Что значит прокариоты и эукариоты
Что значит прокариоты и эукариоты
1 кольцевая хромосома у бактерий (нуклеоид). Двуцепочечная ДНК не связана с белками
Хромосомы линейные. Двуцепочечная ДНК связана с белками-гистонами
Мелкие, обычно свободные
Крупные. Могут быть свободными и связанными с ЭПС
Митохондрии, хлоропласты, комплекс Гольджи, ЭПС,лизосомы
Имеются, за исключением высших растений
Имеется у бактерий
У бактерий содержит муреин
У растений – целлюлозная, у грибов – хитиновая, у животных- нет
Способы деления клетки
Обычно поперечное деление, митоза и мейоза нет.
Митоз, мейоз, амитоз
2) нет белков гистонов, которые упаковывают ДНК;
3) ДНК не имеет мозаичного строения, то есть, между генами нет неинформативных участков;
4) трансляция быстро следует за транскрипцией, нет созревания (процессинга) иРНК;
5) отсутствуют органоиды, имеющие мембранное строение,
6) отсутствует клеточный центр;
8) есть мезосомы (впячивания плазматической мембраны), выполняющие функции мембранных органоидов;
9) органоиды движения (жгутики) не покрыты цитоплазматической мембраной;
10) характерно прямое бинарное деление.
1) Присутствует ядро, отграниченное от цитоплазмы двумембранной ядерной оболочкой,
4) у эукариот в ядре происходит дозревание иРНК — процессинг (неинформативные участки вырезаются с помощью ферментов, а информативные сшиваются),
5) имеются все органоиды цитоплазмы, имеющие мембранное и немембранное строение,
В чем отличия между прокариотом и эукариотом, таблица сравнения клеток
Все организмы, которые обладают клеточной структурой, относятся к одной из категорий – прокариотам или эукариотам. Первая категория называется предъядерной, а вторая – ядерной. Прокариоты и эукариоты имеют отличия, которые касаются множества параметров. Прежде всего, разница заключается в структуре и строения. Также она затрагивает особенности жизненного цикла и выполняемые функции.
Что такое прокариоты
Под этим термином понимают одноклеточные организмы, которые имеют мембраносвязанные элементы. Одним из наиболее известных считается ядро. Кольцевая ДНК или хромосома располагается непосредственно в цитоплазме. Эту часть называют нуклеоидом. Прокариоты обычно обладают небольшими размерами и составляют в диаметре не больше 0,1-5 микрометров.
Помимо этого, в клетках прокариот вообще отсутствуют мембранные органоиды, такие как митохондрии, комплекс Гольджи, лизосомы и другие. Их роль играют выросты клеточной мембраны. На них находятся разные пигменты и ферменты, которые обеспечивают жизнедеятельность прокариотических клеток.
Таким образом, для прокариотов характерна более сложная структура оболочек. Клеточная стенка выполняет функцию опоры и предотвращает попадание внутрь вредных элементов. Она включает гликопептиды – белки, которые содержат элементы углеводов.
К прокариотам относятся бактерии и археи. Раньше их объединяли в одну группу, но сегодня эта классификация считается устаревшей. В соответствии с современным подходом принято выделять 3 группы организмов – археи, бактерии и эукариоты.
Понятие эукариотов
В эту категорию входят царства растений, грибов и животных. С греческого языка понятие переводится как «владеющий ядром». Это означает, что все эукариоты имеют ядро. По структуре их клетки похожи. Однако существуют и некоторые отличия между элементами организмов, которые относятся к разным царствам.
Так, для растительных клеток характерно наличие разных пластид и большой центральной вакуоли. Иногда она смещает ядро к периферии. Грибные клетки преимущественно состоят из хитина. При этом пластиды отсутствуют. В клеточных элементах животных пластиды, плотные стенки и центральная вакуоль отсутствуют.
Схожесть
Основным сходством между рассматриваемыми организмами считается строение клеток. У всех живых организмов они включают рибосомы, цитоплазму и мембрану.
В чем отличие прокариотов от эукариотов
Рассматриваемые организмы имеют достаточно много отличий. Они затрагивают время появления, структуру, строение ДНК и другие аспекты.
Время возникновения
Первыми появились прокариоты. Это произошло около 3,5 миллиарда лет назад. Спустя 2,4 миллиарда лет они положили начало появлению эукариотов.
Для прокариотов характерна кольцевая структура ДНК, которая находится в нуклеоиде. Этот клеточный участок отделяется от остальной цитоплазмы мембраной. ДНК никоим образом не связана с РНК и белками. В ней нет хромосом. Эукариоты обладают линейной ДНК. Она находится в ядре, в котором присутствуют хромосомы.
Строение
Эукариоты отличаются от прокариотов наличием ядра. Однако это не единственная разница в структуре. У прокариотов вообще нет мембранных органоидов. За редким исключением, они лишены хлоропластов, митохондрий, лизосом. Их роль играют выросты клеточной мембраны. На них находятся ферменты и пигменты, которые отвечают за процессы жизнедеятельности.
Прокариоты лишены присущих эукариотам хромосом. Их основным генетическим материалом считается нуклеоид, который обладает формой кольца. В клетках эукариотов хромосомы представлены в виде комплексов ДНК и белков-гистонов. Данные химические комплексы называют хроматином. Нуклеоид не включает гистонов. Его форма обусловлена связанными молекулами РНК.
Хромосомы эукариот располагаются в ядре. У прокариотов нуклеоид локализуется в цитоплазме. Как правило, в одном месте он фиксируется на клеточной мембране. Помимо нуклеоида, в клетках прокариотов присутствует разное количество плазмид. Они представляют собой нуклеоиды значительно меньших размеров по сравнению с основным.
Деление
Прокариоты преимущественно размножаются обычным делением пополам. При этом эукариоты используют более сложные способы деления клеток – мейоз, митоз или их сочетание.
Органеллы
Для эукариотических клеток характерно наличие органелл, которые отличаются своим собственным генетическим аппаратом. Он включает пластиды и митохондрии. Эти элементы окружает мембрана. К тому же они отличаются способностью к размножению путем деления.
Фагоцитоз
Для эукариотов характерна способность переваривать твердые частицы путем заключения их в мембранный пузырек. Считается, что это свойство появилось как реакция на необходимость полноценного обеспечения крупных клеток питанием. Наличие фагоцитоза спровоцировало появление первых хищников.
Жизненный цикл
Эукариотические клетки делятся путем митоза, мейоза или сочетания этих процессов. Жизненный цикл таких организмов включает 2 ядерные фазы. Первый этап называется гаплофазой и характеризуется одинарным набором хромосом. Вторая стадия – диплофаза – отличается слиянием двух гаплоидных клеток. В результате формируется диплоидная клетка, содержащая двойной комплект хромосом. Спустя несколько делений клетка снова превращается в гаплоидную.
Для бактериальных микроорганизмов столь сложный жизненный цикл не характерен. Прокариоты размножаются простым делением.
Передвижение
Для эукариотов характерны довольно сложные жгутики. Они представлены в виде тонких клеточных выростов, которые окружает 3 слоя мембраны. Они включают 9 пар микротрубочек на периферии и 2 в центральной части. Толщина составляет до 0,1 миллиметра. Отличительной особенностью считается способность изгибаться по длине. Помимо жгутиков, эукариоты имеют реснички. Они отличаются такой же структурой. Единственная разница заключается в размерах.
Отдельные прокариоты тоже обладают жгутиками, однако они являются очень тонкими и не превышают в диаметре 20 нанометров. Эти элементы представлены в виде полых белковых нитей, которые пассивно вращаются.
Эукариоты и прокариоты очень важны для нормального существования экосистемы. Каждый живой организм выполняет определенные биологические функции. Они отличаются в зависимости от его разновидности.
Итоги
Сравнение эукариотов и прокариотов показало, что они отличаются по множеству параметров. Это касается структуры, жизненного цикла, процессов размножения и других аспектов. Для эукариотов характерно более сложное строение. Они появились позже, чем прокариоты, и сформировали многоклеточный организм. В процессе эволюции именно эукариоты обеспечили основное разнообразие жизни на планете.
Прокариоты и эукариоты что это за клетки и чем они отличаются друг от друга
Одной из важных классификаций в биологии клеток является их деление на прокариоты и эукариоты.
Говоря об эволюции микробиологии, стоит отметить существенный вклад ученого Пастера, который был его основоположником. Именно благодаря этому человеку начали развиваться области иммунологии и биотехнологии.
Он дал основное определение главным понятиям, относящимся к клетке, обосновал принципы и работу механизма по актуальности роли микроорганизмов во всех сферах жизнедеятельности организмов. Его деятельность продолжил Кох.
Попытаемся разобраться, какие организмы относятся к каждому из этих двух основных классов клеток. Какое строение имеют клетки и в чем их отличие? Какова классификация каждого из этих видов.
Чем же они полезны для человека и биосферы, и каково их значение в целом? На все эти вопросы ответы читатель найдет ниже.
Что такое прокариоты и эукариоты
Известно, что все живые организмы по своей природе делятся на клеточные и неклеточные (вирусы). Причем первые тоже подразделяются на 2 категории: прокариоты (надцарство «Доядерные») и эукариоты (надцарство «Ядерные»).
К прокариотам относятся:
К эукариотам:
Чем же они отличаются? Рассмотрим ниже.
Признаки эукариотической клетки
Считается, что ядерные клеточные организмы появились около 1,5 миллиардов лет назад. Хотя в прошлые времена ученые слабо понимали суть явлений на клеточном уровне, но в своих трудах у них часто стали появляться приблизительные рисунки этой единицы организма.
Подписи в каждом утверждают об одной отличительной особенности клеток данного типа – наличие ядра, покрытого двойным слоем мембраны.
Именно в ядре хранится основной генетический материал этих организмов. Кроме того в нем есть несколько ядрышек с большей частью объема всех типов РНК.
Также в такой клетке есть другие образования – органеллы, которые находятся в ее цитоплазме. К ним относят:
Эти соединения также разделены мембранами, основная роль которых является связь различных элементов единицы организма с внешней средой. Чтобы все элементы состава хорошо функционировали, для полного «скелета» в этой клетке есть нити и микротрубочки.
Процесс дыхания более распространен среди живых организмов, образованных этими клетками.
Строение клеток прокариотов
В отличие от предыдущего надцарства, у простейших отсутствует ядро в клетке.
В ней вместо ядра находится одна хромосома в цитоплазме, передающая генетический материал.
Размножаются просто – делением клетки. В клеточной жидкости очень мало различных видов структур. Они также покрыты мембраной. В их состав входят рибосомы.
Рассмотрим основных представителей этого надцарства.
Бактерии и циано-бактерии
Под первыми понимают одноклеточные микроорганизмы. С помощью жгутиков они очень подвижны.
Обитают во всех сферах жизни. От внешней среды они защищены муреином и особой оболочкой.
Второй вид представлен простейшими клетками с маленькими рибосомами и одной наследственной хромосомой.
Водоросли
Обитают в основном в водной среде и на почве. У них автотрофное питание. Их плавучесть обуславливают вакуоли. Кроме того, для них, как и для представителей царства растений, характерен фотосинтез.
Примеры представлены зелеными водорослями. Размножаются также простым делением. При очень неблагоприятных условиях для движения могут использовать споры.
Сходства и различия прокариот и эукариот
Сравнительная таблица «Характеристика надцарств» показывает признаки, по которым нетрудно выявить основные отличия.
Признаки | Надцарство Прокариоты | Надцарство Эукариоты |
Размер | D = 0,5 – 5 мкм | D = 40 мкм |
Наследственность | ДНК в цитоплазме | ДНК в ядре |
Структура | Мало образований, мембран практически нет. | Есть внешние и внутренние мембраны, различные структуры, позволяющие проводить реакции пищеварения, дыхания и размножения. |
Оболочка | В состав входят полисахариды, аминокислоты и муреин. | Основой оболочки растений является целлюлоза, а у грибов – хитин. |
Фотосинтез | Нет хлоропластов, но он протекает в мембранах. | Протекает в специальных образованиях – пластидах. |
Обмен азота | У некоторых он есть. | Он не происходит. |
Заключение
Итак, без представителей этих двух надцарств невозможно представить жизнь на земле. Какова же их роль в природе? Все просто: простейшие являются организмами, без которых невозможны практически все биохимические процессы в биосистеме. Кроме того, многие участвуют в процессе фотосинтеза, служат источником питания и дыхания растений.
Эукариоты не только являются для других питанием, но и являются основной регулирующей силой популяции разных видов, т. е одним из механизмов естественного отбора.
Сравнить прокариоты и эукариоты
Сравнить прокариоты и эукариоты
Ферментами катализируются всё|все биохимические реакции. Без их участия скорость этих реакций уменьшилась бы в сотни тысяч раз. В качестве примеров можно привести такие реакции, как участие РНК – полимеразы в синтезе – и-РНКна ДНК, действие уреазы на мочевину, роль АТФ – синтетазы в синтезе АТФ и другие. Обратите внимание на то, что названия многих ферментов оканчиваются на «аза».
Активность ферментов зависит от температуры, кислотности среды|среды, количества субстрата, с которым он взаимодействует. При повышении температуры активность ферментов увеличивается. Однако происходит это до определённых пределов, т.к. при достаточно высоких температурах белок|белок денатурируется. Среда, в которой могут функционировать ферменты, для каждой группы различна. Есть ферменты, которые активны в кислой или слабокислой среде или в щелочной или слабощелочной среде. В кислой среде активны ферменты желудочного сока у млекопитающих. В слабощелочной среде активны ферменты кишечного сока. Пищеварительный фермент поджелудочной железы активен в щелочной среде. Большинство же ферментов активны в нейтральной среде.
Энергетический обмен в клетке (диссимиляция)
Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Процессы расщепления органических соединений уаэробных организмов происходят в три этапа, каждый из которых сопровождается несколькими ферментативными реакциями.
Второй этап –бескислородный (гликолиз ). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ. Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты|кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе: С6Н12O6 + 2АДФ + 2Ф → 2С3Н4O3 + 2АТФ. Остальная энергия рассеивается в виде тепла.
Энергии, накопленной при гликолизе, слишком мало|мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших|больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата. Появляется боль в мышцах. У нетренированных людей это происходит быстрее, чем у людей тренированных.
Сравнить прокариоты и эукариоты
У современных и ископаемых организмов известны два типа клеток: прокариотическая и эукариотическая. Они столь резко различаются по особенностям строения, что это послужило для выделения двух надцарств живого мира — прокариот, т.е. доядерных, и эукариот, т.е. настоящих ядерных организмов. Промежуточные формы между этими крупнейшими таксонами живого пока неизвестны.
Основные признаки и отличия прокариотических и эукариотических клеток (таблица):
ЯДЕРНАЯ МЕМБРАНА
ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА
МИТОХОНДРИИ
РИБОСОМЫ
ВАКУОЛИ
ЛИЗОСОМЫ
КЛЕТОЧНАЯ СТЕНКА
КАПСУЛА
КОМПЛЕКС ГОЛЬДЖИ
ДЕЛЕНИЕ
Основное отличие прокариотических клеток от эукариотических заключается в том, что их ДНК не организована в хромосомы и не окружена ядерной оболочкой. Эукариотические клетки устроены значительно сложнее. Их ДНК, связанная с белком, организована в хромосомы, которые располагаются в особом образовании, по сути самом|самом крупном органоиде клетки — ядре. Кроме того, внеядерное активное содержимое такой клетки разделено на отдельные отсеки|отсеки с помощью эндоплазматической сети, образованной элементарной мембраной. Эукариотические клетки обычно крупнее прокариотических. Их размеры варьируют от 10 до 100 мкм, тогда как размеры клеток прокариот (различных бактерий, цианобактерий — сине- зелёных водорослей и некоторых других организмов), как правило, не превышают 10 мкм, часто составляя 2-3 мкм. В эукариотической клетке носители генов — хромосомы — находятся в морфологически оформленном ядре, отграниченном от остальной клетки мембраной. В исключительно тонких, прозрачных препаратах живые хромосомы можно видеть с помощью светового микроскопа. Чаще же их изучают на фиксированных и окрашенных препаратах.Хромосомы состоят из ДНК, которая находится в комплексе с белками|белками- гистонами, богатыми аминокислотами аргинином и лизином|лизином. Гистоны составляют значительную часть массы хромосом.Эукариотическая клетка имеет разнообразные постоянные внутриклеточные структуры — органоиды (органеллы), отсутствующие в прокариотической клетке.Прокариотические клетки могут делиться на равные части перетяжкой или почковаться, т.е. образовывать дочернюю клетку меньшего размера, чем материнская, но никогда не делятся путём митоза. Клетки эукариотических организмов, напротив, делятся путём митоза (исключая некоторые очень архаичные группы). Хромосомы при этом «расщепляются» продольно (точнее, каждая нить ДНК воспроизводит около себя своё подобие), и их «половинки» — хроматиды (полноценные копии нити ДНК) расходятся группами к противоположным полюсам|полюсам клетки. Каждая из образующихся затем клеток получает одинаковый набор хромосом.Рибосомы прокариотической клетки резко отличаются от рибосом эукариот по величине. Ряд процессов, свойственных цитоплазме многих эукариотических клеток, — фагоцитоз, пиноцитоз и циклоз (вращательное движение цитоплазмы) — у прокариот не обнаружен. Прокариотической клетке в процессе обмена веществ не требуется аскорбиновая кислота, но эукариотические не могут без неё обходиться.Существенно различаются подвижные|подвижные формы прокариотических и эукариотических клеток. Прокариоты имеют двигательные приспособления в виде жгутиков или ресничек, состоящих из белка|белка флагеллина. Двигательные приспособления подвижных|подвижных эукариотических клеток получили название ундулиподиев, закрепляющихся в клетке с помощью особых телец|телец кинетосом. Электронная микроскопия выявила структурное сходство всех ундулиподиев эукариотических организмов и резкие их отличия от жгутиков прокариот
Строение эукариотической клетки.
Цитоплазматическая мембрана. У всех клеток растений, многоклеточных животных, у простейших и бактерий клеточная мембрана трёхслойна: наружный и внутренний слои состоят из молекул белков, средний — из молекул липидов. Она ограничивает цитоплазму от внешней среды|среды, окружает всё|все органоиды клетки и представляет собой универсальную биологическую структуру. В некоторых клетках наружная оболочка образована несколькими мембранами, плотно прилегающими друг к другу. В таких случаях клеточная оболочка становится плотной и упругой и позволяет сохранить форму клетки, как, например, у эвглены и инфузории туфельки. У большинства растительных клеток, помимо мембраны, снаружи имеется ещё толстая целлюлозная оболочка — клеточная стенка. Она хорошо различима в обычном световом микроскопе и выполняет опорную функцию за счёт жёсткого наружного слоя, придающего клеткам чёткую форму.На поверхности клеток мембрана образует удлинённые выросты — микроворсинки, складки, впячивания и выпячивания, что во много раз увеличивает всасывающую или выделительную поверхность. С помощью мембранных выростов клетки соединяются друг с другом в тканях и органах|органах многоклеточных организмов, на складках мембран располагаются разнообразные ферменты, участвующие в обмене веществ. Отграничивая клетку от окружающей среды|среды, мембрана регулирует направление диффузии веществ и одновременно осуществляет активный перенос их внутрь клетки (накопление) или наружу (выделение). За счёт этих свойств мембраны концентрация ионов калия, кальция, магния, фосфора в цитоплазме выше, а концентрация натрия и хлора ниже, чем в окружающей среде. Через поры|поры наружной мембраны из внешней среды|среды внутрь клетки проникают ионы, вода и мелкие молекулы других веществ. Проникновение в клетку относительно крупных твёрдых частиц осуществляется путём фагоцитоза (от греч. «фаго” — пожираю, «питое” — клетка)[2]. При этом наружная мембрана в месте контакта с частицей прогибается внутрь клетки, увлекая частицу в глубь цитоплазмы, где она подвергается ферментативному расщеплению. Аналогичным путём в клетку попадают|попадают и капли жидких веществ; их поглощение называется пиноцитозом (от греч. «пино” — пью, «цитос” — клетка). Наружная клеточная мембрана выполняет и другие важные биологические функции.
Цитоплазма на 85 % состоит из воды, на 10 % — из белков, остальной объем|объём приходится на долю липидов, углеводов, нуклеиновых кислот и минеральных соединений; все эти вещества образуют коллоидный раствор, близкий по консистенции глицерину. Коллоидное вещество клетки в зависимости от её физиологического состояния и характера воздействия внешней среды|среды имеет свойства и жидкости, и упругого, более плотного тела|тела. Цитоплазма пронизана каналами различной формы и величины|величины, которые получили название эндоплазматической сети. Их стенки представляют собой мембраны, тесно контактирующие со всеми органоидами клетки и составляющие вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и перемещения веществ внутри клетки.
В стенках канальцев располагаются мельчайшие зёрнышки—гранулы, называемые рибосомами. Такая сеть канальцев называется гранулярной. Рибосомы могут располагаться на поверхности канальцев разрозненно или образуют комплексы из пяти-семи и более рибосом, называемые полисомами. Другие канальцы гранул не содержат, они составляют гладкую эндоплазматическую сеть. На стенках располагаются ферменты, участвующие в синтезе жиров и углеводов.
Внутренняя полость канальцев заполнена продуктами жизнедеятельности клетки. Внутриклеточные канальцы, образуя сложную ветвящуюся систему, регулируют перемещение и концентрацию веществ, разделяют различные молекулы органических веществ и этапы их, синтеза. На внутренней и внешней поверхности мембран, богатых ферментами, осуществляется синтез белков, жиров и углеводов, которые либо используются в обмене веществ, либо накапливаются в цитоплазме в качестве включений, либо выводятся наружу.
Рибосомы встречаются во всех типах клеток — от бактерий до клеток многоклеточных организмов. Это округлые тельца|тельца, состоящие из рибонуклеиновой кислоты|кислоты (РНК) и белков почти в равном соотношении. В их состав непременно входит магний, присутствие которого поддерживает структуру рибосом. Рибосомы могут быть связаны с мембранами эндоплазматической сети, с наружной клеточной мембраной или свободно лежать в цитоплазме. В них осуществляется синтез белков. Рибосомы кроме цитоплазмы встречаются в ядре клетки. Они образуются в ядрышке и затем поступают в цитоплазму.
Комплекс Гольджи в растительных клетках имеет вид отдельных телец|телец, окружённых мембранами. В животных клетках этот органоид представлен цистернами, канальцами и пузырьками. В мембранные трубки комплекса Гольджи из канальцев эндоплазматической сети поступают продукты секреции клетки, где они химически перестраиваются, уплотняются, а затем переходят в цитоплазму и либо используются самой|самой клеткой, либо выводятся из неё. В цистернах комплекса Гольджи происходит синтез полисахаридов и их объединение с белками|белками, в результате чего образуются гликопротеиды.
Митохондрии — небольшие тельца|тельца палочковидной формы, ограниченные двумя мембранами. От внутренней мембраны митохондрии отходят многочисленные складки — кристы, на их стенках располагаются разнообразные ферменты, с помощью которых осуществляется синтез высокоэнергетического вещества — аденозинтрифосфорной кислоты|кислоты (АТФ). В зависимости от активности клетки и внешних воздействий митохондрии могут перемещаться, изменять свои размеры, форму. В митохондриях найдены рибосомы, фосфолипиды, РНК и ДНК. С присутствием ДНК в митохондриях связывают способность этих органоидов к размножению путём образования перетяжки или почкованием в период деления клетки, а также синтез части митохондриальных белков.
Лизосомы — мелкие овальные образования, ограниченные мембраной и рассеянные по всей цитоплазме. Встречаются во всех клетках животных и растений. Они возникают в расширениях эндоплазматической сети и в комплексе Гольджи, здесь заполняются гидролитическими ферментами, а затем обособляются и поступают в цитоплазму. В обычных» условиях лизосомы переваривают частицы, попадающие в клетку путём фагоцитоза, и органоиды отмирающих клеток. Продукты лизиса выводятся через мембрану лизосомы в цитоплазму, где они включаются в состав новых молекул. При разрыве лизоеомной мембраны ферменты поступают в цитоплазму и переваривают её содержимое, вызывая гибель клетки.Пластиды есть только в растительных клетках и встречаются, у большинства зелёных растений. В пластидах синтезируются и накапливаются органические вещества. Различают пластиды трёх видов: хлоропласты, хромопласты и лейкопласты.
Хлоропласты — зелёные пластиды, содержащие зелёный пигмент хлорофилл. Они находятся в листьях, молодых стеблях|стеблях, незрелых плодах. Хлоропласты окружены двойной мембраной. У высших растений внутренняя часть хлоропластов заполнена полужидким веществом, в котором параллельно друг другу уложены пластинки. Парные|Парные мембраны пластинок, сливаясь, образуют стопки, содержащие хлорофилл. В каждой стопке хлоропластов высших растений чередуются слои молекул белка|белка и молекул липидов, а между ними располагаются молекулы хлорофилла. Такая слоистая структура обеспечивает максимум свободных поверхностей и облегчает захват и перенос энергии в процессе фотосинтеза.Хромопласты — пластиды, в которых содержатся растительные пигменты (красный или бурый, жёлтый, оранжевый). Они сосредоточены в цитоплазме клеток цветков, стеблей|стеблей, плодов, листьев растений и придают им соответствующую окраску. Хромопласты образуются из лейкопластов или хлоропластов в результате накопления пигментов каротиноидов.
Лейкопласты—бесцветные пластиды, располагающиеся в неокрашенных частях растений: в стеблях|стеблях, корнях, луковицах и др. В лейкопластах одних клеток накапливаются зерна|зёрна крахмала, в лейкопластах других клеток — масла|масла, белки|белки.
Всё|Все пластиды возникают из своих предшественников — пропластид. В них выявлена ДНК, которая контролирует размножение этих органоидов.
Клеточный центр, или центросома, играет важную роль при делении, клетки и состоит из двух центриолей. Он встречается у всех клеток животных и растений, кроме цветковых, низших грибов и некоторых, простейших. Центриоли в делящихся клетках принимают участие в формировании веретена|веретёна деления и располагаются на его полюсах|полюсах. В делящейся клетке первым делится клеточный центр, одновременно образуется ахроматиновое веретено, ориентирующее хромосомы при расхождении их к полюсам|полюсам. В дочерние клетки отходит по одной центриоле. У многих растительных и животных клеток имеются органоиды специального назначения: реснички, выполняющие функцию движения (инфузории, клетки дыхательных путей), жгутики (простейшие одноклеточные, мужские половые клетки у животных и растений и др.).
Включения — временные|временные элемеаты, возникающие в клетке на определённой стадии её жизнедеятельности в результате синтетической функции. Они либо используются, либо выводятся из клетки. Включениями являются также запасные|запасные питательные вещества: в растительных клетках—крахмал, капельки жира, белки|белки, эфирные масла|масла, многие органические кислоты|кислоты, соли|соли органических и неорганических кислот; в животных клетках — гликоген (в клетках печени и мышцах), капли жира (в подкожной клетчатке); Некоторые включения накапливаются в клетках как отбросы — в виде кристаллов, пигментов и др.
Вакуоли — это полости, ограниченные мембраной; хорошо выражены в клетках растений и имеются у простейших. Возникают в разных участках расширений эндоплазматической сети. И постепенно отделяются от неё. Вакуоли поддерживают тургорное давление, в них сосредоточен клеточный или вакуолярный сок, молекулы которого определяют его осмотическую концентрацию. Считается, что первоначальные продукты синтеза — растворимые углеводы, белки|белки, пектины и др. — накапливаются в цистернах эндоплазматической сети. Эти скопления и представляют собой зачатки будущих вакуолей.Цитоскелет. Одной из отличительных особенностей эукариотической клетки является развитие в её цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета тесно связаны с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Опорные элемеиты цитоплазмы определяют форму клетки, обеспечивают движение внутриклеточных структур и перемещение всей клетки.
Функции ядра|ядра состоят в регуляции всех жизненных отправлений клетки, которую оно осуществляет при помощи ДНК и РНК-материальных носителей наследственной информации. В ходе подготовки к делению клетки ДНК удваивается, в процессе митоза хромосомы расходятся и передаются дочерним клеткам, обеспечивая преемственность наследственной информации у каждого вида организмов.
Кариоплазма — жидкая фаза ядра|ядра, в которой в растворенном|растворённом виде находятся продукты жизнедеятельности ядерных структур.
Ядрышко — обособленная, наиболее плотная часть ядра|ядра.
В состав ядрышка входят сложные белки|белки и РНК, свободные или связанные фосфаты калия, магния, кальция, железа|железа, цинка, а также рибосомы. Ядрышко исчезает перед началом деления клетки и вновь формируется в последней фазе деления.
Таким образом, клетка обладает тонкой и весьма сложной организацией. Обширная сеть цитоплазматических мембран и мембранный принцип строения органоидов позволяют разграничить множество одновременно протекающих в клетке химических реакций. Каждое из внутриклеточных образований имеет свою структуру и специфическую функцию, но только при их взаимодействии возможна гармоничная жизнедеятельность клетки.На основе такого взаимодействия вещества из окружающей среды|среды поступают в клетку, а отработанные продукты выводятся из неё во внешнюю среду|среду — так совершается обмен веществ. Совершенство структурной организации клетки могло возникнуть только в результате длительной биологической эволюции, в процессе которой выполняемые ею функции постепенно усложнялись.Простейшие одноклеточные формы представляют собой и клетку, и организм со всеми его жизненными проявлениями. В многоклеточных организмах клетки образуют однородные группы — ткани. В свою очередь ткани формируют органы|органы, системы, и их функции определяются общей жизнедеятельностью целостного организма.
Прокариотическая клетка.
Помимо организмов с типичной клеточной организацией <эукариотические клетки)существуют относительно простые, доядерные, или прокариотические, клетки — бактерии и синезеленые, у которых отсутствуют оформленное ядро, окружённое ядерной мембраной, и высокоспециализированные внутриклеточные органоиды. Особую форму организации живого представляют вирусы и бактериофаги (фаги). Их строение крайне упрощено: они состоят из ДНК (либо РНК) и белкового футляра. Свои функции обмена веществ и размножения вирусы и фаги осуществляют только внутри клеток другого организма: вирусы — внутри клеток растений и животных, фаги — в бактериальных клетках как паразиты на, генетическом уровне.
К прокариотам относят бактерии и сине-зелёные водоросли (цианеи). Наследственный аппарат прокариот представлен одной кольцевой молекулой ДНК, не образующей связей с белками|белками и содержащей по одной копии каждого гена — гаплоидные организмы. В цитоплазме имеется большое количество мелких рибосом; отсутствуют или слабо|слабо выражены внутренние мембраны. Ферменты пластического обмена расположены диффузно. Аппарат Гольджи представлен отдельными пузырьками. Ферментные системы энергетического обмена упорядоченно расположены на внутренней поверхности наружной цитоплазматической мембраны. Снаружи клетка окружена толстой клеточной стенкой. Многие прокариоты способны к спорообразованию в неблагоприятных условиях существования; при этом выделяется небольшой участок цитоплазмы содержащий ДНК, и окружается толстой многослойной капсулой. Процессы метаболизма внутри споры практически прекращаются. Попадая в благоприятные условия, спора|спора преобразуется в активную клеточную форму. Размножение прокариот происходит простым делением надвое.
Средняя величина прокариотических клеток 5 мкм. У них нет никаких внутренних мембран, кроме впячиваний плазматической мембраны. Пласты|Пласты отсутствуют. Вместо клеточного ядра|ядра имеется его эквивалент (нуклеоид), лишённый оболочки и состоящий из одной-единственной молекулы ДНК. Кроме того бактерии могут содержать ДНК в форме крошечных плазмид, сходных с внеядерными ДНК эукариот. В прокариотических клетках, способных к фотосинтезу (сине-зелёные водоросли, зелёные и пурпурные бактерии) имеются различно структурированные крупные впячивания мембраны – тилакоиды, по своей функции соответствующие пластидам эукариот. Эти же тилакоиды или – в бесцветных клетках – более мелкие впячивания мембраны (а иногда даже сама плазматическая мембрана) в функциональном отношении заменяют митохондрии. Другие, сложно дифференцированные впячивания мембраны называют мезасомами; их функция не ясна. Только некоторые органеллы прокариотической клетки гомологичны соответствующим органеллам эукариот. Для прокариот характерно наличие муреинового мешка – механически прочного элемента клеточной стенки
Сравнительная характеристика клеток растений, животных, бактерий, грибов
Видео по теме : Сравнить прокариоты и эукариоты