Что значит разложить число на простые множители примеры
Разложение чисел на простые множители, способы и примеры разложения.
В этой статье Вы найдете всю необходимую информацию, отвечающую на вопрос, как разложить число на простые множители. Сначала дано общее представление о разложении числа на простые множители, приведены примеры разложений. Дальше показана каноническая форма разложения числа на простые множители. После этого дан алгоритм разложения произвольных чисел на простые множители и приведены примеры разложения чисел с использованием этого алгоритма. Также рассмотрены альтернативные способы, позволяющие быстро раскладывать небольшие целые числа на простые множители с использованием признаков делимости и таблицы умножения.
Навигация по странице.
Что значит разложить число на простые множители?
Сначала разберемся с тем, что такое простые множители.
А что же значит разложить число на простые множители?
Возникает следующий вопрос: «А какие вообще числа можно разложить на простые множители»?
Но все ли целые числа, превосходящие единицу, раскладываются на простые множители?
Каноническое разложение числа на простые множители
Каноническое разложение числа на простые множители позволяет найти все делители числа и число делителей числа.
Алгоритм разложения числа на простые множители
Чтобы успешно справиться с задачей разложения числа на простые множители, нужно очень хорошо владеть информацией статьи простые и составные числа.
Заметим, что в общем случае для разложения на простые множители числа a нам потребуется таблица простых чисел до числа, не меньшего, чем . К этой таблице нам придется обращаться на каждом шаге, так что ее нужно иметь под рукой. Например, для разложения на простые множители числа 95 нам будет достаточно таблицы простых чисел до 10 (так как 10 больше, чем ). А для разложения числа 846 653 уже будет нужна таблица простых чисел до 1 000 (так как 1 000 больше, чем ).
Теперь мы обладаем достаточными сведениями, чтобы записать алгоритм разложения числа на простые множители. Алгоритм разложения числа a таков:
Осталось лишь рассмотреть несколько примеров применения полученного алгоритма для разложения чисел на простые множители.
Примеры разложения на простые множители
Сейчас мы подробно разберем примеры разложения чисел на простые множители. При разложении будем применять алгоритм из предыдущего пункта. Начнем с простых случаев, и постепенно их будем усложнять, чтобы столкнуться со всеми возможными нюансами, возникающими при разложении чисел на простые множители.
Что такое множитель и разложение на простые множители
Дадим определение понятию «множитель» и разберемся что такое множитель. Какие множители бывают и почему некоторые из множителей — простые.
Определение множителя
В младших классах вы учили, что множители — это числа, которые мы умножаем, называя результат их умножения произведением.
Определения множителя как компонента умножения
Сейчас немного расширим понятие множителя.
Давайте рассмотрим определение множителя на примерах. Давайте определим где в представлении числа или выражения прячется множитель?
Пример 1
Пусть нам дано число 15. Это число можно представить в виде произведения . Значит, согласно определению 5 — это множитель, 3 — это тоже множитель.
Пример 2
Рассмотрим теперь выражение: . Это выражение можно представить в виде произведения . Получаем два множителя — первый множитель (2x-3) и второй множитель (2x+3).
Самое простое произведение имеет два множителя, но может быть и больше множителей.
Простые множители
Пример 1
Разложите число 65 на простые множители.
Решение: число 65 будем делить на простые числа, пока оно нацело не разделится. Так мы видим, что число 65 не делится на 2, 3 и 4, так как не соответствует признакам делимости на эти числа. Зато делится на 5, так как оканчивается на 5. При делении мы получаем 13. Число 13 — простое, так как делится только на себя и на единицу. Таким образом, число . И мы выполнили разложение числа на простые множители. Теперь вы знаете, как разложить число на простые множители.
Пример 2
Разложите число 270 на простые множители.
Решение: Разделим сначала число 270 на 2 (сначала берем самое маленькое простое число), получим 135. Посмотрим, делится ли это число на 3. Для этого сложим все числа, стоящие в разрядах данного числа — . Девять делится на 3, значит, и число 135 разделится на 3: . Получившееся число опять делится на 3: . И снова число 15 делится на 3: . Получили простое число 5. Делим .
Итак, запишем разложение числа 270 на простые множители в виде столбца, где справа от черты мы пишем на какое простое число мы делим, а слева — что получаем:
Разложение числа на простые множители в столбик.
Разложение числа на простые множители в строчку записывается так: .
Про разложение многочлена на множители поговорим в отдельной теме.