Что значит попарно взаимно простые числа
Попарно взаимно просты
Два целых числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1.
Содержание
Связанные определения
Примеры
Свойства
См. также
Ссылки
Полезное
Смотреть что такое «Попарно взаимно просты» в других словарях:
Взаимно-простые числа — Два целых числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Содержание 1 Связанные определения 2 Примеры 3 Свойства 4 См. также … Википедия
Взаимно простые числа — Целые числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Примеры: 14 и 25 взаимно просты, а 15 и 25 не взаимно просты (у них имеется общий делитель 5). Наглядное представление: если на плоскости построить… … Википедия
Взаимно простые числа — несколько целых чисел, таких, что общими делителями для всех этих чисел являются лишь + 1 и 1. Если каждое из этих чисел взаимно просто с каждым другим из них, то говорят, что числа попарно простые (для двух чисел оба понятия совпадают).… … Большая советская энциклопедия
Взаимная простота — Два целых числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1. Содержание 1 Связанные определения 2 Примеры 3 Свойства 4 См. также … Википедия
Китайская теорема об остатках — Несколько связанных утверждений известны под именем китайской теоремы об остатках. Эта теорема в её арифметической формулировке была описана в трактате китайского математика Сунь Цзы «Сунь Цзы Суань Цзин» (кит. упр. 孙子算经, пиньинь: sunzi suanjing) … Википедия
Сравнение по модулю — Сравнение[1] по модулю натурального числа n в теории чисел отношение эквивалентности на кольце целых чисел, связанное с делимостью на n. Факторкольцо по этому отношению называется кольцом вычетов. Совокупность соответствующих тождеств и… … Википедия
СРАВНЕНИЕ — соотношение между целыми числами а и и вида a=b+mk, означающее, что их разность а b делится на заданное целое положительное число т, наз. модулем сравнения; при этом аназ. вычетом целого числа bпо модулю т. Для выражения сравнимости чисел аи bпо… … Математическая энциклопедия
Поточный шифр — это симметричный шифр, в котором каждый символ открытого текста преобразуется в символ шифрованного текста в зависимости не только от используемого ключа, но и от его расположения в потоке открытого текста. Поточный шифр реализует другой подход к … Википедия
Сравнение по модулю натурального числа — В теории чисел сравнение[уточнить] по модулю натурального числа n задаваемое означенным числом отношение эквивалентности на множестве целых чисел, связанное с делимостью на него. Факторпространство по этому отношению называется «кольцом… … Википедия
Взаимно простые числа – определение, примеры и свойства.
Информация этой статьи покрывает тему «взаимно простые числа». Сначала дано определение двух взаимно простых чисел, а также определение трех и большего количества взаимно простых чисел. После этого приведены примеры взаимно простых чисел, и показано, как доказать, что данные числа являются взаимно простыми. Дальше перечислены и доказаны основные свойства взаимно простых чисел. В заключение упомянуты попарно простые числа, так как они тесно связаны со взаимно простыми числами.
Навигация по странице.
Взаимно простые числа – определение и примеры
Понятие взаимно простых чисел дается как для двух целых чисел, так и для их большего числа. Сначала приведем определение двух взаимно простых чисел. Это определение дается через наибольший общий делитель чисел, так что рекомендуем сначала разобраться с материалом указанной статьи.
Приведем примеры взаимно простых чисел.
Заметим, что два простых числа всегда являются взаимно простыми. Однако, два числа не обязательно должны быть простыми, чтобы быть взаимно простыми. Либо одно из них, либо они оба могут быть составными и при этом являться взаимно простыми. Приведем пример, иллюстрирующий это высказывание.
Часто встречаются задания, в которых требуется доказать, что данные целые числа являются взаимно простыми. Доказательство сводится к вычислению наибольшего общего делителя данных чисел и проверке НОД на его равенство единице. Полезно также перед вычислением НОД заглянуть в таблицу простых чисел: вдруг исходные целые числа являются простыми, а мы знаем, что наибольший общий делитель простых чисел равен единице. Рассмотрим решение примера.
Докажите, что числа 84 и 275 являются взаимно простыми.
Определение взаимно простых чисел можно расширить для трех и большего количества чисел.
Из озвученного определения следует, что если некоторый набор целых чисел имеет положительный общий делитель, отличный от единицы, то данные целые числа не являются взаимно простыми.
Обычно далеко не очевидно, что некоторые числа являются взаимно простыми, и этот факт приходится доказывать. Для выяснения, являются ли данные числа взаимно простыми, приходится находить наибольший общий делитель этих чисел, и на основании определения взаимно простых чисел делать вывод.
Главные понятия
Чтобы доказать, что числа взаимно простые (ВПЧ), учитываются их свойства. Запись считается правдивой, если выполняется одно из следующих условий: значение НОД равно 1, в задачах используются попарно ВПЧ. Чтобы понять слово «делитель», рассматривается конкретный пример: у 24 и 54 этот показатель равен 6. НОД может являться то число, на которое делятся без остатка m и n.
Показатель существует, и он определён, если значение m или n отлично от нуля. Понятие записывается различным набором символов. Рекомендуется следовать следующими записями:
НОД (m, n) делится на все общие делители m и n. Если соблюдается условие для а: НОД (a, b)(a, b) и для b: НОД (a, b)(a, b), значит a и b — ВПЧ. С помощью такого свойства легко определяются подходящие пары.
Составные цифры
Два числа относительно друг друга будут взаимно простыми всегда. Аналогичные отношения формируются между составными цифрами. Возможно, что из пары m или n одно — составное, а другое — простое, либо две цифры составные (натуральные числа, у которых есть больше двух делителей). Чтобы подтвердить каноническое утверждение, рассматривается пара из 9 и 88. Её простота доказывается путём вычисления НОД.
Разложение 88: ±1, ±2, ±4, ±8±1, ±2, ±4, ±8. НОД (9): ±1, ±3, ±9±1, ±3, ±9. Из двух вариантов выбираются общие цифры, а из списка определяется самая большая. Из полного перечня подходит единица.
На практике часто определяется ВПЧ двух целых цифр. Алгоритм решения задач заключается в поиске НОД, его сравнении с единицей. Чтобы быстро и правильно найти пару, используется таблица, в которой есть числа, кратные одному и сами себе.
Описание нескольких групп признаков делимости (ПД) неизвестной а:
Задачи и доказательства
Числа a1, a2, …, akу, у которых есть положительный НОД, больший 11, не являются между собой взаимно обратными. Пример с последующей проверкой: 99, 17−99, 17 и −27−27 — простые. Любое количество цифр будет ВПЧ по отношению к другим членам совокупности. Но 12, −9, 90012, −9, 900 и −72−72 к этой категории не относятся.
Первое задание
Нужно найти число из 4 цифр, кратное 15. Это не дробь, знаменателя нет, но произведение составляющих равняется 60. Решение: чтобы результат делился на 15 без остатка, он должен делиться на 3 и 5. Из предполагаемого списка вычёркивается нуль, так как произведение бы равнялось 0, что невозможно. Можно прийти к выводу, что последняя цифра результата — 5.
Известно, что в ответе должно быть четыре цифры, из которых одна уже известна. Нужно найти оставшиеся три, которые находятся в ряду перед пятёркой, а при их умножении получается 12. Проверка предположения: 60:5=12. Полученный результат легко представить в виде нескольких вариантов со следующими тремя множителями:
По условию задачи, результат должен делиться на 15. Поэтому ответ будет состоять из трёх вариантов: 3225, 2325 и 2235.
Второй пример
Из 181615121 нужно зачеркнуть 3 цифры так, чтобы результат был кратным 12. Множители делителя: 3 и 4. Если их вычеркнуть, заданное число разделится на три и четыре, что объясняется их ПД:
Учитывая ПД на 4, можно прийти к выводу, что последние две цифры из заданного числа не делятся на четыре. Поэтому из 181615121 вычёркивается единица.
Чтобы разделить 181615121 на три, необходимо просуммировать все составляющие, разделив на 3. Результат суммы равен 25 (3х8). Так как условие выполняется, вычеркивается последняя единица.
Воспользовавшись признаками делимости на 3 и 4, можно составить следующие уравнения:
Ответ: 181512, 811512 либо 181152.
Третье и четвёртое задания
Пример 3: необходимо определить шестизначное число, для записи которого используются 0 и 6, а также оно делится на 90. Решение: составляется уравнение 90 = 10х9. Результат делится на 9 и 10. В конце находится нуль, а сумма составных цифр делится на девять. Для записи используются три шестёрки, так как 3 х 6=18, а 18 кратно 9. Ответы: 666000, 660600, 606060, 600660.
Пример 4: нужно определить четырёхзначное число, которое делится на 45 без остатка. Все составные цифры разные и нечётные. Решение: следует составить уравнение с учётом условия задачи. Так как 45 = 9х5, то результат делится на пять и на девять. Одновременно он должен оканчиваться на 5, так как нуль считается чётным. Первые три цифры: 1, 3, 7, 9. Из списка выбираются те три числа, которые в сумме с пятёркой делятся на 9. К ним относятся: 1, 3, 9 и 5. Ответы: 9135, 3915,1935, 1395, 3195.
В условиях некоторых задач говорится о попарно простых числах (ППЧ). Понятие распространяется на последовательность целых цифр a1, a2, …, aka1, a2, …, ak, где каждая взаимно простая относительно других. Пример последовательности: 14, 9, 1714, 9, 17, и −25−25. Любая пара из списка будет взаимно простой. Последнее условие считается обязательным для ППЧ, но взаимно простые попарны не в каждом случае.
Другое понятие, которое встречается в задачах на рассматриваемую тему — совокупность ПЧ. Такие цифры всегда попарно и взаимно простые. Пример последовательности: 1, 443, 857, 99171, 443, 857, 991. У любой такой последовательности понятия попарности и взаимности совпадают.
Взаимно простые числа: определение, примеры и свойства
В этом статье мы расскажем о том, что такое взаимно простые числа. В первом пункте сформулируем определения для двух, трех и более взаимно простых чисел, приведем несколько примеров и покажем, в каких случаях два числа можно считать простыми по отношению друг к другу. После этого перейдем к формулировке основных свойств и их доказательствам. В последнем пункте мы поговорим о связанном понятии – попарно простых числах.
Что такое взаимно простые числа
Взаимно простыми могут быть как два целых числа, так и их большее количество. Для начала введем определение для двух чисел, для чего нам понадобится понятие их наибольшего общего делителя. Если нужно, повторите материал, посвященный ему.
Если мы возьмем два простых числа, то по отношению друг к другу они будут взаимно простыми во всех случаях, однако такие взаимные отношения образуются также и между составными числами. Возможны случаи, когда одно число в паре взаимно простых является составным, а второе простым, или же составными являются они оба.
На практике довольно часто приходится определять взаимную простоту двух целых чисел. Выяснение этого можно свести к поиску наибольшего общего делителя и сравнению его с единицей. Также удобно пользоваться таблицей простых чисел, чтобы не производить лишних вычислений: если одно из заданных чисел есть в этой таблице, значит, оно делится только на единицу и само на себя. Разберем решение подобной задачи.
Решение
Оба числа явно имеют больше одного делителя, поэтому сразу назвать их взаимно простыми мы не можем.
Как мы уже говорили раньше, определение таких чисел можно распространить и на случаи, когда у нас есть не два числа, а больше.
Обычно взаимная простота чисел не является очевидной с первого взгляда, этот факт нуждается в доказательстве. Чтобы выяснить, будут ли некоторые числа взаимно простыми, нужно найти их наибольший общий делитель и сделать вывод на основании его сравнения с единицей.
Решение
Сверимся с таблицей простых чисел и определим, что все три этих числа в ней есть. Тогда их общим делителем может быть только единица.
Ответ: все эти числа будут взаимно простыми по отношению друг к другу.
Решение
Ответ: семь больше единицы, значит, взаимно простыми эти числа не являются.
Основные свойства взаимно простых чисел
Такие числа имеют некоторые практически важные свойства. Перечислим их по порядку и докажем.
Это свойство мы уже доказывали. Доказательство можно посмотреть в статье о свойствах наибольшего общего делителя. Благодаря ему мы можем определять пары взаимно простых чисел: достаточно лишь взять два любых целых числа и выполнить деление на НОД. В итоге мы должны получить взаимно простые числа.
Это все свойства взаимно простых чисел, о которых бы мы хотели вам рассказать.
Понятие попарно простых чисел
Зная, что из себя представляют взаимно простые числа, мы можем сформулировать определение попарно простых чисел.
Взаимно простые числа
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение взаимно простых чисел
Сначала определимся, что значит простое число.
Главное свойство простых чисел в том, что простое число делится только на единицу и на само себя.
Таких чисел немного, большинство все-таки можно разделить на другие числа. В простых числах самое важное — это деление нацело. Дробные частные и деление с остатком не рассматриваем.
Понятие взаимно простых чисел можно применить для двух целых чисел или для большего количества. Сформулируем, какие числа называются взаимно простыми.
Взаимно простые числа
Два целых числа a и b называются взаимно простыми, если их наибольший общий делитель равен единице — то есть НОД (a, b) = 1.
Проще говоря, взаимно простые числа — это целые числа, у которых нет общих делителей, кроме единицы.
Наибольшим общим делителем двух чисел a и b называется наибольшее число, на которое a и b делятся без остатка. Для записи может использоваться аббревиатура НОД. Для двух чисел можно записать так: НОД (a, b).
Наибольший общий делитель взаимно простых чисел — это единица, что следует из определения взаимно простых чисел.
Приведем примеры взаимно простых чисел.
Заметим, что два простых числа всегда являются взаимно простыми. Однако, два числа не обязательно должны быть простыми, чтобы быть взаимно простыми. Вот такая математика в 5 классе. И еще раз: либо одно из них, либо они оба могут быть составными и при этом являться взаимно простыми. Приведем пример.
Делители 8: ±1, ±2, ±4, ±8.
На математике в 5 и 6 класса часто встречаются задания, в которых нужно доказать, что конкретные целые числа являются взаимно простыми. Из чего обычно состоит такое доказательство:
Перед вычислением НОД можно заглянуть в таблицу простых чисел и проверить, вдруг исходные целые числа можно назвать простыми. Тогда решение будет проще, так как мы знаем, что НОД простых чисел равен единице.
Повторим еще раз. Что значит взаимно простые числа? Это целые числа, у которых нет общих делителей, кроме единицы.
Пример 1
Доказать, что числа 84 и 275 являются взаимно простыми.
Сверяемся с таблицей простых чисел. 84 и 275 не являются простыми, поэтому нельзя сразу сказать об их взаимной простоте.
Вычислим НОД. Используем алгоритм Евклида для нахождения НОД:
Доказали, что числа 84 и 275 взаимно простые.
Определение взаимно простых чисел можно расширить для трех и большего количества чисел.
То есть если у некоторого набора целых чисел есть положительный общий делитель, отличный от единицы, то эти целые числа не являются взаимно простыми.
Любая совокупность простых чисел составляет набор взаимно простых чисел, например, 2, 3, 11, 19, 151, 293 и 677 — взаимно простые числа. А четыре числа 12, −9, 900 и −72 не являются взаимно простыми, так как у них есть положительный общий делитель 3. Числа 17, 85 и 187 тоже не взаимно простые, потому что каждое из них можно разделить на 17.
Как определить взаимно простые числа:
Пример 2
Являются ли числа 331, 463 и 733 взаимно простыми?
Заглянем в таблицу простых чисел. Видим, что 331, 463 и 733 — простые. Значит, у них есть единственный положительный общий делитель — единица. Поэтому, 331, 463 и 733 есть взаимно простые числа.
Пример 3
Доказать, что числа −14, 105, −2 107 и −91 не являются взаимно простыми.
Найдем НОД заданных чисел и убедимся, что он не равен единице.
Делители целых отрицательных чисел совпадают с делителями соответствующих противоположных чисел. Поэтому НОД (−14, 105, 2 107, −91) = НОД (14, 105, 2 107, 91). Посчитаем:
НОД (14, 105, 2 107, 91) = 7.
Мы получили, что наибольший общий делитель исходных чисел равен семи, поэтому эти числа не являются взаимно простыми. Доказали.
Свойства взаимно простых чисел
У взаимно простых чисел есть определенные свойства. Рассмотрим основные свойства взаимно простых чисел.
Свойство 1
Числа, которые получились при делении целых чисел a и b на их наибольший общий делитель, называются взаимно простыми. То есть, a : НОД (a, b) и b : НОД (a, b) — взаимно простые.
Это свойство взаимно простых чисел помогает находить пары взаимно простых чисел. Для этого достаточно взять два любых целых числа и разделить их на наибольший общий делитель. В результате получим взаимно простые числа.
Свойство 2
Докажем эту необходимость:
Пусть числа a и b взаимно простые. Тогда по определению взаимно простых чисел НОД (a, b) = 1. А из свойств НОД мы знаем, что для целых чисел a и b верно соотношение Безу au0 + bv0 = НОД (a, b). Следовательно, au0 + bv0 = 1.
Соотношение Безу — представление НОД целых чисел в виде их линейной комбинации с целыми коэффициентами.
Докажем достаточность:
Свойство 3
Если числа a и b взаимно простые, и произведение ac делится на b — значит c делится на b.
Действительно, так как a и b взаимно простые, то из предыдущего свойства у нас есть равенство au0 + bv0 = 1. Если умножть обе части этого равенства на c, получится acu0 + bcv0 = c.
Первое слагаемое суммы acu0 + bcv0 делится на b, так как ac делится на b по условию, второе слагаемое этой суммы также делится на b, так как один из множителей равен b. Можно сделать вывод, что вся сумма делится на b. А так как сумма acu0 + bcv0 равна c, то и c делится на b.
Свойство 4
Если числа a и b взаимно простые, то НОД (ac, b) = НОД (c, b).
Покажем, во-первых, что НОД (ac, b) делит НОД (c, b), а во-вторых, что НОД (c, b) делит НОД (ac, b), это и будет доказывать равенство НОД (ac, b) = НОД (c, b).
НОД (ac, b) делит и ac и b, а так как НОД (ac, b) делит b, то он также делит и bc. То есть, НОД (ac, b) делит и ac и bc, следовательно, в силу свойств наибольшего общего делителя он делит и НОД (ac, bc), который по свойствам НОД равен c * НОД (a, b) = c. Таким образом, НОД (ac, b) делит и b и c, следовательно, делит и НОД (c, b).
С другой стороны, НОД (c, b) делит и c и b, а так как он делит с, то также делит и ac. Поэтому НОД (c, b) делит и ac и b, следовательно, делит и НОД (ac, b).
Так мы показали, что НОД (ac, b) и НОД (c, b) взаимно делят друг друга, значит, они равны.
Свойство 5
Предыдущее свойство взаимно простых чисел поможет намзаписать ряд равенств вида:
Определение попарно простых чисел
Через взаимно простые числа можно дадим определение попарно простых чисел.
Приведем пример попарно простых чисел.
При этом, взаимно простые числа далеко не всегда могут быть попарно простыми. Подтвердим на примере. 8, 16, 5 и 15 не являются попарно простыми, так как числа 8 и 16 не взаимно простые. Однако, 8, 16, 5 и 15 — взаимно простые. Таким образом, 8, 16, 5 и 15 — взаимно простые, но не попарно простые.
Остановимся на понятии совокупности некоторого количества простых чисел. Эти числа всегда являются и взаимно простыми и попарно простыми. Например, 71, 443, 857, 991 — и попарно простые, и взаимно простые.
Когда речь идет о двух целых числах, то для них понятия «попарно простые» и «взаимно простые» совпадают.