Что значит порядок возрастания в математике

Натуральные числа

Натуральные числа — это числа, которые используются при счёте или нумерации.

Натуральные числа, записанные в порядке их возрастания (начиная с 1) и без пропусков, образуют ряд натуральных чисел, или короче натуральный ряд:

В натуральном ряду есть первое число — 1 (один или единица), но нет последнего числа — за каждым натуральным числом следует ещё одно, которое больше предшествующего на единицу. Таким образом, есть наименьшее натуральное число — 1, а наибольшего натурального числа не существует. Следовательно 1 — это самое маленькое натуральное число.

Натуральный ряд бесконечен.

Все натуральные числа записать невозможно. Поэтому при записи натурального ряда выписывают подряд несколько первых чисел, следующих друг за другом в натуральном ряду, и в конце ставят многоточие (три точки).

Отсутствие предметов для счёта условились обозначать числом 0 (нуль).

Нуль не считается натуральным числом.

Чётные и нечётные натуральные числа

В натуральном ряду чередуются нечётные и чётные числа, то есть числа, которые делятся на 2 и которые на 2 не делятся. Начинается натуральный ряд с нечётного числа:

Нечётные числа обозначены чёрным цветом, а чётные — красным.

Прямой и обратный счёт

Прямой счёт — это перечисление чисел в порядке их возрастания. Под порядком возрастания, в данном случае, подразумевается что каждое последующее число больше предыдущего на единицу.

Рассмотрим прямой счёт от 1 до 10:

1,2,3,4,5,6,7,8,9,10
одиндватричетырепятьшестьсемьвосемьдевятьдесять

Перечисление чисел натурального ряда в порядке их возрастания называется прямым счётом.

Обратный счёт — это перечисление чисел в порядке их убывания. Под порядком убывания, в данном случае, подразумевается что каждое последующее число меньше предыдущего на единицу.

Рассмотрим обратный счёт от 10 до 1:

10,9,8,7,6,5,4,3,2,1
десятьдевятьвосемьсемьшестьпятьчетыретридваодин

Перечисление чисел натурального ряда в порядке их убывания называется обратным счётом.

Источник

Разряды и классы чисел

Что значит порядок возрастания в математике

Числа и цифры

Числа — это единицы счета. С помощью чисел можно сосчитать количество предметов и определить различные величины.

Для записи чисел используются специальные знаки — цифры. Всего их десять: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0.

Натуральные числа — это числа, которые мы используем при счете. Вот они: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

От количества цифр в числе зависит его название.

Число, которое состоит из одного знака, называется однозначным. Наименьшее однозначное — 1, наибольшее — 9.

Число, которое состоит из двух знаков цифр, называется двузначным. Наименьшее двузначное — 10, наибольшее — 99.

Числа, которые записаны с помощью двух, трех, четырех и более цифр, называются двузначными, трехзначными, четырехзначными или многозначными. Наименьшее трехзначное — 100, наибольшее — 999.

Каждая цифра в записи многозначного числа занимает определенное место — позицию.

Классы чисел

Цифры в записи многозначных чисел разбивают справа налево на группы по три цифры в каждой. Эти группы называют классами. В каждом классе цифры справа налево обозначают единицы, десятки и сотни этого класса.

Что значит порядок возрастания в математике

Названия классов многозначных чисел справа налево:

Чтобы читать запись многозначного числа было удобно, между классами оставляют небольшой пробел. Например, чтобы прочитать число 125911723296, удобно сначала выделить в нем классы:

А теперь прочитаем число единиц каждого класса слева направо:

Разряды чисел

От позиции, на которой стоит цифра в записи числа, зависит ее значение. Например:

Можно сформулировать иначе и сказать, что в заданном числе 1 123 цифра 3 располагается в разряде единиц, 2 в разряде десятков, 1 в разряде сотен, а 1 служит значением разряда тысяч.

Проясним, что такое разряд в математике. Разряд — это позиция или место расположения цифры в записи натурального числа.

У каждого разряда есть свое название. Слева всегда живут старшие разряды, а справа — младшие. Чтобы быстрее запомнить, можно использовать таблицу.

Что значит порядок возрастания в математике

Количество разрядов всегда соответствует количеству знаков в числе. В этой таблице есть названия всех разрядов для числа, которое состоит из 15 знаков. У следующих разрядов также есть названия, но они используются крайне редко.

Низший (младший) разряд многозначного натурального числа — разряд единиц.

Высший (старший) разряд многозначного натурального числа — разряд, соответствующий крайней левой цифре в заданном числе.

Разрядные единицы обозначают так:

Каждые три разряда, следующие друг за другом, составляют класс. Первые три разряда: единицы десятки и сотни — образуют класс единиц (первый класс). Следующие три разряда: единицы тысяч, десятки тысяч и сотни тысяч — образуют класс тысяч (второй класс). Третий класс будут составлять единицы, десятки и тысячи миллионов и так далее.

Чтобы легче понимать математику — записывайтесь на наши курсы по математике!

Потренируемся

Пример 1. Записать цифрами число, в котором содержится:

Все разрядные единицы, кроме простых единиц, называют составными единицами. Каждые десять единиц любого разряда составляют одну единицу следующего более высокого разряда:

Чтобы узнать, сколько в числе заключается всех единиц какого-либо разряда, нужно отбросить все цифры, обозначающие единицы низших разрядов и прочитать число, которое выражено оставшимися цифрами.

Пример 2. Сколько сотен содержится в числе 6284?

В числе 6284 на третьем месте в классе единиц стоит цифра 2, значит, в числе есть две сотни.

Следующая цифра слева — 6, означает тысячи. Так как в каждой тысяче содержится 10 сотен то, в 6 тысячах их заключается 60.

Значит, в данном числе содержится 62 сотни.

Цифра 0 в любом разряде означает отсутствие единиц в данном разряде.

Проще говоря, цифра 0 в разряде десятков означает отсутствие десятков, в разряде сотен — отсутствие сотен и т. д. В том разряде, где стоит 0, при чтении числа ничего не произносится:

Чтобы проще освоить эту тему, можно распечатать таблицу классов и разрядов для учащихся 4 класса и обращаться к ней, если возникнут сложности.

Источник

Понятие о натуральном числе

Натуральные числа и десятичная запись числа

Чтобы сосчитать некоторое количество предметов, используются числа, которые называют натуральными.

С помощью десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 можно записать любое натуральное число. (подобным образом мы используем буквы алфавита, чтобы записать слова)

Такую запись числа называют десятичной десять единиц каждого разряда состав­ляют одну единицу следующего старшего разряда.

Натуральный ряд

Если натуральные числа записать в порядке возрастания, то получится ряд натуральных чисел ‒ натуральный ряд.

Каждое число в этом ряду меньше последующего на единицу. Наи­меньшее число среди натуральных чисел — это 1, а наибольшего числа нет.

Многозначные числа

Натуральное число называют однозначным, если его запись состоит из одного знака — одной цифры.

Например, числа 3, 7, 9 — однозначные.

Если запись числа состоит из двух знаковдвух цифр, то его называют двузначным.

Например, числа 25, 44, 65, 80 — двузначные.

Числа 100, 543, 888 — трёхзначные:

Числа 2000, 6791, 1060 — четырёхзначные и т. д.

Двузначные, трехзначные, четырёхзначные, пятизначные и т. д. — это многозначные числа.

Классы и разряды

Прочитать записи однозначных, двузначных и трехзначных чисел (например: 7, 54, 976) затруднений не вызывает.

Чтобы прочесть многозначное натуральное число, его необходимо разбить справа налево на группы по три цифры в каждой. Крайняя левая группа может состоять из одной или двух цифр.

Эти группы называют классами.

Три первые цифры спра­ва ‒ это класс единиц, три следующие — класс тысяч, затем класс миллионов, класс миллиардов и т. д.

Место, занимаемое цифрой в записи числа, назы­вают разрядом.

Если считать справа налево, то первое место в за­писи числа называют разрядом единиц, второе — разрядом десятков, третье — разрядом сотен и т. д.

Например, в числе 5034 имеем 4 единицы разряда единиц, 3 единицы разряда десятков, 0 единиц раз­ряда сотен и 5 единиц разряда тысяч.

Можно также сказать, что в классе единиц 34 единицы.

Названия некоторых больших чисел

1 тысяча (1 тыс.) – 1 000 (тысяча)

1 миллион (1 млн)1 000 000 (тысяча тысяч)

1 миллиард (1 млрд)1 000 000 000 (тысяча миллионов)

1 триллион (1 трлн)1 000 000 000 000 (тысяча миллиардов)

Рассмотрим число 6 000 126 754.

Его читают: 6 миллиардов 126 тысяч семьсот пятьдесят четыре.

Что значит порядок возрастания в математике

В классе миллионов во всех разрядах стоят нули. Поэтому при чтении числа 6 000 126 754 не произносят название этого класса.

Примеры прочтения чисел:

а) Число 200 700 читается так: двести тысяч семьсот;

б) Число 6 000 008 читается так: шесть миллионов восемь;

в) Число 14 000 002 000 читается так: четырнадцать миллиардов две тысячи.

Значение цифры в записи числа

Значение цифры зависит от её позиции (места) в записи числа.

Например, в записи числа 56 978 цифра 8 означает 8 единиц, так как она стоит на последнем месте в записи числа (в разряде единиц);

В записи числа 42 389 цифра 8 означает 8 десятков, так как она стоит на предпоследнем месте в записи числа (в разряде десятков);

В записи числа 5 300 847 цифра 8 означает 8 сотен, так как она стоит на третьем месте от конца в записи числа (в разряде сотен).

Число 0 и цифра 0

Число 0 натуральным не является.

Цифра 0 означает отсутствие единиц данного разряда в десятичной записи числа. Она служит и для обозначения числа «нуль» (что означает ‒ «ни одного»).

(Например, счёт 1 : 0 хоккейного матча говорит о том, что вторая команда не забила ни одной шайбы в ворота противника.)

Поделись с друзьями в социальных сетях:

Источник

Алгебра

А Вы уже инвестируете?
Слышали про акцию в подарок?

Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб

План урока:

Возрастание и убывание функций

Посмотрим на график произвольной функции:

Видно, что область определения ф-ции – это промежуток [– 6; 4].

На графике сначала ф-ция как бы «поднимается». При увеличении х растет значение у. Так происходит до точки (1; 5). После этого ситуация меняется, при увеличении аргумента значение ф-ции начинает падать. В математике принято говорить, что ф-ция возрастает на промежутке [– 6; 1] и функция убывает на промежутке [1; 4]. Можно сказать и иначе – ф-ция у является возрастающей функцией на множестве [– 6; 1] и убывающей функцией на множестве [1; 4].

Рассмотрим это определение возрастающей функции подробнее. Построим произвольную возрастающую ф-цию и выберем на ней две точки со значениями аргумента х1 и х2. Также отметим значения ф-ции в этих точках, у(х1) и у(х2):

По определению, если х1 меньше х2, то и у(х1) »и « у(х1). По определению получаем, что у = 2х – 3 – возрастающая ф-ция.

Промежутки монотонности основных функций

Мы ранее уже изучили несколько видов ф-ций. Посмотрим, какие у них промежутки монотонности.

Поведение линейной ф-ции у = kх + b зависит исключительно от значение коэффициента k. Если он больше нуля, то функция возрастает на промежутке (– ∞; + ∞), то есть на всей числовой прямой. Если же k n зависит от показателя n. Если он нечетный, то получается ф-ция, возрастающая на всей числовой прямой:

Если же число n четное, то степенная ф-ция будет убывать на промежутке (– ∞:0] и возрастать на промежутке [0; + ∞):

Пример. Найдите значения параметра a, при котором ф-ция

у = (5а – 2)х +16

является возрастающей.

Решение. Данная ф-ция является линейной ф-цией вида у = kx + b, где в роли коэффициента k выступает выражение (5а – 2). Ф-ция будет возрастать, если этот коэффициент будет больше нуля, то есть

Получаем, что ф-ция будет возрастающей при значениях а, больших 0,4, или, другими словами, при а∊(4; + ∞).

Свойства монотонных функций

Монотонные функции имеют ряд примечательных свойств, которые могут помогать при решении задач. Вспомним, что некоторые ф-ции могут при различных значениях аргументов принимать одинаковое значение. Например, таковой является степенная ф-ция у = х 2 :

С точки зрения графиков это означает, что горизонтальная линия может пересекать график ф-ции в нескольких точках:

С другой стороны, это значит, что уравнение х 2 = 4 имеет два корня, 2 и ( – 2).

Если же ф-ция строго монотонна, то такая ситуация невозможна. Любое ее значение может быть получено только при одном значении аргумента.

Действительно, если ф-ция монотонна, то любая горизонтальная прямая сможет пересечь ее график не более чем в одной точке:

Это также означает, что, если у(х) – строго монотонная ф-ция, а b– произвольное число, то уравнение у(х) = b имеет не более одного корня. Так, у уравнения х 3 = 8 есть только один корень (он равен 2), потому что х 3 – монотонная ф-ция.

Рассмотрим следующее свойство монотонных функций.

Действительно, ранее мы уже изучали сжатие и растягивание графиков. умножение ф-ции на постоянное число как раз и ведет к подобным преобразованиям. Ясно, что при этом не происходит изменение монотонности ф-ций:

Например, парабола у = х 2 возрастает на промежутке [0; + ∞), значит, и ф-ция у = 3х 2 также возрастает на этом же промежутке:

Проще говоря, при умножении ф-ции на положительное число ее промежутки монотонности не изменяются.

А что же произойдет при умножении ф-ции на отрицательное число. Она не только сожмется или растянется, но ещё и отобразится симметрично относительно оси Ох. В результате промежутки возрастания ф-ции превратятся в промежутки убывания, и наоборот.

Проиллюстрируем это на примере ф-ций у = х 2 и у = – х 2 :

Видно, что на промежутке (– ∞; 0] ф-ция у = – х 2 возрастает, в то время как обычная парабола убывает. На промежутке [0; + ∞)ситуация противоположная.

Если две ф-ции одновременно возрастают на одном промежутке, то и их сумма также будет возрастать на этом промежутке.

Например, ф-ции у = х 5 и у = 4х возрастают на всей числовой прямой. Следовательно, возрастающей является и ф-ция у = х 5 + 4х.

Пример. Решите уравнение

х 7 + 2х – 3 = 0

Решение. Можно заметить, что число 1 является корнем этого уравнения. Действительно, подставим единицу в уравнение и получим верное равенство:

Докажем, что других корней уравнение не имеет. В его левой части стоит сумма двух возрастающих ф-ций, у = х 7 и у = 2х – 3. Следовательно, и ф-ция у = х 7 + 2х – 3 также является возрастающей на всей числовой прямой. Это значит, что исследуемое уравнение имеет не более 1 корня, то есть корень х = 1 – единственный.

Пример. Докажите, что у уравнения

не более одного корня.

Выражение в левой части имеет смысл только при положительных х. Ведь если х 2 :

В общем случае эту особенность можно доказать так:

у(– х) = (– х) 2 = х 2 = у(х)

В математике есть специальный термин для обозначения ф-ций, обладающих таким свойством. Их называют четным функциями.

Определение четной функции можно записать и так, чтобы в нем фигурировали формулы:

Для проверки того, является ли функция четной, достаточно подставить в нее вместо аргумента х величину (– х).

Пример. Докажите, что ф-ция у = х 4 + 3х 2 является четной.

Решение. Подставим в ф-цию значение (– х):

у(– х) = (– х) 4 + 3(– х) 2 = х 4 + 3х 2

Получили исходную ф-цию у(х). Значит, исследуемая функция является четной.

Пример. Четна ли ф-ция

Решение снова подставим в ф-цию значение (– х):

Получили изначальную ф-цию. Следовательно, она – четная.

Почему же четные ф-ции симметричны относительно оси Оу? Из определения следует, что если графику четной ф-ции принадлежит точка (х00), то ему же принадлежит точка (– х00). Посмотрим, как они располагаются на координатной плоскости:

Они симметричны относительно оси Оу. Если же для каждой точки графика есть симметричная точка, также ему принадлежащая, то и в целом график симметричен относительно вертикальной оси.

Такая симметрия (относительно точки), называется центральной. Геометрически она означает, каждой точке графика в I четверти с двумя положительными координатами соответствует точка графика в III четверти с такими же координатами, но взятыми со знаком «минус»:

Существует множество ф-ций, обладающих подобной симметрией. В математике их все называют нечетными функциями. У них противоположным значениям аргументов соответствуют противоположные значения ф-ции, а график нечетной функции всегда симметричен относительно начала координат.

Чаще используется определение, содержащее формулу:

Покажем это свойство у ф-ции у = х 3 :

Для того, чтобы доказать нечетность ф-ции, надо поставить в нее (– х) вместо х. Если получилась исходная ф-ция с противоположным знаком, то это значит, что ф-ция нечетная.

Пример. Докажите, что ф-ция у = х 5 + х – нечетная.

Решение: Подставим (– х):

у(– х) = (– х) 5 + (– х) = –х 5 – х = – (х 5 + х) = – у(х)

Получили исходную ф-цию, но со знаком «минус», поэтому ф-ция является нечетной.

Пример. Докажите нечетность ф-ции у = 5/х + 4х.

Решение. Подставляем в ф-цию (– х):

у = 5/(– х) + 4(– х) = – 5/х – 4х = – (5/х + 4х) = – у(х)

Снова получили исходную ф-цию со знаком минус, следовательно, мы исследовали нечетную ф-цию.

Известно, что любое целое число либо четное, либо нечетное. Однако с ф-циями всё по-другому. Существует множество ф-ций, которые не относятся ни к тем, ни к другим. Чтобы доказать, что ф-ция не является ни четной, ни нечетной, достаточно продемонстрировать, что хотя бы для одного значения х не выполняются условия у(– х) = у(х) и у(– х) = – у(х).

Пример. Докажите, что у = х 3 + х 2 – ни четная, ни нечетная ф-ция.

Решение. Определим значение ф-ции при, например, х = 1 и х = –1

у(– 1) = (– 1) 3 + (– 1) 2 = 0

Получили, что при противоположных х значения у не являются ни одинаковыми, ни противоположными. Значит, рассматриваемая ф-ция не подходит под приведенные определения четности и нечетности.

Свойства четных и нечетных функций

Рассмотрим важные свойства, помогающие быстро определять четность и нечетность ф-ций.

Так, ф-ции у = х 3 и у = 1/х – нечетны. Значит, нечетна и их сумма у = х 3 + 1/х.

Другими словами, ф-цию можно «перевернуть», и она всё равно сохранит свою четность. Так, ф-ция 5х 4 + х 2 четная, поэтому и ф-ция

останется такой же.

Вообще рассматриваемое свойство ф-ции часто называют ее четностью. Так, про две рассматриваемые ф-ции у = х 3 и у = х 9 можно сказать, что они обладают одинаковой четностью (обе нечетные), а у = х 5 и у = х 7 обладают различной четностью (одна из них четная, а другая нечетная).

Например, ф-ции у = 5х 3 + 6х и у = 9х 5 имеют одинаковую четность (обе нечетные), а потому их произведение у = 9х 5 (5х 3 + 6х) является четным. С другой стороны, у = х 5 и у = х 8 + у 6 имеют различную четность, следовательно, их произведение у = х 5 (х 8 + у 6 ) нечетное.

Докажем справедливость этого правила. Пусть есть две ф-ции, у = у(х) и g = g(х), которые обладают какой-нибудь четностью. Определим четность их произведения у(х)•g(х). Для этого рассмотрим 3 различных случая:

Пример. Определите четность ф-ции у = (8х 4 + 3х 2 )(7х 5 + 2х)

Решение. Ф-ция из условия представляет собой произведение двух других ф-ций: у = 8х 4 + 3х 2 и у = 7х 5 + 2х. Первая из них является суммой двух четных и поэтому сама четная. Вторая ф-ция, наоборот, нечетная. Следовательно, их произведение – это тоже нечетная ф-ция.

Ответ: Нечетная ф-ция.

Пример. Определите четность ф-ции у = (х 6 + х 2 )(х 10 + х 8 )

Решение. Так как ф-ции у = х 6 + х 2 и у = х 10 + х 8 имеют одинаковую четность (обе четные), то их произведение является четным.

Для изучения следующего свойства ф-ций необходимо сначала рассмотреть понятие сложной ф-ции. Так называют ф-цию, которую получают подстановкой одной «простой» ф-ции в другую.Например, пусть есть ф-ции g = х 2 и у = х 3 + 2х. Подставив вторую в первую, получим

Ещё пример сложной ф-ции:

у = 2(9х 2 + 4х + 1) 3 + 3(9х 2 + 4х + 1)

Она получена путем подстановки выражения 9х 2 + 4х + 1 в ф-цию у = х 3 + 3х. В общем случае, если в ф-цию у = f (x) подставляют g(x), то используют запись у = f (g(x)). Иногда вместо термина «сложная функция» используют аналогичное понятие «композиция функций».

Итак, сформулируем ещё одно свойство четных функций:

которая будет четной. При этом природа ф-ции у = 5х + 7 + 1/х не играет никакой роли. Мы могли бы взять любую другую ф-цию, например, у = 958,235х 3 – 12,25х 2 + 19х + 2/3, и подставив в нее х 2 вместо х, получить ф-цию

у = 958,235(х 2 ) 3 – 12,25(х 2 ) 2 + 19х 2 + 2/3

которая будет четной.

Ограниченные и неограниченные функции

В математике говорят, что ф-ция у = х 2 ограничена снизу. То есть для любого допустимого х выполняется неравенство у(х) ⩾ а, где а – это какое-то произвольное число. И действительно, неравенство х 2 ⩾ 0 выполняется при всех значениях х. Также выполняются неравенства

Дадим определение функции, ограниченной снизу

Очевидно, что если неравенство у(х) ⩾ а выполняется хотя бы для одного числа а, то оно выполняется и для всех а, которые ещё меньше. Так, из справедливости неравенства х 2 ⩾ 0 автоматически следует справедливость неравенства х 2 ⩾ – 1,5, так как

Аналогично в математике существует понятие функции, ограниченной сверху.

В качестве примера ограниченной сверху ф-ции можно привести у = 4 – х 2 :

Ясно, что неравенство 4 – х 2 ⩽ 4 выполняется при всех х, то есть ни одна точка графика не лежит выше прямой у = 4.

Иногда бывает так, что функция ограничена одновременно и снизу, и сверху. Их называют ограниченными функциями.

Ф-ция, не попадающее под это определение, называется неограниченной функцией. В качестве примера неограниченной функции можно привести линейную ф-цию у = х + 1.

График ограниченной ф-ции находится в своеобразной «полосе» из горизонтальных линий, которые ограничивают его сверху и снизу. Примером ограниченной ф-ции является

С одной стороны, у этой дроби и числитель, и знаменатель – положительное число, поэтому она ограничена снизу прямой у = 0. С другой стороны, дробь тем больше, чем меньше ее знаменатель (если они оба положительны). Минимальное значение выражения х 2 + 1 – это единица (при х = 0), а поэтому максимальное значение дроби равно 4/1 = 4. Поэтому график ограничен сверху прямой у = 4.

Пример. Ограничена ли ф-ция

Решение. Выделим в ф-ции целую часть:

Так как величина 5х 2 + 5 всегда положительна, то и дробь

а значит, и вообще вся ф-ция положительна, то есть ограничена снизу прямой у = 0

С другой стороны, дробь будет принимать максимальное значение при минимальном значении знаменателя, которое равно 5 (при х = 0) При х = 0 имеем

Получается, что ф-ция ограничена сверху прямой у = 1,4.

Пример. Ограничена ли ф-ция

Решение. Величина х 2 всегда положительна, то есть х 2 ⩾ 0. Преобразуем это неравенство, умножив его на (– 1) и добавив к нему 16:

Получили, что подкоренное выражение не превосходит 16, а значит, и корень из него не больше, чем

То есть график будет ограничен прямой у = 4 сверху. С другой стороны, арифметический квадратный корень не может быть отрицательным числом, а потому его график ограничен снизу прямой у = 0. Для наглядности покажем график исследуемой ф-ции:

Квадратичная функция

В качестве ф-ции можно использовать квадратный трехчлен, например:

у = – 1,5х 2 + 19х + 0,5

у = 0,005х 2 + 654,25х – 124

Все эти ф-ции заданы с помощью выражения, представляющего собой квадратный трехчлен, поэтому в математике их называют квадратичными функциями.

Если коэффициент перед х 2 окажется равным нулю, то ф-ция превратится из квадратичной в линейную:

0х 2 + bx + c = bx + c

Попытаемся понять, как выглядит график квадратичной функции. Для этого начнем рассматривать частные случаи и использовать правило растяжения и сжатия, а также параллельного переноса графиков ф-ций.

Если в выражение для квадратичной ф-ции подставить значения

то получится уже известная нам степенная ф-ция у = х 2 :

Её графиком является парабола.

График ф-ции у = ах 2 – это тоже парабола (где а – некоторое число), которая однако, получена из «обычной» параболы у = х 2 путем сжатия или растяжения графика. Если коэффициент а является отрицательным, то парабола «перевернется» то есть отобразится симметрично относительно оси Ох. Покажем примеры нескольких графиков у = ах 2 :

Напомним, что при добавлении к ф-ции какого-нибудь постоянного числа n ее график переносится на n единиц вверх. Зная это можно легко получить график ф-ции у = ах 2 + с из графика у = ах 2 :

Таким образом, графиком ф-ции у = ах 2 + с является парабола, чья вершина поднята на с единиц вверх.

Как изменится график квадратичной ф-ции у = ах 2 + с, если в вместо х возводить в квадрат выражение (х +m), где m – произвольное число? В этом случае ф-ция примет вид у = а(х +m) 2 + с. Вершина параболы должна будет сместиться на m единиц влево:

Теперь докажем, что любая квадратичная ф-ция может быть представлена как в виде у = а(х + m) + n, где m и n – некоторые числа (в том числе и отрицательные). Похожие преобразования мы производили, когда учились решать квадратные уравнения. Запишем саму квадратичную ф-цию:

Вынесем множитель а за скобки:

Далее попытаемся преобразовать трехчлен в скобках, используя формулу квадрата суммы. Для этого добавим к нему и сразу же вычтем величину (b/2a) 2 :

Теперь раскроем внешние скобки:

Теперь произведем две замены:

Используя их, можно записать:

Получили, что любую квадратичную ф-цию можно свести к виду у = а(х + m) 2 + n. Что это значит и для чего мы это доказывали? Из этого факта следует, что график любой квадратичной ф-ции может быть получен из обычной параболы у = х 2 за счет трех действий.

Итак, как будет выглядеть график квадратичной ф-ции? В общем случае он является параболой, центр которой располагается не в точке (0;0), а в некоторой другой точке (х0; у0):

Если мы вернемся к доказательству того, что любую квадратичную ф-цию можно представить в виде у = а(х + m) 2 + n, то увидим, что число m рассчитывается по формуле

Так как график из-за этого числа m перемещается влево, а не вправо, то координата вершины х0 рассчитывается по формуле:

Нет смысла составлять такую же формулу для определения координаты вершины у0, ведь можно подставить х0 в сам ф-цию и так узнать вторую координату вершины.

Пример. Определите вершину параболы, задаваемой ф-цией

у = 2х 2 + 8х + 5

Решение. Выпишем коэффициенты а, b и c квадратичной ф-ции:

Зная их, легко рассчитаем координату х вершины параболы:

Теперь подставим это число в исходную ф-цию и определим координату у вершины параболы:

у0 = у(х0) = 2(– 2) 2 + 8(– 2) + 5 = 8 – 16 + 5 = – 3

Напомним, что нули ф-ции – это те точки, в которых ее график пересекает ось Ох. Для их поиска необходимо приравнять ф-цию к нулю и решить уравнение. В случае с квадратичной ф-цией мы получим квадратной уравнение.

Пример. Постройте график ф-ции у = х 2 – 4х + 3, отметьте на нем вершину параболы и нули ф-ции.

Решение. Приравняем ф-цию к нулю:

Решим это уравнение

D = b 2 – 4ас = (– 4) 2 – 4•1•3 = 16 – 12 = 4

Итак, нашли нули ф-ции: 1 и 3. Теперь найдем вершину параболы:

у0 = у(х0) = 2 2 – 4•2 + 3 = 4 – 8 + 3 = – 1

Вершина находится в точке (2; – 1). Теперь отметим ее, а также нули ф-ции на графике, и соединим их линией, похожей на параболу:

При необходимости для точности построения всегда можно вычислить значение ф-ции в нескольких дополнительных точках и провести параболу через них. Здесь мы этого делать не будем

Ответ: вершина параболы – точка (2; – 1), нули ф-ции х1 = 1 и х2 = 3

Обратите внимание, что в рассмотренном примере вершина параболы оказалась ниже нулей, поэтому ее ветви смотрят вверх. Вообще, если коэффициент а > 0, то ветви смотрят вверх, а если а 2 – 4х + 6

у = – 3х 2 + 6х – 4

Решение. Начнем с первой ф-ции. Сначала найдем ее нули:

D = b 2 – 4ас = (– 4) 2 – 4•(– 2)•6 = 16+48 = 64

Найдем вершину. Сначала используем обычную формулу:

Далее просто проверим себя, найдя среднее арифметическое нулей ф-ции:

Как и ожидалось, получились одинаковые результаты! Вычислим теперь у0:

у0 = у(х0) = – 2(– 1) 2 – 4(– 1) + 6 = – 2 + 4 + 6 = 8

Итак, вершина первой ф-ции – это точка (– 1; 8).

Перейдем ко второй ф-ции. Попробуем найти ее нули:

D = b 2 – 4ас = 6 2 – 4•(– 3)•(– 4) = 36–48 = – 16

Дискриминант отрицательный, значит, корней у уравнения нет. Не будет и нулей и ф-ции. Найдем вершину параболы

Найдем координату у0 вершины:

у0 = у(х0) = – 3•1 2 + 6•1 – 4 = – 3 + 6 – 4 = – 1

Отметим, что у обоих графиков коэффициент а отрицательный, а потому их ветви будут смотреть вниз. Построим их графики:

Иногда приходится решать обратную задачу – по графику квадратичной ф-ции находить выражение, задающее эту ф-цию. Для ее решения необходимо подставлять в общий вид квадратичной ф-ции

значения квадратичной функции, взятые из графика (то есть координаты точек параболы) и получать уравнения, из которых можно найти величины a, b и c.

Пример. Запишите выражение для квадратичной ф-ции, имеющей следующий график:

Решение. Заметим, что графику параболы принадлежит точка с координатами (0; 3). Подставим эти числа, х = 0 и у = 3, в квадратичную ф-цию:

Итак, мы нашли, что коэффициент с = 3. Осталось найти а и b. Возьмем ещё одну точку, скажем, (1; 0), и подставим ее координаты (вообще в большинстве случаев удобно брать точки, одна из координат которой равна 0 или, на худой конец, единице):

Возьмем точку с координатами (– 3; 0):

Получили два уравнения с двумя неизвестными: a + b = – 3 и 9а – 3b = – 3. Решим систему, составленную из них:

Подставим первое уравнение во второе и получим:

Нашли а. Теперь подставим его в уравнение для b:

b = – 3 – а = – 3 – (– 1) = – 2

Получили b = – 2. Мы нашли все коэффициенты, а потому можем записать ф-цию в аналитическом виде:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *