Что значит неполное делимое
Как найти первое неполное делимое и количество цифр в частном?
В самом начале обучения навыку деления чисел дети часто допускают ошибки. Одними из самых распространенных, помимо ошибок непосредственно в совершении промежуточных вычислений, являются появление «лишних» цифр и потеря нулей в частном. Их возникновение зачастую связано с такими причинами:
Этой статьей я хочу помочь школьникам восполнить пробелы в вышеупомянутых базовых знаниях, чтобы в дальнейшем они смогли избегать ошибок при совершении действия деления в столбик.
Как найти первое неполное делимое?
Рассмотрим подробно по шагам на таком примере \( <\color
1. Смотрим, сколько разрядов в делимом и какая цифра стоит на позиции самого старшего разряда этого числа.
1. 1. Проверяем, можно ли это количество единиц этого разряда разделить на делитель так, чтобы получилось натуральное число?
1. 2. Если разделить нельзя, смотрим на количество единиц следующего разряда и проверяем, можем ли мы их разделить на делитель?
В числе 75184 всего 75 единиц разряда тысяч. 75 тысяч можно разделить на 12 – получится 6 полных тысяч, и 3 тысячи неразделенные.
2. Если можно разделить количество единиц разряда на делитель, то это количество единиц и будет первым неполным делимым.
В нашем примере это 75 тысяч.
Каждая оставшаяся цифра делимого будет участвовать в формировании остальных неполных частных, о чем подробно рассказано в уроке Деление натуральных чисел.
Как найти количество цифр в частном?
Так как первое неполное делимое в данном примере – это 75 тысяч, то есть, мы делим единицы тысяч, тогда самый старший разряд частного также будет тысячи. Значит, помимо цифры самого большого разряда, будут ещё три цифры: в сотнях, десятках и простых единицах.
Итак, чтобы узнать количество цифр в частном, нужно:
1. Найти первое неполное делимое.
2. Посчитать, сколько в делимом остальных цифр.
3. Прибавить к этому количеству единицу (цифра частного, полученная после деления первого неполного делимого).
4. Результат и будет количеством цифр в частном.
Поделим, и убедимся:
В конце хочу сказать, что определение количества цифр в частном помогают развить и укрепить очень необходимый для младших школьников навык – самоконтроль.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 3 / 5. Количество оценок: 17
Деление натуральных чисел
Подобно тому, как вычитание является обратным действием для сложения, так и для умножения существует свое обратное арифметическое действие.
Рассмотрим задачу. В школьной столовой раздали 90 яблок по 3 яблока каждому ученику класса. Сколько учеников учатся в этом классе?
Если бы нам было известно количество учеников в классе и количество яблок, которое получил каждый из них, то общее число яблок мы узнали бы, умножив число учеников на число яблок, доставшееся каждому. То есть, количество учеников – это первый сомножитель, количество яблок – второй сомножитель, а сколько яблок раздали – это произведение.
Деление – это арифметическое действие, которое состоит в нахождении одного из сомножителей при помощи данного произведения и второго сомножителя.
Делимое – это число, которое мы делим на другое. Это то самое произведение, которое нам дано.
Делитель – это число, на которое мы делим делимое. Это данный нам один из множителей.
Частное – это результат действия деление, то есть, искомый нами второй сомножитель.
На записи действие деление обозначается: двоеточием ( \(\textcolor
Так, решение нашей задачи можно записать следующими способами:
При записи от руки действие деление принято записывать в виде двоеточия, обелюс применяется в печатной литературе, косая черта, которая по-другому называется слеш, – при записи на компьютере, а горизонтальная черта используется при записи деления в виде обыкновенной дроби.
Итак, разделить число a на число b – это значит найти такое число c, которое при умножении его на число b дает в результате числа a.
То есть: \(\textcolor
Компоненты действия деление:
Деление с остатком и неполное частное
К примеру, если мы захотим раздать все 37 яблок поровну между пятью детьми, то у нас это сделать не получится. Мы сможем раздать (использовать из всего количества яблок) только по 7 яблок каждому ( \(\textcolor
Итак, деление с остатком – это нахождение такого наибольшего целого числа, умножив которое на делитель, мы получим число, максимально близкое к делимому, но не превосходящее его. Это искомое число называется неполное частное. Разница между делимым и неполным частным называется остаток.
Остаток всегда меньше делителя!
Связь деления с умножением, сложением и вычитанием
Когда мы выполняем находим произведение двух чисел, эти числа нам известны, а от нас требуется найти результат действия умножение. При делении (без остатка) нам известно произведение двух чисел, а найти нужно такое число, которое при умножении на известное данное число дает это самое произведение.
Следовательно, действие деление является обратным действию умножения.
Справедливо также и обратное, что действие умножение обратно действию деления. Таким образом:
Умножение и деление – это взаимно обратные действия.
Связь деления с умножением, а также со сложением и вычитанием прекрасно видна, если рассмотреть, как с помощью этих действий можно выполнить действие деление.
Деление двух чисел при помощи сложения
Деление двух чисел при помощи вычитания
То есть, 69 от 345 можно отнять 5 раз, поэтому \(\textcolor
Деление двух чисел при помощи умножения
При помощи умножения узнать ответ на наш вопрос можно перебирая множитель числа 69 до тех пор, пока не получим заданное нам 345 :
Но эти три способа очень громоздки, особенно если частное представляет собой очень большое число. Их нужно знать только для того, чтобы понимать суть действия деления, суть тех задач, которые решаются посредством него.
Общий принцип деления в столбик
Если частное от деления двух чисел является многозначным числом, нахождение его происходит путем деления в столбик. Еще его называют деление уголком.
Прежде всего, нужно узнать количество цифр в частном и первое неполное делимое; как их находить, я подробно расписал в этой статье. В нашем случае первое неполное делимое равно 295 тысяч, а в частном будет 4 цифры.
Далее записываем известные компоненты деления следующим образом:
и начинаем вычисление:
1. Берем первое неполное делимое и пытаемся его разделить на делитель.
Вот тут нам и пригодится способ нахождения однозначного частного. Воспользовавшись им, находим, что в 295 тысячах делитель 34 содержится целиком 8 тысяч раз.
Записываем в частное первую найденную цифру разряда тысяч, а под неполным делимым пишем результат произведения неполного частного и делителя. И сразу же находим остаток от этого действия, т.е. вычитаем из неполного частного результат этого произведения.
В результате умножения первой найденной цифры частного на делитель у нас получилось \(\textcolor
В качестве еще одного действия самопроверки нужно сравнить полученную разницу с делителем. Если она меньше делителя, то мы на правильном пути, если же разница равна или больше делителя, то мы или неправильно нашли цифру частного, или допустили ошибку при умножении на делитель либо при нахождении остатка.
2. Оставшиеся неразделенные 23 тысячи представляют собой 230 сотен. Прибавляем к ним те 3 сотни, которые содержатся в делимом (говорят: сносим пять) и получаем второе неполное делимое 233 сотни.
3. 29 неразделенных сотен – это 290 десятков. Добавляем (сносим) к ним 8 десятков делимого, получаем третье неполное делимое 298 десятков.
4. И наконец, 26 десятков – это 260 простых единиц. Добавляем (сносим) к ним 3 единицы делимого и получаем четвертое неполное делимое 263 единицы.
Рассмотрим еще один пример. \(\textcolor
1 сотня = 10 десятков, добавляем (сносим) 2 десятка из делимого, получаем второе неполное делимое 12 десятков.
Итак, запомните, что каждое неполное делимое образует в частном одну цифру соответствующего разряда и что даже если неполное делимое меньше делителя, то в частном все равно нужно записать нулевой результат этого действия.
Итак, в общем виде алгоритм деления в столбик выглядит так:
1. Находим первое неполное делимое и количество цифр в частном.
2. Делим неполное делимое на делитель. Цифру, полученную в результате деления записываем ниже черты под делителем.
3. Умножаем полученную цифру на делитель, результат записываем под неполным делимым.
4. Ставим между ними знак минус и выполняем действие.
5. К полученной разнице сносим цифру следующего разряда (если она есть) и получаем второе неполное делимое.
6. Выполняем пункты 2-5 до тех пор, пока в делимом не останется ни одной неснесенной цифры.
7. Если неполное делимое невозможно разделить на делитель, то в частном ставится 0 и к этому неполному делимому сносится следующая цифра.
Деление на числа, заканчивающиеся нулями
Как и в случае с умножением, деление чисел облегчается, если делитель заканчивается одним или несколькими нулями. Рассмотрим два возможных случая:
Рассмотрим первый случай.
Деление на единицу с любым количеством нулей
Единица с любым количеством нулей – это не что иное как единица соответствующего разряда. Например, 10 – это 1 единица разряда десятков, 1000 – это одна единица разряда тысяч, 10000000 – 1 единица разряда десятков миллионов и т.д.
Запишите:
Чтобы разделить какое-нибудь число на единицу с любым количеством нулей, нужно отсчитать в делимом справа столько цифр, сколько нулей содержится в делителе; тогда все цифры, находящиеся слева от разделения, составят частное, а те, что справа – будут остатком.
Деление на число, оканчивающееся нулями
Рассмотрим на примере \(\textcolor
Делитель здесь не что иное как 28 сотен. Логично предположить, что эти 28 сотен могут хотя бы один раз содержаться только в сотнях делимого. Значит, нам нужно определить, сколько в делимом всего единиц разряда сотен, и разделить их на 28 единиц разряда сотен делимого. А отброшенные цифры десятков и простых единиц добавятся к остатку.
Запишите:
Чтобы разделить какое-нибудь число на число, заканчивающееся нулями, нужно отбросить мысленно нули в делителе, в делимом тоже отбросить мысленно такое же количество цифр, как и нулей в делителе. Получившееся число в делимом разделить на получившееся число в делителе, а к остатку прибавить (снести) те цифры делимого, которые отбросили ранее.
Проверка деления
Так как делимое – это делитель, умноженный на частное и плюс остаток, что следует из определения деления, то результат выполнения деления можно проверить умножением.
Если в результате действия деления не получилось остатка, то деление можно проверить и делением. Действительно, если делимое – это произведение делителя и частного, то разделив делимое на частное (один из сомножителей), мы должны получить второй сомножитель, то есть, делитель.
Свойства деления
Свойства деления я представлю двумя группами:
Давайте рассмотрим каждую группу подробнее.
Действия деления с единицей и нулем
При делении числа на единицу получается то же самое число.
Действительно, разделить число на единицу означает узнать, сколько единиц содержится в данном числе. А количество единиц в числе – это не что иное, как само это число.
И ли вот, например, если 10 яблок нужно раздать одному человеку ( 10 поделить на 1 ), то ему все эти 10 яблок и достанутся, правда?
При деление одинаковых чисел (числа на равное число) в результате будет 1 (единица).
В самом деле, если все единицы какого-то числа разделить на количество частей, равное количеству единиц этого числа, то в каждая часть получит по 1 единице.
Например, если 20 яблок раздать 20 школьникам, то каждому достанется по 1 яблоку.
При делении нуля на любое число, отличное от нуля, в результате будет нуль.
Разделить нуль на число означает найти такое число, умножив которое на данный делитель, мы получим в результате нуль. А такое число только одно – это нуль.
На нуль делить нельзя, то есть, нуль не может выступать в роли делителя.
При делении каких угодно чисел делителем может быть любое число, кроме нуля.
Рассмотрим два случая: когда нулём является только делитель, и когда делимое и делитель оба нули.
Распределительные свойства деления
Чтобы найти частное от деления суммы на число, нужно поделить каждое слагаемое на это число, и найти сумму полученных частных.
\(\textcolor
При этом подразумевается, что все действия деления получаются без остатка.
Чтобы найти частное от деления разности на число, нужно поделить на это число отдельно сперва уменьшаемое, а потом вычитаемое, после чего найти разность первого частного и второго.
\(\textcolor
При этом также предполагается, что при делениях уменьшаемого и вычитаемого на число не получается остатков.
Например: \[\textcolor
Чтобы найти частное от деления произведения на число, нужно поделить на него только один из сомножителей, а результат умножить на неизмененные остальные.
\(\textcolor
Чтобы найти частное от деления числа на произведение, нужно это число поделить на первый сомножитель, результат деления поделить на второй сомножитель, полученное частное – на третий и так далее.
\(\textcolor
При этом предполагается, что при всех этих делениях не получается остатков.
На рисунке наглядно видно, что в итоге после применения этого правила, число 30 получилось разделенным на 6 равных частей.
Изменение частного при изменении делимого и делителя
При рассмотрении изменений частного в результате изменений делимого и делителя предполагается, что действие деление происходит без остатка. В противном случае изменения могут быть не такими, о которых идет речь ниже.
При увеличении делимого в определенное количество раз, частное увеличится в это же количество раз, а при уменьшении – уменьшится.
Если мы в примере \(\textcolor
Если мы в этом же примере \(\textcolor
При увеличении делителя в определенное количество раз, частное уменьшится в это же количество раз, а при уменьшении – увеличится.
Действительно, изменение делителя означает, что делимое необходимо разделить на большее или меньшее количество равных частей. Соответственно, если нужно разделить на большее число частей, то каждая часть будет меньше, чем изначально, а если делить на меньшее число частей, то каждая часть будет крупнее.
В случае одновременного изменения делимого и делителя, частное может вести себя по-разному, или же вообще оставаться без изменений. Если нужно узнать, станет оно больше или меньше, нужно сперва посмотреть, как частное изменится после изменения делимого, а потом – как изменится после изменения делителя.
При увеличении или уменьшении делимого и делителя в одинаковое количество раз, частное не меняется.
Попробуйте самостоятельно доказать справедливость этого утверждения. Пишите в комментариях, получилось это, или нет.
Математика. 4 класс
Конспект урока
Математика, 4 класс
Перечень вопросов, рассматриваемых в теме:
— как письменно делить трехзначные числа на однозначные?
— какой алгоритм письменного деления многозначного числа на однозначное?
Алгоритм – упорядоченный набор однозначных выполнимых шагов.
Трехзначное число – число, которое состоит из сотен, десятков и единиц первого класса.
Первое неполное делимое – это первое число, которое делится на знаменатель.
Основная и дополнительная литература по теме урока:
2. Моро М. И., Волкова С. И. Математика. Рабочая тетрадь 4 класс. Часть 1. М.; Просвещение, 2016. – с. 18, 22
3. Волкова С. И. Математика. Проверочные работы 4 класс. М.; Просвещение, 2017. – с. 46-47
4. Волкова С. И. Математика. Тесты 4 класс. М.; Просвещение, 2017. – с. 36-37
Теоретический материал для самостоятельного изучения:
Вы уже умеете делить числа в столбик. Рассмотрим теперь более сложный случай.
Фермер Василий собрал в своем саду 372 кг вишни. Он и его 3 сына поделили ягоды поровну между собой и отправились на рынок. Сколько килограммов вишни должен продать каждый член семьи?
Начинаем деление с сотен. Сотен 3, но 3 сотни нельзя разделить на 4 так, чтобы в частном получились сотни. Делим десятки. Три сотни и 7 десятков – это 37 десятков. Делим 37 десятков на 4. В частном будет 9. Умножаем 9 на 4, чтобы узнать сколько десятков разделили. Получается, что разделили 36 десятков. Вычитаем из тридцати семи 36, получается 1. Значит, осталось разделить еще 1 десяток.
Переходим к делению единиц. Записываем две единицы рядом с остатком от деления десятков. 1десяток и 2 единицы – это 12 единиц. Делим 12 на 4, в частном 3. Умножаем 3 на 4, получаем 12. Вычитаем 12 из двенадцати. Осталось 0. Читаем ответ: 93.
Итак, важно запомнить: деление трехзначных чисел в столбик происходит поразрядно и начинается с высшего разряда. При нахождении каждой цифры частного, надо вспомнить три операции: деление, умножение и вычитание.
Рассмотрим еще один случай деления.
Слив фермер собрал 621 кг. Поделил их между тремя сыновьями и отправил их на рынок. Сколько килограммов слив должен продать каждый сын?
Разделим 621 на 3. Начнем деление с сотен. Делим 6 сотен на 3, в частном будет 2 сотни. Умножаем 2 на 3, чтобы узнать, сколько сотен разделили. Получается, разделили 6 сотен. Вычитаем 6 из шести, получаем 0. Значит, все сотни разделили. Ноль не пишем. Приступаем к делению десятков. Записываем 2 десятка ниже. При делении числа 2 на 3 получается 0. Умножаем 0 на 3, чтобы узнать сколько десятков разделили. Получается, что разделили 0 десятков. Вычитаем из двух ноль. Получается 2. Нам по-прежнему осталось разделить 2 десятка. Переходим к делению единиц. Записываем единицу ниже рядом с остатком 2. Два десятка и одна единица – это 21 единица. 21 делим на 3. В частном получаем 7 единиц. Умножаем 7 на 3, чтобы узнать сколько разделили единиц. Вычитаем 21 из двадцати одного, чтобы узнать остаток от деления единиц. Остаток равен 0. Читаем ответ: двести семь.
Задания тренировочного модуля:
1. Найдите значения выражения, считая устно или письменно:
интернет проект BeginnerSchool.ru
Сайт для детей и их родителей
Деление в столбик
Деление многозначных или многоразрядных чисел удобно производить письменно в столбик. Давайте разберем, как это делать. Начнем с деления многоразрядного числа на одноразрядное, и постепенно увеличим разрядность делимого.
Делимое размещаем слева, делитель справа, а частное будем записывать под делителем.
Теперь начинаем делить делимое на делитель поразрядно слева на право. Находим первое неполное делимое, для этого берем первый слева разряд, в нашем случае 3 и сравниваем с делителем.
Для того чтобы 3 разделить на 2 вспоминаем таблицу умножения на 2 и находим число при умножении которого на 2 получим наибольшее произведение, которое меньше 3.
2 × 1 = 2 (2 3)
Записываем 1 в частное на место первой точки (в разряд сотен), а найденное произведение записываем под делимым:
Теперь находим разность, между первым неполным делимым и произведением найденного разряда частного и делителем:
Далее находим второе неполное делимое, для этого значение следующего разряда делимого опускаем к разности:
2 × 7 = 14 (14 15)
Продолжаем деление, для чего находим третье неполное делимое. Спускаем следующий разряд делимого:
Делим неполное делимое на 2, полученное значение ставим в разряд единиц частного. Проверим правильность деления:
2 × 7 = 14
Результат деления третьего неполного делимого на делитель пишем в частное, находим разность:
Разность мы получили равную нулю, значит деление произведено правильно.
Усложним задачу и приведем другой пример:
1020 ÷ 5
Запишем наш пример в столбик и определим первое неполное частное:
Добавляем в неполное делимое разряд сотен и сравниваем:
10 > 5 – мы нашли неполное делимое.
10 – 10 = 0
0 мы не пишем, опускаем следующий разряд делимого – разряд десятков:
Сравниваем второе неполное делимое с делителем.
Нам следует добавить в неполное делимое ещё один разряд, для этого в частное, на разряд десятков ставим 0 :
20 ÷ 5 = 4
И ещё 2 правила деления в столбик:
1. Если в делимом и делителе в младших разрядах стоят нули, то перед делением их можно сократить, например:
Сколько нулей в младшем разряде делимого мы убираем, столько же нулей убираем в младших разрядах делителя.
2. Если в делимом после деления остались нули, то их следует перенести в частное:
Итак, сформулируем последовательность действий при делении в столбик.
а) выделяем в неполный делитель старший разряд делимого;
б) сравниваем неполное делимое с делителем, если делитель больше, то переходим к пункту (в), если меньше, значит, мы нашли неполное делимое и можем переходить к пункту 4;
в) добавляем в неполное делимое следующий разряд и переходим к пункту (б).
а) сравниваем неполное делимое с делителем, если делитель больше, то переходим к пункту (б), если меньше, значит, мы нашли неполное делимое и можем переходить к пункту 4;
б) добавляем к неполному делимому следующий разряд делимого, при этом в частное на место следующего разряда (точки) пишем 0;
в) переходим к пункту (а).
Мы говорили о делении многоразрядного числа на одноразрядное. В случае, когда разрядность делителя больше, деление выполняется аналогично:
Спасибо, что вы с нами.
Оставляйте пожалуйста комментарии в форме ниже