Что значит схематически изобразить график
Построение графиков функций
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Понятие функции
Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.
Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида область определения выглядит так
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Понятие графика функции
Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.
График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.
Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.
Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.
В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.
Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:
Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.
Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.
Исследование функции
Важные точки графика функции y = f(x):
Стационарные точки — точки, в которых производная функции f(x) равна нулю.
Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.
Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.
Нули функции — это значения аргумента, при которых функция равна нулю.
Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.
Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:
Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.
Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.
Схема построения графика функции:
У нас есть отличные курсы по математике для учеников с 1 по 11 классы!
Построение графика функции
Чтобы понять, как строить графики функций, потренируемся на примерах.
Задача 1. Построим график функции
Упростим формулу функции:
Задача 2. Построим график функции
Выделим в формуле функции целую часть:
График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции
Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.
Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.
Вспомним, как параметры a, b и c определяют положение параболы.
Ветви вниз, следовательно, a 0.
Точка пересечения с осью Oy — c = 0.
Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.
Ветви вниз, следовательно, a 0.
Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b
x | y |
0 | -1 |
1 | 2 |
x | y |
0 | 2 |
1 | 1 |
x | y |
0 | 0 |
1 | 2 |
k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.
Задача 5. Построить график функции
Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.
Нули функции: 3, 2, 6.
Промежутки знакопостоянства функции определим с помощью метода интервалов.
Вертикальные асимптоты: x = 0, x = 4.
Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.
Вот так выглядит график:
Задача 6. Построить графики функций:
б)
г)
д)
Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.
а)
Преобразование в одно действие типа f(x) + a.
Сдвигаем график вверх на 1:
б)
Сдвигаем график вправо на 1:
Сдвигаем график вправо на 1:
Сдвигаем график вверх на 2:
г)
Преобразование в одно действие типа
Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:
д)
Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.
Сжимаем график в два раза вдоль оси абсцисс:
Сдвигаем график влево на 1/2 вдоль оси абсцисс:
Отражаем график симметрично относительно оси абсцисс:
1. Построение графиков функций
Теория:
Построение графиков любых функций выполняется по точкам. Однако не всегда заранее мы знаем как выглядит график. В этих случаях выделяют особо значимые точки графика, которые и задают его вид.
К особо значимым точкам графика функции y = f ( x ) относят:
— стационарные и критические точки;
— точки пересечения графика с осью \(x\) (нули функции) и с осью \(y\);
— точки разрыва функции.
Таким образом, для построения сложной функции сначала нужно исследовать свойства этой функции, найти важные её точки и уже потом по этим точкам строить график.
Существует чёткий план исследования свойств функции, позволяющий определить поведение функции на области определения и построить её график.
1) Когда функция y = f ( x ) непрерывна на всей числовой прямой, тогда определяют точки пересечения графика с осями координат, стационарные и критические точки, точки экстремума, промежутки монотонности и несколько контрольных точек, если это необходимо.
2) Когда функция y = f ( x ) определена не на всей числовой прямой, тогда в первую очередь находят область определения функции и точки разрыва.
3) Проверяют функцию на чётность, т. к. график чётной функции симметричен относительно оси \(y\) и график нечётной функций симметричен относительно начала координат. Значит, можно построить только ветвь графика при \(x>0\), а затем симметрично её отобразить.
2. Проведём исследование функции на чётность/нечётность:
Функция чётная. Следовательно, можно построить ветви графика функции для x ≥ 0 и отобразить их симметрично относительно оси ординат.
3. Определим асимптоты. Вертикальная асимптота: прямая \(x=1\), т. к. при \(x=1\) знаменатель дроби равен нулю, а числитель при этом не равен нулю. Для определения горизонтальной асимптоты вычисляем lim x → ∞ f ( x ) :
Следовательно, \(y=1\) — горизонтальная асимптота.
4. Определим стационарные и критические точки, точки экстремума и промежутки монотонности функции:
Производная существует на всей области определения функции, следовательно, критических точек у функции нет.
5. Найдём несколько точек, принадлежащих графику функции f ( x ) = x 2 + 4 x 2 − 4 при x ≥ 0 :
1. Построение графиков функций
Теория:
Построение графиков любых функций выполняется по точкам. Однако не всегда заранее мы знаем как выглядит график. В этих случаях выделяют особо значимые точки графика, которые и задают его вид.
К особо значимым точкам графика функции y = f ( x ) относят:
— стационарные и критические точки;
— точки пересечения графика с осью \(x\) (нули функции) и с осью \(y\);
— точки разрыва функции.
Таким образом, для построения сложной функции сначала нужно исследовать свойства этой функции, найти важные её точки и уже потом по этим точкам строить график.
Существует чёткий план исследования свойств функции, позволяющий определить поведение функции на области определения и построить её график.
1) Когда функция y = f ( x ) непрерывна на всей числовой прямой, тогда определяют точки пересечения графика с осями координат, стационарные и критические точки, точки экстремума, промежутки монотонности и несколько контрольных точек, если это необходимо.
2) Когда функция y = f ( x ) определена не на всей числовой прямой, тогда в первую очередь находят область определения функции и точки разрыва.
3) Проверяют функцию на чётность, т. к. график чётной функции симметричен относительно оси \(y\) и график нечётной функций симметричен относительно начала координат. Значит, можно построить только ветвь графика при \(x>0\), а затем симметрично её отобразить.
2. Проведём исследование функции на чётность/нечётность:
Функция чётная. Следовательно, можно построить ветви графика функции для x ≥ 0 и отобразить их симметрично относительно оси ординат.
3. Определим асимптоты. Вертикальная асимптота: прямая \(x=1\), т. к. при \(x=1\) знаменатель дроби равен нулю, а числитель при этом не равен нулю. Для определения горизонтальной асимптоты вычисляем lim x → ∞ f ( x ) :
Следовательно, \(y=1\) — горизонтальная асимптота.
4. Определим стационарные и критические точки, точки экстремума и промежутки монотонности функции:
Производная существует на всей области определения функции, следовательно, критических точек у функции нет.
5. Найдём несколько точек, принадлежащих графику функции f ( x ) = x 2 + 4 x 2 − 4 при x ≥ 0 :
1. Построение графиков функций
Теория:
Построение графиков любых функций выполняется по точкам. Однако не всегда заранее мы знаем как выглядит график. В этих случаях выделяют особо значимые точки графика, которые и задают его вид.
К особо значимым точкам графика функции y = f ( x ) относят:
— стационарные и критические точки;
— точки пересечения графика с осью \(x\) (нули функции) и с осью \(y\);
— точки разрыва функции.
Таким образом, для построения сложной функции сначала нужно исследовать свойства этой функции, найти важные её точки и уже потом по этим точкам строить график.
Существует чёткий план исследования свойств функции, позволяющий определить поведение функции на области определения и построить её график.
1) Когда функция y = f ( x ) непрерывна на всей числовой прямой, тогда определяют точки пересечения графика с осями координат, стационарные и критические точки, точки экстремума, промежутки монотонности и несколько контрольных точек, если это необходимо.
2) Когда функция y = f ( x ) определена не на всей числовой прямой, тогда в первую очередь находят область определения функции и точки разрыва.
3) Проверяют функцию на чётность, т. к. график чётной функции симметричен относительно оси \(y\) и график нечётной функций симметричен относительно начала координат. Значит, можно построить только ветвь графика при \(x>0\), а затем симметрично её отобразить.
2. Проведём исследование функции на чётность/нечётность:
Функция чётная. Следовательно, можно построить ветви графика функции для x ≥ 0 и отобразить их симметрично относительно оси ординат.
3. Определим асимптоты. Вертикальная асимптота: прямая \(x=1\), т. к. при \(x=1\) знаменатель дроби равен нулю, а числитель при этом не равен нулю. Для определения горизонтальной асимптоты вычисляем lim x → ∞ f ( x ) :
Следовательно, \(y=1\) — горизонтальная асимптота.
4. Определим стационарные и критические точки, точки экстремума и промежутки монотонности функции:
Производная существует на всей области определения функции, следовательно, критических точек у функции нет.
5. Найдём несколько точек, принадлежащих графику функции f ( x ) = x 2 + 4 x 2 − 4 при x ≥ 0 :