Что называется внешней баллистикой

Внешняя баллистика. Траектория и ее элементы. Превышение траектории полета пули над точкой прицеливания. Форма траектории

Внешняя баллистика

Вылетев из канала ствола под действием пороховых газов, пуля (граната) движется по инерции. Граната, имеющая реактивный двигатель, движется по инерции после истечения газов из реактивного двигателя.

Траектория пули (вид сбоку)

Образование силы сопротивления воздуха

Траектория и ее элементы

Траекторией называется кривая линия, описываемая центром тяжести пули (гранаты) в полете.

Пуля (граната) при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули (гранаты) и стремится опрокинуть ее. В результате действия этих сил скорость полета пули (гранаты) постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.

Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду и поэтому на движение в этой среде затрачивается часть энергии пули (гранаты).

Сила сопротивления воздуха вызывается тремя основными причинами: трением воздуха, образованием завихрений и образованием баллистической волны.

Частицы воздуха, соприкасающиеся с движущейся пулей (гранатой), вследствие внутреннего сцепления (вязкости) и сцепления с ее поверхностью создают трение и уменьшают скорость полета пули (гранаты).

Примыкающий к поверхности пули (гранаты) слой воздуха, в котором движение частиц изменяется от скорости пули (гранаты) до нуля, называется пограничным слоем. Этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.

За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

Равнодействующая (суммарная) всех сил, образующихся вследствие влияния воздуха на полет пули (гранаты), составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется центром сопротивления.

Действие силы сопротивления воздуха на полет пули (гранаты) очень велико; оно вызывает уменьшение скорости и дальности полета пули (гранаты). Например, пуля обр. 1930 г. при угле бросания 15° и начальной скорости 800 м/сек в безвоздушном пространстве полетела бы на дальность 32 620 м; дальность полета этой пули при тех же условиях, но при наличии сопротивления воздуха равна лишь 3900 м.

Величина силы сопротивления воздуха зависит от скорости полета, формы и калибра пули (гранаты), а также от ее поверхности и плотности воздуха.

Сила сопротивления воздуха возрастает с увеличением скорости полета пули, ее калибра и плотности воздуха.

При сверхзвуковых скоростях полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны), выгодны пули с удлиненной остроконечной головной частью. При дозвуковых скоростях полета гранаты, когда основной причиной сопротивления воздуха является образование разреженного пространства и завихрений, выгодны гранаты с удлиненной и суженной хвостовой частью.

Чем глаже поверхность пули, тем меньше сила трения и. сила сопротивления воздуха.

Разнообразие форм современных пуль (гранат) во многом определяется необходимостью уменьшить силу сопротивления воздуха.

Под действием начальных возмущений (толчков) в момент вылета пули из канала ствола между осью пули и касательной к траектории образуется угол (б) и сила сопротивления воздуха действует не вдоль оси пули, а под углом к ней, стремясь не только замедлить движение пули, но и опрокинуть ее.

Для того чтобы пуля не опрокидывалась под действием силы сопротивления воздуха, ей придают с помощью нарезов в канале ствола быстрое вращательное движение.

Например, при выстреле из автомата Калашникова скорость вращения пули в момент вылета из канала ствола равна около 3000 оборотов в секунду.

Медленное коническое движение пули

Деривация (вид траектории сверху)

Действие силы сопротивления воздуха на полет гранаты

Ось медленного конического движения несколько отстает от касательной к траектории (располагается выше последней). Следовательно, пуля с потоком воздуха сталкивается больше нижней частью и ось медленного конического движения отклоняется в сторону вращения (вправо при правой нарезке ствола). Отклонение пули от плоскости стрельбы в сторону ее вращения называется деривацией.

Таким образом, причинами деривации являются: вращательное движение пули, сопротивление воздуха и понижение под действием силы тяжести касательной к траектории. При отсутствии хотя бы одной из этих причин деривации не будет.

Устойчивость гранаты на полете обеспечивается наличием стабилизатора, который позволяет перенести центр сопротивления воздуха назад, за центр тяжести гранаты.

Вследствие этого сила сопротивления воздуха поворачивает ось гранаты к касательной к траектории, заставляя гранату двигаться головной частью вперед.

Для улучшения кучности некоторым гранатам придают за счет истечения газов медленное вращение. Вследствие вращения гранаты моменты сил, отклоняющие ось гранаты, действуют последовательно в разные стороны, поэтому стрельбы улучшается.

Для изучения траектории пули (гранаты) приняты следующие определения.

Центр дульного среза ствола называется точкой вылета. Точка вылета является началом траектории.

Вертикальная плоскость, проходящая через линию возвышения, называется плоскостью стрельбы.

Прямая линия, являющаяся продолжением оси канала ствола в момент вылета пули, называется линией бросания.

Угол, заключенный между линией возвышения и линией бросания, называется углом вылета.

Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью.

Скорость пули (гранаты) в точке падения называется окончательной скоростью.

Время движения пули (гранаты) от точки вылета до точки падения называется полным временем полета.

Наивысшая точка траектории называется вершиной траектории.

Часть траектории от точки вылета до вершины называется восходящей ветвью; часть траектории от вершины до точки падения называется нисходящей ветвью траектории.

Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания, называется линией прицеливания.

Угол, заключенный между линией возвышения и линией прицеливания, называется углом прицеливания.

Расстояние от точки вылета до пересечения траектории с линией прицеливания называется прицельной дальностью.

Кратчайшее расстояние от любой точки траектории до линии прицеливания называется превышением траектории над линией прицеливания.

Прямая, соединяющая точку вылета с целью, называется линией цели. Расстояние от точки вылета до цели по линии цели называется наклонной дальностью. При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания, а наклонная дальность с прицельной дальностью.

Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи.

Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи. За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90°.

Траектория пули в воздухе имеет следующие свойства:

— нисходящая ветвь короче и круче восходящей;

— угол падения больше угла бросания;

— окончательная скорость пули меньше начальной;

— время движения пули по восходящей ветви траектории меньше, чем по нисходящей;

— траектория вращающейся пули вследствие понижения пули под действием силы тяжести и деривации представляет собой линию двоякой кривизны.

Траектория гранаты (вид сбоку)

Форма траектории

Форма траектории зависит от величины угла возвышения. С увеличением угла возвышения высота траектории и полная горизонтальная дальность полета пули (гранаты) увеличиваются, но это происходит до известного предела. За этим пределом высота траектории продолжает увеличиваться, а полная горизонтальная дальность начинает уменьшаться.

Угол наибольшей дальности, настильные, навесные и сопряженные траектории

Траектории, получаемые при углах возвышения, меньших угла наибольшей дальности, называются настильными. Траектории, получаемые при углах возвышения, больших угла наибольшей дальности, называются навесными.

Превышение траектории полета пули над точкой прицеливания

Настильность траектории характеризуется наибольшим ее превышением над линией прицеливания. При данной дальности траектория тем более настильна, чем меньше она поднимается над линией прицеливания. Кроме того, о настильности траектории можно судить по величине угла падения: траектория тем более настильна, чем меньше угол падения.

Источник

Внешняя баллистика

Содержание

Цели Внешней баллистики

Сущность Внешней баллистики

Внешняя баллистика определяет:

Внешняя баллистика ракет предполагает необходимость выделения для изучения активного участка траектории, на котором на движение снаряда оказывает влияние истечение газовой струи из сопла, образующейся от сгорания топлива, находящегося внутри корпуса. Пассивный участок траектории — участок траектории пройденный снарядом после прекращения действия на него реактивной силы.

Основные задачи Внешней баллистики

Прямая задача Внешней баллистики

Состоит в расчете траектории движения объекта по заранее известным данным. Для решения этой задачи необходимо определить силы действующие на аппарат в полете и их значения в каждый момент времени. Составить дифференциальные уравнения движения объекта с учетом действующих на него сил. Результатом решения составленных дифференциальных уравнений при заданных начальных условиях являются все характеристики движения по которым может быть построена траектория:

Обратная задача Внешней баллистики

Состоит в определении баллистических характеристик движения по заданным граничным условиям, оптимальных режимов и траекторий движения, доставляющих экстремум заданным условиям.

Третья задача Внешней баллистики

Четвертая задача Внешней баллистики

Изучает факторы, влияющие на рассеивание траектории, определение степени их воздействия и способов уменьшения рассеивания и повышения точности стрельбы.

Пятая задача Внешней баллистики

Разработка методического обеспечения составления таблиц стрельбы и оперативных алгоритмов подготовки исходных данных для проведения артиллерийской стрельбы или пусков ракет.

Что называется внешней баллистикой

Полезное

Смотреть что такое «Внешняя баллистика» в других словарях:

ВНЕШНЯЯ БАЛЛИСТИКА — см. Баллистика. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

внешняя баллистика — išorinė balistika statusas T sritis Gynyba apibrėžtis Balistikos šaka, tirianti sviedinių (minų, kulkų, nevaldomųjų raketų), kai jie išlekia iš vamzdžio (leidimo įrenginio), judėjimo ore dėsnius ir veiksnius, veikiančius šį judėjimą. Pagrindiniai … Artilerijos terminų žodynas

внешняя баллистика — išorinė balistika statusas T sritis fizika atitikmenys: angl. exterior ballistics; external ballistics vok. äußere Ballistik, f rus. внешняя баллистика, f pranc. balistique extérieure, f … Fizikos terminų žodynas

Внешняя баллистика — см. Баллистика … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

БАЛЛИСТИКА — (Ballistics) наука о движении тяжелого тела, брошенного в пространство. Прилагается преимущественно к изучению движения снарядов, пуль, а также авиабомб. Внутренняя Б. изучает движение снаряда внутри канала орудия, внешняя Б. по вылете снаряда.… … Морской словарь

БАЛЛИСТИКА — БАЛЛИСТИКА, наука о движении снарядов, включая пули, артиллерийские снаряды, бомбы, ракеты и УПРАВЛЯЕМЫЕ СНАРЯДЫ. Внутренняя баллистика изучает движение снарядов в канале ствола орудия. Внешняя баллистика исследует траекторию полета снарядов.… … Научно-технический энциклопедический словарь

Баллистика — (нем. Ballistik, от греч. ballo бросаю) наука о движении артиллерийских снарядов, пуль, мин, авиабомб, активнореактивных и реактивных снарядов, гарпунов и т.п. Б. военно техническая наука, основывающаяся на комплексе физико математических … Большая советская энциклопедия

Источник

Что называется внешней баллистикой

Сведения из внешней баллистики

Вылетев из канал а ствола под действием пороховых газов, пуля (граната) движется по инерции. Граната, имеющая реактивный двигатель, движется по инерции после истечения газов из реактивного двигателя.

Траектория и ее элементы

Траекторией называется кривая линия, описываемая центром тяжести пули в полете.

Пуля при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха.

Сила тяжести заставляет пулю постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули и стремится опрокинуть ее.

В результате действия этих сил скорость полета пули постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.

Центр дульного среза ствола

Точка вылета является началом траектории

Горизонтальная плоскость, проходящая через точку вылета

3. Линия возвышения

Прямая линия, являющаяся продолжением оси канала ствола наведенного оружия

Угол, заключенный между линией возвышения и горизонтом оружия

Если этот угол отрицательный, то он называется углом склонения (снижения)

Прямая, линия, являющаяся продолжением оси канала ствола в момент вылета пули

Угол, заключенный между линией бросания и горизонтом оружия

Угол, заключенный между линией возвышения и линией бросания

Точка пересечения траектории с горизонтом оружия

Угол, заключенный между касательной к траектории в точке падения и горизонтом оружия

10. Полная горизонтальная дальность

Расстояние от точки вылета до точки падения

11. Вершина траектории

Наивысшая точка траектории

12. Высота траектории

Кратчайшее расстояние от вершины траектории до горизонта оружия

13. Превышение траектории над линией прицеливания

Кратчайшее расстояние от любой точки траектории до линии прицеливания

14. Угол места цели

Угол, заключенный между линией прицеливания и горизонтом оружия

Точка пересечения траектории с поверхностью цели (земли, преграды)

17. Точка прицеливания (наводки)

Точка на цели или вне ее, в которую наводится оружие

Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи

За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90°

19. Линия прицеливания

Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания

20. Прицельная дальность

Расстояние от точки вылета до пересечения траектории с линией прицеливания

21. Угол прицеливания

Угол, заключенный между линией возвышения и линией прицеливания

Придание оси канала ствола требуемого положения в вертикальной плоскости

Часть траектории от точки вылета до вершины

Придание оси канала ствола требуемого положения в горизонтальной плоскости

Прямая, соединяющая точку вылета с целью

При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания

Расстояние от точки вылета до цели по линии цели

При стрельбе прямой наводкой наклонная дальность практически совпадает с прицельной дальностью.

Часть траектории от вершины до точки падения

Скорость пули в точке падения

Вертикальная плоскость, проходящая через линию возвышения

Полное время полета

Время движения пули от точки вылета до точки падения

Для того чтобы пуля долетела до цели и попала в нее или желаемую точку на ней

Прямая линия, соединяющая середину прорези прицела с вершиной мушки

Прямым выстрелом называется выстрел, при котором траектория полёта пули не поднимается над линией прицеливания выше цели на всём своём протяжении. Дальность прямого выстрела зависит от высоты цели и настильности траектории. Чем выше цель и более настильная траектория, тем больше дальность прямого выстрела и, следовательно, расстояние, на котором цель может быть поражена с одной установкой прицела.

Практическое значение прямого выстрела заключается в том, что в напряжённые моменты боя стрельба может вестись без перестановки прицела, при этом точка прицеливания по высоте будет выбираться по нижнему обрезу цели.

Дальность прямого выстрела можно определить по таблицам путем сравнения высоты цели с величинами наибольшего превышения над линией прицеливания или с высотой траектории.

Прямой выстрел и округленные дальности прямого выстрела

При ведении стрельбы необходимо знать, что расстояние на местности, на протяжении которого нисходящая ветвь траектории не превышает высоты цели, называется поражаемым пространством (глубиной поражаемого пространства Ппр.).

Глубина (Ппр.) зависит:

от высоты цели (она будет тем больше, чем выше цель);

от настильности траектории (она будет тем больше, чем настильнее траектория);

от угла наклона местности (на переднем скате она уменьшается, на обратном скате – увеличивается).

Часть прикрытого пространства, на котором цель не может быть поражена при данной траектории, называется мертвым (непоражаемым) пространством. Мертвое пространство будет тем больше, чем больше высота укрытия, меньше высота цели и настильнее траектория. Другую часть прикрытого пространства (Пп), на которой цель может быть поражена, составляет поражаемое пространство.

Глубина мертвого пространства (Мпр.) равна разности прикрытого и поражаемого пространства:

Нормальные (табличные) условия стрельбы

Табличные данные траектории соответствуют нормальным условиям стрельбы.

За нормальные (табличные) условия приняты следующие:

· относительная влажность воздуха 50% (относительной влажностью называется отношение количества водяных паров, содержащихся в воздухе, к наибольшему количеству водяных паров, которое может содержаться в воздухе при данной температуре);

· ветер отсутствует (атмосфера неподвижна).

· вес пули, начальная скорость и угол вылета равны значениям, указанным в таблицах стрельбы;

· температура заряда +15°С;

· форма пули соответствует установленному чертежу;

· высоты (деления) прицела соответствуют табличным углам прицеливания.

· цель находится на горизонте оружия;

При отклонении условий стрельбы от нормальных может возникнуть необходимость определения и учета поправок дальности и направления стрельбы.

Влияние внешних факторов на полет пули

С увеличением атмосферного давления плотность воздуха увеличивается, а вследствие этого увеличивается сила сопротивления воздуха и уменьшается дальность полета пули. Наоборот, с уменьшением атмосферного давления плотность и сила сопротивления воздуха уменьшаются, а дальность полета пули увеличивается.

При повышении температуры плотность воздуха уменьшается, а вследствие этого уменьшается сила сопротивления воздуха и увеличивается дальность полета пули. Наоборот, с понижением температуры плотность и сила сопротивления воздуха увеличиваются, и дальность полета пули уменьшается.

При попутном ветре уменьшается скорость полета пули относительно воздуха. С уменьшением скорости полета пули относительно воздуха сила сопротивления воздуха уменьшается. Поэтому при попутном ветре пуля полетит дальше, чем при безветрии.

При встречном ветре скорость пули относительно воздуха будет больше, чем при безветрии, следовательно, сила сопротивления воздуха увеличится, и дальность полета пули уменьшится.

Скорость ветра определяется с достаточной точностью по простым признакам: при слабом ветре (2-3 м/сек) носовой платок и флаг колышутся и слегка развеваются; при умеренном ветре (4-6 м/сек) флаг держится развернутым, а платок развевается; при сильном ветре (8-12 м/сек) флаг с шумом развевается, платок рвется из рук и т. д.

Изменение влажности воздуха оказывает незначительное влияние на плотность воздуха и, следовательно, на дальность полета пули, поэтому оно не учитывается при стрельбе.

Пробивное (убойное) действие пули

Для стрельбы из автомата применяются патроны с обыкновенными (со стальным сердечником) и трассирующими пулями. Убойность пули и ее пробивное действие в основном зависит от дальности до цели и скорости, которой будет обладать пуля в момент встречи с целью.

Дальность стрельбы, м.

% сквозных пробитий или глубина проникания пули

Стальные листы (при угле встречи 90°) толщиной:

Источник

Сведения из внешней баллистики

25. Внешняя баллистика — это наука, изучающая дви­жение пули (гранаты) после прекращения действия на нее пороховых газов.

Вылетев из канала ствола под действием пороховых газов, пуля (граната) движется по инерции. Граната, име­ющая реактивный двигатель, движется по инерции после истечения газов из реактивного двигателя.

Траектория и её элементы

26. Траекторией называется кривая линия, описываемая центром тяжести пули (гранаты) в полете (рис. 5).

Пуля (граната) при полете в воздухе подвергается действию двух сил: силы тяжести и силы сопротивления воздуха. Сила тяжести заставляет пулю (гранату) постепенно понижаться, а сила сопротивления воздуха непрерывно замедляет движение пули (гранаты) и стремится опрокинуть ее.

Что называется внешней баллистикой

Рис. 5. Траекторя пули (вид сбоку)

В результате действия этих сил скорость полета пули (гранаты) постепенно уменьшается, а ее траектория представляет собой по форме неравномерно изогнутую кривую линию.

Что называется внешней баллистикой

Рис. 6. Образование силы сопратевления воздуха

27. Сопротивление воздуха полету пули (гранаты) вызывается тем, что воздух представляет собой упругую среду, поэтому на движение в этой среде затрачивается часть энергии пули (гранаты).

Сила сопротивления воздуха вызывается тремя основными причинами (рис. 6): трением воздуха, образованием завихрений и образованием баллистической волны,

28. Частицы воздуха, соприкасающиеся с движущейся пулей (гранатой), вследствие внутреннего сцепления (вязкости) и сцепления с ее поверхностью создают трение и уменьшают скорость полета пули (гранаты).

29. Примыкающий к поверхности пули (гранаты) слой воздуха, в котором движение частиц изменяется от скорости пули (гранаты) до нуля, называется пограничным слоем. Этот слой воздуха, обтекая пулю, отрывается от ее поверхности и не успевает сразу же сомкнуться за донной частью.

За донной частью пули образуется разреженное пространство, вследствие чего появляется разность давлений на головную и донную части. Эта разность создает силу, направленную в сторону, обратную движению пули, и уменьшающую скорость ее полета. Частицы воздуха, стремясь заполнить разрежение, образовавшееся за пулей, создают завихрение.

30. Пуля (граната) при полете сталкивается с частицами воздуха и заставляет их колебаться. Вследствие этого перед пулей (гранатой) повышается плотность воздуха, и образуются звуковые волны. Поэтому полет пули (гранаты) сопровождается характерным звуком. При скорости полета пули (гранаты), меньшей скорости звука, образование этих волн оказывает незначительное влияние на ее полет, так как волны распространяются быстрее скорости полета пули (гранаты). При скорости полета пули, большей скорости звука, от набегания звуковых воли друг на друга создается волна сильно уплотненного воздуха — баллистическая волна, замедляющая скорость полета пули, так как пуля тратит часть своей энергии па создание этой волны.

31. Равнодействующая (суммарная) всех сил, образующихся вследствие влияния воздуха на полет пули (гранаты), составляет силу сопротивления воздуха. Точка приложения силы сопротивления называется центром сопротивления.

Действие силы сопротивления воздуха на полет пули (гранаты) очень велико; оно вызывает уменьшение скорости и дальности полета пули (гранаты). Например, пуля обр. 1930 г. при угле бросания 15° и начальной скорости 800 м/с в безвоздушном пространстве полетела бы на дальность 32620 м; дальность полета этой пули при тех же условиях, но при наличии сопротивления воздуха равна лишь 3900 м.

32. Величина силы сопротивления воздуха зависит от скорости полета, формы и калибра пули (гранаты), а также от ее поверхности и плотности воздуха.

Сила сопротивления воздуха возрастает с увеличением скорости полета пули, ее калибра и плотности воздуха.

Что называется внешней баллистикой

Рис. 7. Действие силы сопротевления воздуха на полёт пули:

При сверхзвуковых скоростях полета пули, когда основной причиной сопротивления воздуха является образование уплотнения воздуха перед головной частью (баллистической волны), выгодны пули с удлиненной остроконечной головной частью. При дозвуковых скоростях полета гранаты, когда основной причиной сопротивления воздуха является образование разреженного пространства и завихрений, выгодны гранаты с удлиненной и суженной хвостовой частью.

Чем глаже поверхность пули, тем меньше сила трения и сила сопротивления воздуха.

Разнообразие форм современных пуль (гранат) во многом определяется необходимостью уменьшить силу сопротивления воздуха.

33. Под действием начальных возмущений (толчков) в момент вылета пули из канала ствола между осью пули и касательной к траектории образуется угол (б) и сила сопротивления воздуха действует не вдоль оси пули, а под углом к ней, стремясь не только замедлить движение пули, но и опрокинуть ее (рис. 7).

Для того чтобы пуля не опрокидывалась под действием силы сопротивления воздуха, ей придают с помощью нарезов в канале ствола быстрое вращательное движение.

Например, при выстреле из автомата Калашникова скорость вращения пули в момент вылета из канала ствола равна около 3000 оборотов в секунду.

При полете быстро вращающейся пули в воздухе происходят следующие явления. Сила сопротивлении воздуха стремится повернуть пулю головной частью вверх и назад.

Что называется внешней баллистикой

Рис. 8. Медленное конисеское движений пули

Но головная часть пули в результате быстрого вращения согласно свойству гироскопа стремится сохранить приданное положение и отклониться не вверх, а весьма незначительно в сторону своего вращения под прямым углом к направлению действия силы сопротивлении воздуха, т. е, вправо. Как только головная часть пули отклонится вправо, изменится направление действия силы сопротивления воздуха — она стремится повернуть головную часть пули в право и назад, но поворот головной части пули произойдет не вправо, а вниз и т. д. Так как действие силы сопротивления воздуха непрерывно, а направление ее относительно пули меняется с каждым отклонением оси пули, то головная часть пули описывает окружность, а ее ось — конус с вершиной в центре тяжести. Происходит так называемое медленное коническое, или прецессионное движение, и пуля летит головной частью вперед, т. е. как бы следит за изменением кривизны траектории (рис. 8).

34, Ось медленного конического движения несколько отстает от касательной к траектории (располагается выше последней). Следовательно, пуля с потоком воздуха сталкивается больше нижней частью, и ось медленного конического движения отклоняется в сторону вращения (в право при правой нарезке ствола). Отклонение пули от плоскости стрельбы в сторону ее вращения называется деривацией (рис. 9).

Таким образом, причинами деривации являются: вращательное движение пули, сопротивление воздуха и понижение под действием силы тяжести касательной к траектории.

Что называется внешней баллистикой

Рис. 9. Деревация (вид траектории сверху)

При отсутствии хотя бы одной из этих причин деривации не будет.

35. Устойчивость гранаты на полете обеспечивается наличием стабилизатора, который позволяет перенести центр сопротивления воздуха назад, за центр тяжести гранаты (рис. 10). Вследствие этого сила сопротивления воздуха поворачивает ось гранаты касательной к траектории, заставляя гранату двигаться головной частью вперед.

Для улучшения кучности некоторым гранатам придают за счет истечения газов медленное вращение.

Что называется внешней баллистикой

Рис. 10. Действие силы сопротивления воздуха на полёт гранаты

Вследствие вращения гранаты моменты сил, отклоняющие ось гранаты, действуют последовательно в разные стороны, поэтому кучность стрельбы улучшается.

38. Для изучения траектории пули (гранаты) приняты следующие определения (рис. 11).

Центр дульного среза ствола называется точкой вылета. Точка вылета является началом траектории.

Что называется внешней баллистикой

Рис. 11. Элементы траектории

Вертикальная плоскость, проходящая через линию возвышения, называется плоскостью стрельбы.

Если этот угол отрицательный, то он называется углом склонения (снижения).

Прямая линия являющаяся продолжением оси канала ствола в момент вылета пули, называется линией бросания.

Угол, заключенный между линией возвышения и линией бросания, называется углом вылета (у).

Расстояние от точки вылета до точки падения называется полной горизонтальной дальностью (X).

Скорость пули (гранаты) в точке падения называется окончательной скоростью (vc).

Время движения пули (гранаты) от точки вылета до точки падения называется полным временем полета (Г).

Наивысшая точка траектории называется вершиной траектории.

Часть траектории от точки вылета до вершины называется восходящей ветвью; часть траектории от вершины до точки падения называется нисходящей ветвью траектории.

Прямая линия, проходящая от глаза стрелка через середину прорези прицела (на уровне с ее краями) и вершину мушки в точку прицеливания, называется линией прицеливания.

Угол, заключенный между линией возвышения и линией прицеливания, называется углом прицеливания (а).

Что называется внешней баллистикой

где ε угол места цели в тысячных;

Д — дальность стрельбы в метрах.

Расстояние от точки вылета до пересечения траектории с линией прицеливания называется прицельной дальностью (Дп).

Кратчайшее расстояние от любой точки траектории до линии прицеливания называется превышением траектории над линией прицеливания.

Прямая, соединяющая точку вылета с целью, называется линией цели. Расстояние от точки вылета до цели, по линии цели называется наклонной дальностью. При стрельбе прямой наводкой линия цели практически совпадает с линией прицеливания, а наклонная дальность — q прицельной дальностью.

Точка пересечения траектории с поверхностью цели (земли, преграды) называется точкой встречи.

Угол, заключенный между касательной к траектории и касательной к поверхности цели (земли, преграды) в точке встречи, называется углом встречи (μ). За угол встречи принимается меньший из смежных углов, измеряемый от 0 до 90°.

37. Траектория пули в воздухе имеет следующие свойства:

— нисходящая ветвь короче и круче восходящей;

— угол падения больше угла бросания;

— окончательная скорость пули меньше начальной;

— наименьшая скорость полета пули при стрельбе под большими углами бросания — на нисходящей ветви траектории, а при стрельбе под небольшими углами бросания — в точке падения;

— время движения пули по восходящей ветви траектории меньше, чем по нисходящей;

— траектория вращающейся пули вследствие понижения пули под действием силы тяжести и деривации представляет собой линию двоякой кривизны.

38. Траекторию гранаты в воздухе можно разделить на два участка (рис. 12): активный — полет гранаты под действием реактивной силы (от точки вылета до точки, где действие реактивной силы прекращается) и пассивный полет гранаты по инерции. Форма траектории гранаты примерно такая же, как и у пули.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *