Что значит равные дроби 6 класс

Десятичные дроби

Что значит равные дроби 6 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие десятичной дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:

В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Свойства десятичных дробей

Главное свойство десятичной дроби звучит так: если к десятичной дроби справа приписать один или несколько нулей — ее величина не изменится. Это значит, что если в вашей дроби куча нулей — их можно просто отбросить. Например:

Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:

Обучение на курсах по математике — отличный способ закрепить полученные знания на практике и подтянуть сложные темы.

Как записать десятичную дробь

Давайте разберем на примерах, как записывается десятичная дробь. Небольшая напоминалка: сначала пишем целую часть, ставим запятую и после записываем числитель дробной части.

Пример 1. Перевести обыкновенную дробь 16/10 в десятичную.

Пример 2. Перевести 37/1000 в десятичную дробь.

Ответ: 37/1000 = 0,037.

Как читать десятичную дробь

Чтобы учитель вас правильно понял, важно читать десятичные дроби грамотно. Сначала произносим целую часть с добавлением слова «целых», а потом дробную с обозначением разряда — он зависит от количества цифр после запятой:

Сколько цифр после запятой?Читается, как
одна цифра — десятых;1,3 — одна целая, три десятых;
две цифры — сотых2,22 — две целых, двадцать две сотых;
три цифры — тысячных;23,885 — двадцать три целых, восемьсот восемьдесят пять тысячных;
четыре цифры — десятитысячных;0,5712 — ноль целых пять тысяч семьсот двенадцать десятитысячных;
и т.д.

Сохраняй наглядную картинку, чтобы быстрее запомнить.

Преобразование десятичных дробей

Чтобы ни одна задача не смутила вас своей формулировкой, важно знать, как преобразовывать десятичные дроби в другие виды. Сейчас научимся!

Как перевести десятичную дробь в проценты

Уже в пятом классе задачки по математике намекают, что дроби как-то связаны с процентами. И это правда: процент — это одна сотая часть от любого числа, обозначают его значком %.

Чтобы узнать, как перевести проценты в дробь, нужно убрать знак % и разделить наше число на 100, как в примере выше.

А чтобы перевести десятичную дробь в проценты — умножаем дробь на 100 и добавляем знак %. Давайте на примере:

Выразить дробь в процентах просто: сначала превратим её в десятичную дробь, а потом применим предыдущее правило.

2/5 = 0,4
0,4 · 100% = 40%

8/25 = 0,32
0,32 · 100% = 32%

Чтобы разрезать торт на равные кусочки и не обижать гостей, нужно всего-то запомнить соотношения частей и целого. Наглядная табличка — наш друг-помощник:

Преобразование десятичных дробей

Десятичная дробь — это число с остатком, где остаток стоит после целой части и разделяется запятой.

Смешанная дробь — это тоже число с остатком, но остаток записывают в виде простой дроби (с черточкой).

Чтобы переводить десятичные дроби в смешанные, не нужно запоминать особые алгоритмы. Достаточно понимать определения и правильно читать заданную дробь — этим школьники и занимаются в 5 классе. А теперь давайте потренируемся!

Пример 1. Перевести 5,4 в смешанное число.

Пример 2. Перевести 4,005 в смешанное число.

Ответ: 4,005 = 4 1/200.

Пример 3. Перевести 5,60 в смешанное число.

Как перевести десятичную дробь в обыкновенную

Не будем придумывать велосипед и рассмотрим самый простой способ превращения десятичной дроби в обыкновенную. Вот, как это сделать:

Не забывайте про минус в ответе, если пример был про отрицательное число. Очень обидная ошибка!

Действия с десятичными дробями

С десятичными дробями можно производить те же действия, что и с любыми другими числами. Рассмотрим самые распространенные на простых примерах.

Как разделить десятичную дробь на натуральное число

Пример 2. Разделить 183,06 на 45.

Что значит равные дроби 6 класс

Ответ: 183,06 : 45 = 4,068.

Как разделить десятичную дробь на обыкновенную

Чтобы разделить десятичную дробь на обыкновенную или смешанную, нужно представить десятичную дробь в виде обыкновенной, а смешанное число записать, как неправильную дробь.

Пример 1. Разделить 0,25 на 3/4.

Пример 2. Разделить 2,55 на 1 1/3.

Ответ: 2,55 : 1 1/3 = 1 73/80.

Как умножить десятичную дробь на обыкновенную

Чтобы умножить десятичную дробь на обыкновенную или смешанную, используют два правила за 6 класс. При первом приводим десятичную дробь к виду обыкновенной и потом умножаем на нужное число. Во втором случае приводим обыкновенную или смешанную дробь в десятичную и потом умножаем.

Пример 1. Умножить 2/5 на 0,8.

Пример 2. Умножить 0,28 на 6 1/4.

Ответ: 0,28 ∗ 6 1/4 = 0,8.

Источник

Основное свойство дроби. Сокращение дробей. Равенство дробей.

Равенство дробей.

Данная тема достаточно важна на основных свойствах дробей основана вся дальнейшая математика и алгебра. Рассмотренные свойства дробей, не смотря на свою важность очень просты.

Чтобы понять основные свойства дробей рассмотрим окружность.

Что значит равные дроби 6 классНа окружности видно, что 4 части или доли закрашены из восьми возможных. Запишем полученную дробь \(\frac<4><8>\)

Что значит равные дроби 6 класс

На следующей окружности видно, что закрашена одна часть из двух возможных. Запишем получившеюся дробь \(\frac<1><2>\)

Если внимательно приглядимся, то увидим, что в первом случае, что во втором случае у нас закрашено половина круга, поэтому полученные дроби равны \(\frac<4> <8>= \frac<1><2>\), то есть это одно и тоже число.

Как же это доказать математически? Очень просто, вспомним таблицу умножения и распишем первую дробь на множители.

Что мы сделали? Расписали числитель и знаменатель на множители \(\frac <1 \cdot \color<4>> <2 \cdot \color<4>>\), а потом разделили дроби \(\frac<1> <2>\cdot \color <\frac<4><4>>\). Четыре поделить на четыре это 1, а единица умноженное на любое число это и есть само число. То что мы проделали в приведенном примере называется сокращением дробей.

Посмотрим еще один пример и сократим дробь.

Мы опять расписали числитель и знаменатель на множители и одинаковый числа в числители и знаменатели сократили. То есть два деленное на два дало единицу, а единица умноженная на любое число дает тоже самое число.

Основное свойство дроби.

Отсюда следует основное свойство дроби:

Если и числитель, и знаменатель дроби умножить на одно и тоже число (кроме нуля), то величина дроби не изменится.

Также можно дроби числитель и знаменатель делить на одно и тоже число одновременно.
Рассмотрим пример:

Если и числитель, и знаменатель дроби делить на одно и тоже число (кроме нуля), то величина дроби не изменится.

Дроби у которых есть и в числители, и в знаменатели общие простые делители называются сократимыми дробями.

Пример сократимой дроби: \(\frac<2><4>, \frac<6><10>, \frac<9><15>, \frac<10><5>, …\)

Так же есть и несократимые дроби.

Несократимая дробь – это дробь у которые нет в числители и знаменатели общих простых делителей.

Пример несократимой дроби: \(\frac<1><2>, \frac<3><5>, \frac<5><7>, \frac<13><5>, …\)

Любое число можно представить в виде дроби, потому что любое число делиться на единицу, например:

Вопросы к теме:
Как вы думаете любую можно дробь сократить или нет?
Ответ: нет, бывают сократимые дроби и несократимые дроби.

Проверьте справедливо ли равенство: \(\frac<7> <11>= \frac<14><22>\)?
Ответ: распишем дробь \(\frac<14> <22>= \frac<7 \cdot 2> <11 \cdot 2>= \frac<7><11>\), да справедливо.

Пример №1:
а) Найдите дробь со знаменателем 15, равную дроби \(\frac<2><3>\).
б) Найдите дробь с числителем 8, равную дроби \(\frac<1><5>\).

Решение:
а) Нам нужно чтобы в знаменателе стояло число 15. Сейчас в знаменателе число 3. На какое число нужно умножить цифру 3, чтобы получить 15? Вспомним таблицу умножения 3⋅5. Нам надо воспользоваться основным свойством дробей и умножить и числитель, и знаменатель дроби \(\frac<2><3>\) на 5.

б) Нам нужно чтобы в числителе стояло число 8. Сейчас в числители стоит число 1. На какое число нужно умножить цифру 1, чтобы получить 8? Конечно, 1⋅8. Нам надо воспользоваться основным свойством дробей и умножить и числитель, и знаменатель дроби \(\frac<1><5>\) на 8. Получим:

Пример №2:
Найдите несократимую дробь, равную дроби: а)\(\frac<16><36>\), б) \(\frac<10><25>\).

Пример №3:
Запишите число в виде дроби: а) 13 б)123

Источник

Что значит равные дроби 6 класс

Для любой дроби можно указать сколько угодно ей равных дробей.

Это можно объяснить так: если отрезок разделить пополам, а половину также пополам, то ясно, что половина отрезка равна двум его четвертям, т. е. Также можно показать, что половина равна трем шестым и т. д. (рис. 4.4).

Можно еще сказать, что дроби и определяют одно и то же число; записанное в разных формах. Дроби и так же определяют одно и то же число, записанное в разных формах, и т. д.

Если числитель и знаменатель дроби умножить на одно и то же натуральное число, то получится дробь, равная данной, т. е. выполняется равенство

Это свойство называют основным, свойством дроби. С его помощью можно получать дроби, равные данной дроби.

Равенство (1) можно записать и в обратном порядке:

В таком виде левая часть равенства есть дробь числитель и знаменатель которой имеют общий множитель n.

Поэтому основное свойство дробей можно сформулировать по-другому:

Если числитель и знаменатель дроби имеют общий множитель, отличный от 1, то дробь можно сократить на этот множитель. При этом получится дробь, равная данной.

Пример. Сократить дроби

Если р—натуральное число, то справедливо равенство

Дробь называется несократимой, если ее числитель и знаменатель не имеют общих простых делителей.

Например, дроби несократимые дроби, так как числа 1 и 2, 3 и 4, б и 7, 11 и 8 не имеют общих простых делителей.

Для каждой дроби существует единственная равная ей несократимая дробь.

Левые части равенств—данные дроби, а правые равные им несократимые дроби.

Чтобы получить несократимую дробь, равную данной дроби, надо сократить данную дробь на наибольший общий делитель ее числителя и знаменателя. Часто наибольший общий делитель числителя и знаменателя указать трудно. В этом случае сокращение дроби выполняют постепенно.

Источник

ОБЫКНОВЕННАЯ ДРОБЬ

Ключевые слова конспекта: дроби, обыкновенная дробь, правильные и неправильные дроби, основное свойство дроби, сравнение дробей, арифметические действия с дробями, нахождение части от целого и целого по его части.

Одна или несколько равных частей единицы называются обыкновенной дробью. Дробь 3/4 означает, что единицу разделили на 4 части и взяли 3 таких части.

Что значит равные дроби 6 класс

Дробь можно рассматривать и как результат деления натуральных чисел. Частное от деления натуральных чисел а и b можно записать в виде дроби a/b — где делимое а — числитель, а делитель b — знаменатель.

Что значит равные дроби 6 класс

Правильная и неправильная дробь

Дробь, в которой числитель меньше знаменателя, называется правильной, а дробь, где числитель больше или равен знаменателю, — неправильной.

Что значит равные дроби 6 класс

Число, состоящее из целой и дробной частей, можно обратить в неправильную дробь. Для этого нужно умножить целую часть на знаменатель и к произведению прибавить числитель данной дроби. Полученная сумма будет числителем дроби, а знаменателем остается знаменатель дробной части.

Что значит равные дроби 6 класс

Из любой неправильной дроби можно выделить целую часть. Для этого нужно разделить с остатком числитель на знаменатель. Частное от деления — это целая часть, остаток — это числитель, делитель — это знаменатель.

Что значит равные дроби 6 класс

Основное свойство дроби

Определение. Основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной.

Что значит равные дроби 6 класс

Основное свойство дроби используют при сокращении дробей. Деление числителя и знаменателя на их общий делитель, отличный от единицы, называют сокращением дробей.

Что значит равные дроби 6 класс

Сравнение дробей

Чтобы сравнить дроби с разными числителями и знаменателями, нужно:

Что значит равные дроби 6 класс

Чтобы привести дроби к наименьшему общему знаменателю, нужно:

Что значит равные дроби 6 класс

Арифметические действия с обыкновенными дробями

Сложение и вычитание дробей

При сложении (вычитании) дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель. Полученную дробь, если возможно, сокращают и выделяют целую часть.

При сложении (вычитании) дробей с разными знаменателями нужно предварительно привести эти дроби к наименьшему общему знаменателю, затем сложить (вычесть) полученные дроби, используя правило сложения (вычитания) дробей с одинаковыми знаменателями.

Что значит равные дроби 6 класс

Особенно надо быть внимательным при сложении (вычитании) с участием смешанных чисел!

Что значит равные дроби 6 класс

Общий случай сложения (вычитания) дробей.

Что значит равные дроби 6 класс

Умножение дробей

Что значит равные дроби 6 класс

Деление дробей

Два числа называются взаимно обратными, если их произведение равно 1, то есть дроби вида a/b и b/a являются взаимно обратными. Например 1/3 и 3. Чтобы разделить одну дробь на другую, нужно делимое умножить на число, обратное к делителю.

Что значит равные дроби 6 класс

При делении чисел, состоящих из целой и дробной части, нужно предварительно представить их в виде неправильной дроби.

Что значит равные дроби 6 класс

Нахождение части от целого (дроби от числа)

Чтобы найти часть от целого, нужно число, соответствующее целому, разделить на знаменатель дроби, выражающей эту часть, и результат умножить на числитель той же дроби.

Задача нахождения части от целого по существу является задачей нахождения дроби от числа. Чтобы найти дробь (часть) от числа, необходимо число умножить на эту дробь.

Что значит равные дроби 6 класс

Нахождение целого по его части (числа по его дроби)

Чтобы найти целое по его части, нужно число, соответствующее этой части, разделить на числитель дроби, выражающей эту часть, и результат умножить на знаменатель той же дроби.

Задача нахождения целого по его части по существу является задачей нахождения числа по его дроби. Чтобы найти число по его дроби, необходимо данное значение разделить на эту дробь.

Что значит равные дроби 6 класс

Это конспект по теме «Обыкновенная дробь». Выберите дальнейшие действия:

Источник

Обыкновенные дроби

Что значит равные дроби 6 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Доля целого

Доля — это каждая равная часть, из суммы которых состоит целый предмет.

Для примера возьмем два мандарина. Когда мы их почистим, то получим в каждом мандарине разное количество долек или долей. В одном может быть 6, а в другом — целых 9. Размеры долей у каждого мандарина тоже разные.

У каждой доли есть свое название: оно зависит от количества долей в конкретном предмете. Если в мандарите шесть долей — каждая из них будет определяться, как одна шестая от целого.

Понятие доли можно применить не только к предметам, но и величинам. Так, например, картина занимает четверть стены — при этом ее ширина треть метра.

Чтобы быстрее запомнить соотношения частей и целого, можно использовать наглядную табличку:

Понятие дроби

Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которой можно представить число. Есть два формата записи:

Виды дробей:

Какие еще бывают дроби:

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3\5.

Выделение целой части из неправильной дроби — это запись неправильной дроби в виде суммы натурального числа и правильной дроби. Например, 11/5 = 2 + 1/5.

Как устроена обыкновенная дробь

Обыкновенная дробь — это запись вида m/n, где m и n любые натуральные числа.

Такие дроби записываются с помощью двух натуральных чисел и горизонтальной черты, которая называется чертой дроби. Иногда ставится не горизонтальная черта, а косая.

Числитель обыкновенной дроби m/n — это натуральное число m, которое стоит над чертой. Числитель это делимое — то, что мы делим.

Знаменатель обыкновенной дроби m/n — натуральное число n, которое стоит под чертой. Знаменатель это делитель — то, на сколько делим.

Черта между числителем и знаменателем — символ деления.

Равные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых справедливо равенство: a * d = b * c. Пример равных дробей: 1/2 и 2/4, так как 1 * 4 = 2 * 2.

Неравные обыкновенные дроби — обыкновенные дроби a/b и c/d, для которых равенство: a * d = b * c не является верным.

Как устроена десятичная дробь

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. Выходит, что десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Свойства дробей

Основное свойство дроби: если числитель и знаменатель дроби умножить или разделить на одно и то же отличное от нуля число, то получится дробь, равная данной. Формула выглядит так:

Что значит равные дроби 6 классгде a, b, k — натуральные числа.

Обыкновенная и десятичная дробь — давние друзья. Вот, как они связаны:

У нас есть отличные курсы по математике для учеников с 1 по 11 классы, записывайтесь!

Действия с дробями

С дробями можно выполнять те же действия, что и с обычными числами: складывать, вычитать, умножать и делить. А еще дроби можно сокращать и сравнивать между собой. Давайте попробуем.

Сравнение дробей

Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.

Сравним 1/5 и 4/5. Как рассуждаем:

Что значит равные дроби 6 класс

Чтобы сравнить дроби с разными знаменателями, нужно привести дроби к общему знаменателю. А после приведения дробей к общему знаменателю, можно применить правило сравнения дробей с одинаковыми знаменателями.

Пример. Сравнить 2/7 и 1/14.

Важно запомнить: любая неправильная дробь больше любой правильной. Потому что неправильная дробь всегда больше или равна 1, а правильная дробь всегда меньше 1.

Что значит равные дроби 6 класс

Чтобы сравнить дроби с разными числителями и знаменателями, нужно:

Чтобы привести дроби к наименьшему общему знаменателю, нужно:

Сокращение дробей

Сокращение дроби — это деление числителя и знаменателя дроби на одно и то же натуральное число. Сократить дробь значит сделать ее короче и проще для восприятия. Например, дробь 1/3 выглядит намного проще и красивее, чем 27/81.

Сокращение дроби выглядит так: зачеркивают числитель и знаменатель, а рядом записывают результаты деления числителя и знаменателя на одно и то же число.

Что значит равные дроби 6 класс

В этом примере делим обе части дроби на двойку.

Что значит равные дроби 6 класс

Можно никуда не спешить и сокращать дроби последовательно, в несколько действий.

Что значит равные дроби 6 класс

Сложение и вычитание дробей

При сложении и вычитании дробей с одинаковыми знаменателями к числителю первой дроби прибавляют числитель второй дроби (из числителя первой вычитают числитель второй) и оставляют тот же знаменатель.

Не забудьте проверить, можно ли сократить дробь и выделить целую часть.

Что значит равные дроби 6 класс

При сложении и вычитании дробей с разными знаменателями нужно найти наименьший общий знаменатель, сложить или вычесть полученные дроби (используем предыдущее правило).

Для этого запишем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.

Что значит равные дроби 6 класс

НОК (15, 18) = 3 * 2 * 3 * 5 = 90

Полученные числа запишем справа сверху над числителем.

Ход решения одной строкой:

Что значит равные дроби 6 класс

Сложение или вычитание смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:

Необходимо приводить к общему, если знаменатели разные. Для этого воспользуемся знаниями из предыдущего примера.

Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.

Умножение и деление дробей

Произведение двух дробей равно дроби, числитель которой равен произведению числителей, а знаменатель — произведению знаменателей:

Что значит равные дроби 6 класс

Не забываем про сокращение. Это может облегчить вычисления.

Что значит равные дроби 6 класс

Чтобы умножить два смешанных числа, надо:

Чтобы разделить дробь на дробь нужно выполнить следующую последовательность действий:

Другими словами это правило звучит так: чтобы разделить одну дробь на другую, надо первую умножить на обратную от второй.

Числа, произведение которых равно 1, называют взаимно обратными.

Как делить дроби с разными знаменателями? На самом деле одинаковые или разные знаменатели у дробей — неважно, потому что все дроби делятся по правилу, описанному выше.

Для деления смешанных чисел необходимо:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *