Что значит найти наименьшее значение функции

Наибольшее и наименьшее значение функции.

С практической точки зрения наибольший интерес представляет использование производной для нахождения наибольшего и наименьшего значения функции. С чем это связано? Максимизация прибыли, минимизация издержек, определение оптимальной загрузки оборудования. Другими словами, во многих сферах жизни приходится решать задачи оптимизации каких-либо параметров. А это и есть задачи на нахождение наибольшего и наименьшего значения функции.

Навигация по странице.

Кратко остановимся на основных определениях.

Наибольшим значением функции y=f(x) на промежутке X называют такое значение Что значит найти наименьшее значение функции, что для любого Что значит найти наименьшее значение функциисправедливо неравенство Что значит найти наименьшее значение функции.

Наименьшим значением функции y=f(x) на промежутке X называют такое значение Что значит найти наименьшее значение функции, что для любого Что значит найти наименьшее значение функциисправедливо неравенство Что значит найти наименьшее значение функции.

Эти определения интуитивно понятны: наибольшее (наименьшее) значение функции – это самое большое (маленькое) принимаемое значение на рассматриваемом интервале при абсциссе Что значит найти наименьшее значение функции.

Стационарные точки – это значения аргумента, при которых производная функции обращается в ноль.

Для чего нам стационарные точки при нахождении наибольшего и наименьшего значений? Ответ на этот вопрос дает теорема Ферма. Из этой теоремы следует, что если дифференцируемая функция имеет экстремум (локальный минимум или локальный максимум) в некоторой точке, то эта точка является стационарной. Таким образом, функция часто принимает свое наибольшее (наименьшее) значение на промежутке X в одной из стационарных точек из этого промежутка.

Также часто наибольшее и наименьшее значение функция может принимать в точках, в которых не существует первая производная этой функции, а сама функция определена.

Сразу ответим на один из самых распространенных вопросов по этой теме:»Всегда ли можно определить наибольшее (наименьшее) значение функции»? Нет, не всегда. Иногда границы промежутка X совпадают с границами области определения функции или интервал X бесконечен. А некоторые функции на бесконечности и на границах области определения могут принимать как бесконечно большие так и бесконечно малые значения. В этих случаях ничего нельзя сказать о наибольшем и наименьшем значении функции.

Для наглядности дадим графическую иллюстрацию. Посмотрите на рисунки – и многое прояснится.

Что значит найти наименьшее значение функции

На рисунке №3 граничные точки отрезка [-3;2] являются абсциссами точек, соответствующих наибольшему и наименьшему значению функции.

На открытом интервале

Что значит найти наименьшее значение функции

На интервале [1;6) наименьшее значение функции достигается в стационарной точке, а про наибольшее значение мы ничего сказать не можем. Если бы точка x=6 была частью интервала, тогда при этом значении функция принимала бы наибольшее значение. Этот пример изображен на рисунке №5.

Что значит найти наименьшее значение функции

Запишем алгоритм, позволяющий находить наибольшее и наименьшее значение функции на отрезке.

Разберем алгоритм при решении примера на нахождение наибольшего и наименьшего значения функции на отрезке.

Областью определения функции является все множество действительных чисел, за исключением нуля, то есть Что значит найти наименьшее значение функции. Оба отрезка попадают в область определения.

Находим производную функции по правилу дифференцирования дроби:
Что значит найти наименьшее значение функции

Для второго случая вычисляем значения функции лишь на концах отрезка [-4;-1] (так как он не содержит ни одной стационарной точки):
Что значит найти наименьшее значение функции

Следовательно, Что значит найти наименьшее значение функции.

Что значит найти наименьшее значение функции

Прежде чем ознакомиться с алгоритмом нахождения наибольшего и наименьшего значения функции на открытом или бесконечном интервале рекомендуем повторить определения одностороннего предела и предела на бесконечности, а также способы нахождения пределов.

Проверяем, является ли интервал X подмножеством области определения функции.

Находим все точки, в которых не существует первая производная и которые содержатся в интервале X (обычно такие точки встечаются у функций с аргументом под знаком модуля и у степенных функций с дробно-рациональным показателем). Если таких точек нет, то переходим к следующему пункту.

Если стационарных точек нет или ни одна из них не попадает в интервал, то переходим к следующему пункту.

Вычисляем значения функции в стационарных точках и точках, в которых не существует первая производная функции (если такие точки есть).

Делаем выводы, отталкиваясь от полученных значений функции и пределов. Здесь может быть масса вариантов. К примеру, если односторонний предел равен минус бесконечности (плюс бесконечности), то о наименьшем (наибольшем) значении функции ничего сказать нельзя для данного интервала. Ниже разобраны несколько типичных примеров. Надеемся подробные описания их решения помогут Вам усвоить тему. Рекомендуем вернуться к рисункам с №4 до №8 из первого раздела этой статьи.

Начнем с области определения функции. Квадратный трехчлен в знаменателе дроби не должен обращаться в ноль:
Что значит найти наименьшее значение функции

Легко проверить, что все интервалы из условия задачи принадлежат области определения функции.

Продифференцируем функцию:
Что значит найти наименьшее значение функции

Очевидно, производная существует на всей области определения функции.

Для первого промежутка Что значит найти наименьшее значение функциивычисляем значение функции при x=-4 и предел на минус бесконечности:
Что значит найти наименьшее значение функции

Второй интервал Что значит найти наименьшее значение функцииинтересен тем, что не содержит ни одной стационарной точки и ни одна из его границ не является строгой. В этом случае мы не сможем найти ни наибольшего, ни наименьшего значения функции. Вычислив предел на минус бесконечности и при стремлении аргумента к минус трем слева, мы лишь сможем определить интервал значений функции:
Что значит найти наименьшее значение функции

Следовательно, значения функции находятся в интервале Что значит найти наименьшее значение функциипри x из промежутка Что значит найти наименьшее значение функции.

Для интервала (-3;2) воспользуемся результатами из предыдущего пункта и еще вычислим односторонний предел при стремлении к двойке слева:
Что значит найти наименьшее значение функции

На промежутке Что значит найти наименьшее значение функциифункция не достигает ни наибольшего, ни наименьшего значения.
Что значит найти наименьшее значение функции

То есть, на этом интервале функция принимает значения из промежутка Что значит найти наименьшее значение функции.

А теперь можно сопоставить полученные в каждом пункте результаты с графиком функции. Синими пунктирными линиями обозначены асимптоты.

Что значит найти наименьшее значение функции

На этом можно закончить с нахождением наибольшего и наименьшего значения функции. Алгоритмы, разобранные в этой статье, позволяют получить результаты при минимуме действий. Однако бывает полезно сначала определить промежутки возрастания и убывания функции и только после этого делать выводы о наибольшем и наименьшем значении функции на каком-либо интервале. Это дает более ясную картину и строгое обоснование результатов.

Источник

Наибольшее и наименьшее значение функции

На практике довольно часто приходится использовать производную для того, чтобы вычислить самое большое и самое маленькое значение функции. Мы выполняем это действие тогда, когда выясняем, как минимизировать издержки, увеличить прибыль, рассчитать оптимальную нагрузку на производство и др., то есть в тех случаях, когда нужно определить оптимальное значение какого-либо параметра. Чтобы решить такие задачи верно, надо хорошо понимать, что такое наибольшее и наименьшее значение функции.

Основные определения

Начнем, как всегда, с формулировки основных определений.

Зачем нам нужно знать, что такое стационарные точки? Для ответа на этот вопрос надо вспомнить теорему Ферма. Из нее следует, что стационарная точка – это такая точка, в которой находится экстремум дифференцируемой функции (т.е. ее локальный минимум или максимум). Следовательно, функция будет принимать наименьшее или наибольшее значение на некотором промежутке именно в одной из стационарных точек.

Еще функция может принимать наибольшее или наименьшее значение в тех точках, в которых сама функция является определенной, а ее первой производной не существует.

Первый вопрос, который возникает при изучении этой темы: во всех ли случаях мы может определить наибольшее или наименьшее значение функции на заданном отрезке? Нет, мы не можем этого сделать тогда, когда границы заданного промежутка будут совпадать с границами области определения, или если мы имеем дело с бесконечным интервалом. Бывает и так, что функция в заданном отрезке или на бесконечности будет принимать бесконечно малые или бесконечно большие значения. В этих случаях определить наибольшее и/или наименьшее значение не представляется возможным.

Более понятными эти моменты станут после изображения на графиках:

Наибольшее и наименьшее значение функции на отрезке

Что значит найти наименьшее значение функции

Разберем подробно случай, указанный на втором графике. Изменим значение отрезка на [ 1 ; 6 ] и получим, что наибольшее значение функции будет достигаться в точке с абсциссой в правой границе интервала, а наименьшее – в стационарной точке.

Наибольшее и наименьшее значение функции на открытом интервале

Что значит найти наименьшее значение функции

Наибольшее и наименьшее значение функции на бесконечности

Что значит найти наименьшее значение функции

Как найти наибольшее и наименьшее значение непрерывной функции на заданном отрезке

В этом пункте мы приведем последовательность действий, которую нужно выполнить для нахождения наибольшего или наименьшего значения функции на некотором отрезке.

Посмотрим, как правильно применить этот алгоритм при решении задач.

Решение:

Теперь вычисляем производную функции согласно правилу дифференцирования дроби:

y ( 1 ) = 1 3 + 4 1 2 = 5 y ( 2 ) = 2 3 + 4 2 2 = 3 y ( 4 ) = 4 3 + 4 4 2 = 4 1 4

Второй отрезок не включает в себя ни одной стационарной точки, поэтому нам надо вычислить значения функции только на концах заданного отрезка:

Что значит найти наименьшее значение функции

Как найти наибольшее и наименьшее значение непрерывной функции на открытом или бесконечном интервале

Перед тем как изучить данный способ, советуем вам повторить, как правильно вычислять односторонний предел и предел на бесконечности, а также узнать основные методы их нахождения. Чтобы найти наибольшее и/или наименьшее значение функции на открытом или бесконечном интервале, выполняем последовательно следующие действия.

Решение

Первым делом находим область определения функции. В знаменателе дроби стоит квадратный трехчлен, который не должен обращаться в 0 :

Мы получили область определения функции, к которой принадлежат все указанные в условии интервалы.

Теперь выполним дифференцирование функции и получим:

Следовательно, производные функции существуют на всей области ее определения.

Сопоставим то, что у нас получилось в каждом вычислении, с графиком заданной функции. На рисунке асимптоты показаны пунктиром.

Что значит найти наименьшее значение функции

Это все, что мы хотели рассказать о нахождении наибольшего и наименьшего значения функции. Те последовательности действий, которые мы привели, помогут сделать необходимые вычисления максимально быстро и просто. Но помните, что зачастую бывает полезно сначала выяснить, на каких промежутках функция будет убывать, а на каких возрастать, после чего можно делать дальнейшие выводы. Так можно более точно определить наибольшее и наименьшее значение функции и обосновать полученные результаты.

Источник

Наибольшее и наименьшее значения функции на отрезке

Миниатюрная и довольно простая задача из разряда тех, которые служат спасательным кругом плавающему студенту. На природе сонное царство середины июля, поэтому самое время устроиться с ноутбуком на пляже. Ранним утром заиграл солнечный зайчик теории, чтобы в скором времени сфокусироваться на практике, которая, несмотря на заявленную лёгкость, содержит осколки стекла в песке. В этой связи рекомендую добросовестно рассмотреть немногочисленные примеры этой странички. Для решения практических заданий необходимо уметь находить производные и понимать материал статьи Интервалы монотонности и экстремумы функции.

Сначала коротко о главном. На уроке о непрерывности функции я приводил определение непрерывности в точке и непрерывности на интервале. Образцово-показательное поведение функции на отрезке формулируется похожим образом. Функция Что значит найти наименьшее значение функциинепрерывна на отрезке Что значит найти наименьшее значение функцииесли:

1) она непрерывна на интервале Что значит найти наименьшее значение функции;
2) непрерывна в точке Что значит найти наименьшее значение функциисправа и в точке Что значит найти наименьшее значение функциислева.

Во втором пункте речь зашла о так называемой односторонней непрерывности функции в точке. Существует несколько подходов к её определению, но я буду придерживаться начатой ранее линии:

Функция Что значит найти наименьшее значение функциинепрерывна в точке Что значит найти наименьшее значение функциисправа, если она определена в данной точке и её правосторонний предел совпадает со значением функции в данной точке: Что значит найти наименьшее значение функции. Она же непрерывна в точке Что значит найти наименьшее значение функциислева, если определена в данной точке и её левосторонний предел равен значению в этой точке: Что значит найти наименьшее значение функции

Представьте, что зелёные точки – это гвозди, на которых закреплена волшебная резинка:

Что значит найти наименьшее значение функции

Мысленно возьмите красную линию в руки. Очевидно, что как бы далеко мы не растягивали график вверх и вниз (вдоль оси Что значит найти наименьшее значение функции), функция всё равно останется ограниченной – изгородь сверху, изгородь снизу, и наше изделие пасётся в загоне. Таким образом, непрерывная на отрезке функция ограничена на нём. В курсе матанализа этот вроде бы простой факт констатируется и строго доказывается первой теоремой Вейерштрасса. …Многих раздражает, что в математике нудно обосновываются элементарные утверждения, однако в этом есть важный смысл. Предположим, некий житель махрового средневековья вытягивал график в небо за пределы видимости вот это вставляло. До изобретения телескопа ограниченность функции в космосе была вовсе не очевидна! Действительно, откуда вы знаете, что нас ждёт за горизонтом? Ведь когда-то и Земля считалась плоской, поэтому сегодня даже обыденная телепортация требует доказательства =)

Согласно второй теореме Вейерштрасса, непрерывная на отрезке Что значит найти наименьшее значение функциифункция достигает своей точной верхней грани Что значит найти наименьшее значение функциии своей точной нижней грани Что значит найти наименьшее значение функции.

Число Что значит найти наименьшее значение функциитакже называют максимальным значением функции на отрезке и обозначают через Что значит найти наименьшее значение функции, а число Что значит найти наименьшее значение функцииминимальным значением функции на отрезке с пометкой Что значит найти наименьшее значение функции.

В нашем случае:
Что значит найти наименьшее значение функции
Что значит найти наименьшее значение функции

Примечание: в теории распространены записи Что значит найти наименьшее значение функции.

Грубо говоря, наибольшее значение находится там, где самая высокая точка графика, а наименьшее – где самая низкая точка.

Важно! Как уже заострялось внимание в статье об экстремумах функции, наибольшее значение функции и наименьшее значение функцииНЕ ТО ЖЕ САМОЕ, что максимум функции и минимум функции. Так, в рассматриваемом примере число Что значит найти наименьшее значение функцииявляется минимумом функции, но не минимальным значением.

Кстати, а что происходит вне отрезка Что значит найти наименьшее значение функции? Да хоть потоп, в контексте рассматриваемой задачи это нас совершенно не интересует. Задание предполагает лишь нахождение двух чисел Что значит найти наименьшее значение функциии всё!

Более того, решение чисто аналитическое, следовательно, чертежа делать не надо!

Алгоритм лежит на поверхности и напрашивается из приведённого рисунка:

1) Находим значения функции в критических точках, которые принадлежат данному отрезку.

Ловите ещё одну плюшку: здесь отпадает необходимость проверять достаточное условие экстремума, поскольку, как только что было показано, наличие минимума или максимума ещё не гарантирует, что там минимальное или максимальное значение. Демонстрационная функция достигает максимума Что значит найти наименьшее значение функциии волей судьбы это же число является наибольшим значением функции на отрезке Что значит найти наименьшее значение функции. Но, понятно, такое совпадение имеет место далеко не всегда.

Итак, на первом шаге быстрее и проще вычислить значения функции в критических точках, принадлежащих отрезку, не заморачиваясь есть в них экстремумы или нет.

2) Вычисляем значения функции на концах отрезка.

3) Среди найденных в 1-м и 2-м пунктах значений функции выбираем самое маленькое и самое большое число, записываем ответ.

Садимся на берег синего моря и бьём пятками по мелководью:

Найти наибольшее и наименьшее значения функции Что значит найти наименьшее значение функциина отрезке Что значит найти наименьшее значение функции

Решение:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:
Что значит найти наименьшее значение функции

Полученное квадратное уравнение имеет два действительных корня:
Что значит найти наименьшее значение функции– критические точки.

Ещё раз подчёркиваю, что нас не интересует, есть в них максимумы/минимумы или нет.

Первая критическая точка принадлежит данному отрезку: Что значит найти наименьшее значение функции
А вот вторая – нет: Что значит найти наименьшее значение функции, поэтому про неё сразу забываем.

Вычислим значение функции в нужной точке:
Что значит найти наименьшее значение функции

Итоговый результат я выделил жирным цветом, при оформлении задания в тетради его удобно обвести в кружок простым карандашом или пометить как-то по-другому.

2) Вычислим значения функции на концах отрезка:
Что значит найти наименьшее значение функции

Результаты опять каким-либо образом выделяем.

3) Дело сделано, среди «жирных» чисел выбираем наибольшее и наименьшее.

Ответ: Что значит найти наименьшее значение функции

Критическое значение Что значит найти наименьшее значение функциина поверку оказалось точкой максимума, но об этом нас никто не спрашивал. Впрочем, для саморазвития можете устно подмечать такие факты.

Найти наибольшее и наименьшее значения функции Что значит найти наименьшее значение функциина отрезке Что значит найти наименьшее значение функции

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

В рассматриваемой задаче очень важно не допускать вычислительных ошибок, так как рецензент немедленно посмотрит, сами догадываетесь куда.

Другой существенный момент касается пункта № 1.

Во-первых, критических точек может не оказаться вообще. Это очень хорошо – меньше вычислений. Просто записываем вывод: «критические точки отсутствуют» и переходим ко второму пункту алгоритма.

Во-вторых, все критические точки (одна, две или бОльшее количество) могут не принадлежать отрезку. Замечательно. Пишем следующее: «критические точки (а) не принадлежат (ит) рассматриваемому отрезку». Находить какие-то значения функции здесь, разумеется, тоже не надо.

В моей коллекции есть и те и те примеры, но они унылы как бескрайние просторы Сахары. По сути, всё задание сводится к нахождению двух значений функции на концах интервала. Гораздо интереснее снять кепки, солнечные очки и отправиться играть в пляжный футбол:

Найти наибольшее и наименьшее значения функции на заданном отрезке

Что значит найти наименьшее значение функции

Решение: всё опять начинается дежурной фразой:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:
Что значит найти наименьшее значение функции

Да, критических точек тут и правда целая команда:
Что значит найти наименьшее значение функции

Первые две точки принадлежат нашему отрезку:
Что значит найти наименьшее значение функции

Но третья оказывается вне игры: Что значит найти наименьшее значение функции

(надеюсь, все сумели сосчитать Что значит найти наименьшее значение функции)

Вычислим значения функции в подходящих точках:
Что значит найти наименьшее значение функции

Чтобы не заблудиться в трёх соснах, не забываем выделять результаты,

2) Вычислим значения функции на концах отрезка:
Что значит найти наименьшее значение функции

Среди «жирных» чисел выбираем наибольшее и наименьшее значения. Максимальное значение («пятёрка») достигается сразу в двух точках, и это необходимо указать в завершающей записи:

Ответ: Что значит найти наименьшее значение функции

Время от времени критические точки могут совпадать с одним или даже с обоими концами отрезка, и в этом случае укорачивается второй этап решения. Следующий пример для самостоятельного изучения посвящен как раз такой ситуации:

Найти наибольшее и наименьшее значения функции на заданном отрезке

Что значит найти наименьшее значение функции

Примерный образец решения в конце урока.

Иногда техническая трудность рассматриваемого задания состоит в замысловатой производной и громоздких вычислениях:

Найти максимальное и минимальное значения функции на отрезке

Что значит найти наименьшее значение функции

Решение: отрезок, надо сказать, творческий, но пример взят из конкретной контрольной работы и ни в коем случае не придуман.

1) Вычислим значения функции в критических точках, которые принадлежат данному отрезку:
Что значит найти наименьшее значение функции

Очевидный корень оказывается не в теме: Что значит найти наименьшее значение функции.

Решаем уравнение:
Что значит найти наименьшее значение функции

Второй корень принадлежит нашему отрезку: Что значит найти наименьшее значение функции

Если вам не понятно, почему именно такой корень, обязательно обратитесь к школьному учебнику Алгебра и начала анализа 10-11 класс и повторите, что такое логарифм, ибо плох тот студент, который не мечтает овладеть логарифмами.

Дальнейшие вычисления задачи я распишу максимально подробно, но без комментариев. Некоторую информацию о логарифмической функции и свойствах логарифма можно почерпнуть в статье Графики и свойства элементарных функций и методичке по школьным формулам.

Вычислим значение функции во второй критической точке:
Что значит найти наименьшее значение функции

2) Вычислим значения функции на концах отрезка:
Что значит найти наименьшее значение функции

3) «Жирные» результаты получены с экспонентами и логарифмами, что существенно затрудняет их сравнение. По сей причине вооружимся калькулятором либо Экселем и вычислим приближённые значения, не забывая, что Что значит найти наименьшее значение функции:
Что значит найти наименьшее значение функции

Вот теперь всё понятно.

Ответ: Что значит найти наименьшее значение функции

Дробно-рациональный экземпляр для самостоятельного решения:

Найти максимальное и минимальное значения функции на отрезке

Что значит найти наименьшее значение функции

Вычисления в данном случае не менее кропотливы и точно так же потребуют вмешательства калькулятора (если вы, конечно, не вундеркинд). Полное решение и ответ в конце урока.

Стрелки часов приближаются к 9 утра, и побережье потихоньку заполняется всё бОльшим и бОльшим количеством стройных ног. Если честно, не терпится захлопнуть ноут и похулиганить, но всё-таки мужественно разберу нетривиальную вещь:

Найти максимальное и минимальное значения функции на отрезке

Что значит найти наименьшее значение функции

Решение:
1) Найдём критические точки. Предварительно можно раскрыть скобки, но не особо сложнее использовать и правило дифференцирования произведения:
Что значит найти наименьшее значение функции

Что значит найти наименьшее значение функции– критические точки.

Обратите внимание, что точка Что значит найти наименьшее значение функцииобращает знаменатель производной в ноль, но её следует отнести к критическим значениям, поскольку САМА ФУНКЦИЯ определена в данной точке. На этом случае я подробно останавливался в теоретической части и последнем примере урока Интервалы монотонности. Экстремумы функции.

Кроме того, данная точка совпала с правым концом отрезка, а значит, в следующем пункте будет меньше расчётов. В следующем, но не сейчас:
Что значит найти наименьшее значение функции

2) Вычислим значения функции на концах отрезка:
Что значит найти наименьшее значение функции
Что значит найти наименьшее значение функцииуже известно.

Ответ: Что значит найти наименьшее значение функции

Раз, два, три, четыре, пять – мне пора верстать.

Скорее всего, вы прочитали данную статью в ненастную погоду, поэтому желаю всем скорейшего летнего загара без зачётки в кармане! …ну или с дипломом на груди… …ой, что-то я не то сказал =)

Пример 2: Решение:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:
Что значит найти наименьшее значение функции
Что значит найти наименьшее значение функции– критические точки.
Что значит найти наименьшее значение функции
2)Вычислим значения функции на концах отрезка:
Что значит найти наименьшее значение функции
Ответ: Что значит найти наименьшее значение функции

Пример 4: Решение:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:
Что значит найти наименьшее значение функции
Что значит найти наименьшее значение функции– критические точки.
Что значит найти наименьшее значение функции
2) Вычислим значения функции на концах отрезка:
Что значит найти наименьшее значение функцииуже рассчитано в предыдущем пункте.
Что значит найти наименьшее значение функции

Ответ: Что значит найти наименьшее значение функции

Пример 6: Решение:
1) Вычислим значения функции в критических точках, которые принадлежат данному отрезку:
Что значит найти наименьшее значение функции Что значит найти наименьшее значение функции– критические точки.
Что значит найти наименьшее значение функции
2) Вычислим значения функции на концах отрезка:
Что значит найти наименьшее значение функции
Ответ: Что значит найти наименьшее значение функции

Автор: Емелин Александр

(Переход на главную страницу)

Что значит найти наименьшее значение функции Zaochnik.com – профессиональная помощь студентам

cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5

Что значит найти наименьшее значение функции Tutoronline.ru – онлайн репетиторы по математике и другим предметам

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *