекаются, и тогда они обязательно находятся в одной плос-ти;
2) прямые располагаются в одной плос-ти, но не пересекаются – случай параллельных прямых;
3) прямые находятся в разных плос-тях – случай скрещивающихся прямых.
Докажем одну теорему:
Для доказательства возьмем произвольные скрещивающиеся прямые m и n. Отметим на n точку К и проведем через К прямую р, параллельную m:
Через пересекающиеся прямые nи p можно провести единственную плос-тьα. По признаку параллельности прямой и плос-ти можно заключить, что m||α.
Покажем, что кроме α нет других плос-тей, проходящих через n и параллельных m. Действительно, если бы такая плос-ть β существовала, то р имела бы с ней общую точку К, но полностью в β она бы не могла находиться, иначе α и β совпадали бы. Значит, р пересекала бы β. Но тогда ее обязательно пересекала бы и m по одну из свойств параллельных прямых. В этом случае m и β не были бы параллельными.
Сонаправленные лучи
В планиметрии существует понятие сонаправленных лучей. Пусть на плос-ти есть два луча О1А и О2В. Проведем прямую О1О2. Она, как и всякая прямая, разделит плос-ть на две полуплоскости. Для того, чтобы лучи О1А и О2В считались сонаправленными, необходимо выполнение двух условий:
1) они должны оказаться в одной полуплоскости;
2) они должны быть параллельными.
Здесь мы рассмотрели случай, когда лучи О1А и О2В находятся на разных прямых. Возможен частный случай, когда они располагаются на одной прямой. В таком случае для сонаправленности лучей достаточно, чтобы один из них полностью лежал на другом:
Рассмотрим теорему, касающуюся сонаправленных лучей, причем она верна не только в планиметрии, но и в стереометрии.
В доказательстве сразу рассмотрим случай углов, располагающихся в разных плос-тях. Пусть есть углы О1 и О2, стороны которых образуют попарно сонаправленные лучи. На одной паре лучей отметим точки А1 и А2 так, чтобы отрезки О1А1 и О2А2 были одинаковыми. На другой паре лучей аналогично отложим точки В1 и В2 так, чтобы одинаковыми были отрезки О1В1 и О2В2:
Заметим, что лучи О1А1 и О2А2 как сонаправленные должны располагаться в одной плос-ти, иначе они не будут параллельными. Тогда О1А1А2О2 – плоский четырехугольник. Отрезки О1А1 и О2А2 параллельны и одинаковы. Это значит, что О1А1А2О2 – параллелограмм. Аналогично легко убедиться, что параллелограммом является и четырехугольник О1В1В2О2. Это значит, что
Отсюда вытекает (по свойству транзитивности), что отрезки А1А2 и В1В2 также одинаковы и параллельны, а потому А1А2В2В1 – также параллелограмм. Значит, стороны А1В1 и А2В2 одинаковы. Получается, что у ∆О1А1В1 и ∆О2А2В2 одинаковы все стороны, поэтому ∆О1А1В1 и ∆О2А2В2 равны. Отсюда вытекает и равенство углов ∠А1О1В1 и ∠А2О2В2, ч. т. д.
Угол между прямыми
Напомним, какая величина считается углом между пересекающимися прямыми. При пересечении прямых образуется 4 угла. Зная один из них, легко вычислить и остальные углы. Понятно, что хотя бы один из углов будет не превышать 90°. Именно такой угол и принимается за угол между прямыми:
Теперь покажем, как определить угол между скрещивающимися прямыми. Пусть прямые m и n скрещиваются. Выберем в пространстве произвольную точку К. Через нее можно построить такие прямые m1 и n1, что m1||m и n1||n. Угол между m1 и n1 как раз и принимается за угол между скрещивающимися прямыми m и n:
Возникает вопрос – зависит ли величина измеренного таким образом угла от того, какая именно точка К выбрана? Оказывается, что не зависит, и это можно доказать. Выберем две произвольные точки К1 и К2. Через К1 проведем прямые n1 и m1, а через К2 проведем n2 и m2, которые будут соответственно параллельны исходным прямым m и n.
Так как n1||n и n2||n, то по свойству транзитивности параллельности и n1||n2. Аналогично и m1||m2. Получается, что стороны углов в точках К1 и К2 соответственно сонаправлены. Значит, они одинаковы, ч. т. д.
Задачи на скрещивающиеся прямые
Теоретический материал закончился, осталось научиться применять полученные знания. Перед просмотром решения постарайтесь самостоятельно решить каждую задачу.
Задание. Точка D находится вне плос-ти ∆АВС. Середины отрезков АD, BD и СD обозначены буквами M, N и P соответственно. Точка K располагается на отрезке BN (и не совпадает с концами этого отрезка). Определите, как относительно друг друга располагаются прямые:
Решение. Сначала важно построить правильный рисунок по описанию задачи:
Теперь можно рассмотреть по отдельности каждый пункт.
а) АВ и DN. Прямая DN совпадает с прямой BD. Она в свою очередь пересекается с АВ в точке В. Значит, в данном случае прямые пересекаются.
б) РК и ВС. Рассмотрим плос-ть треугольника ∆ВСD. Рассматриваемые прямые как раз находятся в ней. То есть они уже точно не скрещиваются. Могут ли они быть параллельны? Обратите внимание на отрезок NP. Это средняя линия в ∆ВСD, поэтому NP||ВС. Через Р может быть проведена лишь одна прямая, параллельная ВС (по аксиоме параллельности), и это NP. Значит, KP пересекает ВС.
в) MN и АВ. В ∆АВDMN является средней линией, поэтому MN||АВ.
г) МР и АС. МР – это средняя линия в ∆АСD, значит, МР||АС.
д) KN и АС. Прямая KN совпадает с прямой BD. Она пересекает плос-ть АСВ, но точка пересечения (это В) не находится на АС. Тогда по признаку скрещивающихся прямых можно утверждать, что KN и АС скрещиваются.
е) MD и ВС. MD пересекается с плос-тью АСВ в точке А. Тогда из признака скрещивающихся прямых вытекает, что MD и DC скрещиваются.
Задание. Через точку Р, не находящуюся на прямой m, проведены две различные прямые, не пересекающиеся с m. Верно ли, что хотя бы одна из них точно скрещивается с m?
Решение. Каждая из этих двух прямых с m не пересекается. Тогда они либо параллельны m, либо скрещиваются с ней. Но обе прямые параллельны m не могут быть параллельны m, ведь тогда через Р будет проведено сразу две прямые, параллельные m, что невозможно. Значит, хотя бы одна из прямых действительно скрещивается с m.
Задание. MК и РН – скрещивающиеся прямые.Скрещиваются ли прямые МН и КР?
Решение. Ясно, что точки М, К, Р, Н располагаются в различных плос-тях. В противном случае, если бы существовала плос-ть α, в которой находились бы М, К, Р и Н, то в α также находились бы прямые МК и РН, и тогда они уже по определению не были бы скрещивающимися.
Теперь рассмотрим плос-ть КРН. В ней находится прямая КР. А прямая МН ее пересекает в точке К. Тогда, по признаку скрещивающихся прямых, МН и КР скрещиваются.
Задание. Прямые m и n скрещиваются. M – точка на m, N – точка на n. Через m и N проведена плос-ть α, а через n и M – плос-ть β. Пересекаются ли плос-ти α и β, и если да, то по какой линии?
Посмотрим, есть ли у α и β общие точки. Плос-ть α проходит через n, то есть и через точку N тоже. Плос-ть β также проходит через N. Значит, N – общая точка. Аналогично можно показать, что и М – это общая точка. В итоге α и β пересекаются, причем на линии пересечения находятся точки M и N. Значит, именно прямая МN является границей этих двух плос-тей.
Задание. Известно, что MНКЕ – параллелограмм, а МНРТ – трапеция (РТ – её основание), причем они располагаются в разных областях. Каково расположение отрезков КЕ и РТ друг относительно друга.
Решение. Задачу можно решить и без рисунка. Если РТ – основание трапеции, то второе основание – это МН, и МН||РТ. В параллелограмме МНКЕ параллельны стороны МН и КЕ, ведь они противоположные. Тогда по свойству транзитивности параллельности из того факта, что МН||РТ и МН||КЕ, вытекает, что и РТ||КЕ.
Задание. Известно, что ОА и СD – скрещивающиеся прямые, а ОВ||CD. Чему равен угол между ОА и CD, если
Если CD||ОВ, то угол между CD и ОА совпадает с углом между ОВ и ОА. В задании а) он совпадет с ∠АОВ и составляет 40°. В случае б) угол не может составлять 135°, так как он не должен превышать 90°. Поэтому он равен
Наконец, в случае в) он составит 90°.
Ответ: а) 40°; б) 45°; в) 90°.
Задание. Дан куб, вершины которого обозначены так, как это показано на рисунке:
Найдите угол между прямыми:
Решение. Во всех трех случаях нам даны скрещивающиеся прямые. Для вычисления угла надо найти такие параллельные им прямые, которые будут пересекаться.
а) AD и GH. Заметим, что GH||СD, ведь это противоположные стороны квадрата СDHG, поэтому мы можем определить угол между AD и CD. Другими словами, мы просто заменяем в задаче GH на CD, так как эти отрезки параллельны. Так как отрезки AD и CD в свою очередь являются уже смежными сторонами в квадрате АВСD, то ∠ADC, который нам надо найти, составляет 90°.
б) BD и FG. Здесь уже уместно заменить FG на ВС. Это можно сделать, ведь FG||ВС (это стороны квадрата). Тогда нам необходимо вычислить ∠СВD. Он составляет 45°, ведь диагональ квадрата делит его угол пополам.
в) BD и AF. Здесь есть смысл AF заменить на GD. Но для этого надо сначала показать, что AF||DG.Рассмотрим отрезки AD и FG. Каждый из них параллелен ВС (по свойству квадратов ABCD и ВСGH). Значит, по свойству транзитивности AD||FG, то есть эти отрезки располагаются в одной плос-ти. Тогда AFGD – плоский четырехугольник.
Заметим, что отрезки AD и FG ещё и одинаковы, так каждый из них равен ВС (вообще в кубе все ребра одинаковы). Получается, что в четырехугольнике AFGD стороны AD и FG одинаковы и параллельны, а потому AFGD – параллелограмм, по одному из его признаков. Отсюда и вытекает, что AF||DG.
Мы поняли, искомый нами угол между прямыми равен∠BDG. Как его вычислить? Для этого надо рассмотреть ∆BDG. Можно заметить, что он равносторонний. Действительно, отрезки BG, GD и BD – это диагонали в равных квадратах ВСGH, СDHG, АВСD, поэтому и сами эти диагонали также одинаковы. В любом равностороннем треугольнике все углы составляют по 60°, поэтому и ∠BDG равен этому же значению, то есть 60°.
Ответ: а) 90°; б) 45°; в) 60°.
Задание (стереометрическая задача из ЕГЭ). Точки А, В, С и D в пространстве располагаются так, что расстояния между любыми двумя из этих точек одинаковы. Можно доказать (попробуйте сделать это самостоятельно), что такая ситуация возможна лишь в случае, когда точки не располагаются в одной плос-ти. М – середина ВС, а L – середина АВ. Найдите косинус угла между прямыми МD и CL.
Решение. Из условия вытекает, что ∆АВС, ∆ВСD, ∆ABD – равносторонние и притом равные друг другу. Проведем в ∆АВС отрезок такой отрезок MF, что MF||СL. Тогда нам необходимо вычислить ∠DMF (точнее, его косинус). Это можно сделать, используя теорему косинусов применительно к ∆MDF, но для этого сперва надо найти все стороны в этом треугольнике:
Для удобства обозначим длину отрезков АВ, ВС, АС, BD, AD и CD буквой R. Так как L– середина АВ, то CL– медиана в ∆АВС. Но в равностороннем треугольнике она одновременно будет и высотой. Тогда ∆АСL – прямоугольный. Запишем для него теорему Пифагора:
Аналогичным образом легко определить, что длина медианы DМ в ∆ВСD равна этому же значению:
Теперь исследуем ∆ВСL. Так как MF||CL и М – середина ВС, то MF оказывается средней линией в ∆ВСL. Значит, ее длина вдвое меньше, чем у СL:
Также из того факта, что МF – средняя линия, вытекает то, что F – середина LВ. Тогда можно вычислить FB:
Далее обратим внимание на ∆ВFD. ∠В в нем составляет 60°, ведь это одновременно и угол в равностороннем ∆АВD. Стороны FB и BD нам известны, а потому с помощью теоремы косинусов можно вычислить и FD:
Теперь можно составить и для ∆МDF уравнение на основе теореме косинуса, из которого удастся выяснить интересующий нас косинус ∠DMF:
В ходе сегодняшнего урока мы познакомились с новым понятием – скрещивающимися прямыми. Также мы узнали, как вычислять угол между ними. Подобные задачи могут встречаться и на ЕГЭ.