Что значит монитор 144 гц
Что такое частота обновления экрана монитора и как она влияет на восприятие
Содержание
Содержание
Частота обновления экрана — один из самых неоднозначных параметров монитора. Одни утверждают, что чем она выше, тем лучше, а малая частота снижает качество изображения и вредит зрению. Другие уверены, что высокая частота — это для тех, кому деньги девать некуда, и что глаз все равно не различает частоту выше 25 Гц. Истина, как всегда, где-то посредине.
Что такое частота обновления экрана?
Вне зависимости от того, что мы видим на экране — статичную картинку или динамичный видеоролик — монитор постоянно выводит на экран серию изображений. Просто в первом случае все кадры будут более-менее одинаковы, а во втором расположение деталей на экране будет меняться от кадра к кадру, создавая иллюзию движения. Частота же смены кадров и есть «частота обновления экрана».
Совсем как в кино, поэтому многие вспоминают про стандартные для кинофильмов 24 кадра в секунду, т.е. 24 Гц. Если в кинотеатре никто не жалуется на «низкую частоту обновления», так зачем на мониторе нужно больше?
Существует устойчивый миф, что 24 Гц — это максимальная частота, воспринимаемая человеческим глазом. И что именно поэтому выбран такой стандарт для кино, а более высокая частота кадров просто не имеет смысла.
Развеять этот миф очень просто — достаточно запустить на компьютере какую-нибудь игру, позволяющую задавать скорость вывода кадров на экран (FPS). Игру лучше выбрать попроще, чтобы видеосистема уверенно обеспечивала высокий FPS. Попробуйте выставить в ней сначала FPS 24 и понаблюдать, а потом выше — например, 50. В динамичных сценах разница будет очевидна.
В кино это не так заметно из-за того, что каждый кадр фильма снимается с некоторой выдержкой, поэтому движущиеся объекты будут смазаны. Это смягчает переход от кадра к кадру и дополнительно «убеждает» наш мозг в том, что объект движется.
Кстати, многие игры также научились «смазывать» объекты, обеспечивая более плавное движение при невысоком FPS. Этот эффект называется motion blur. А частота кадров в кино была выбрана скорее из экономических показателей: меньше частота кадров — короче пленка и проще механика киноаппарата и проектора. Нужна была частота, которая обеспечивает более-менее плавное движение на экране, но при этом не требует больших затрат. Почему именно 24? Потому что при такой частоте минутный расход пленки составлял ровно 30 ярдов, что упрощало расчет количества пленки и, соответственно, бюджета съемок.
60 Гц — мало или достаточно?
Еще один миф, связанный с частотой обновления экрана, — это вред для глаз. Дескать, мониторы с низкой частотой обновления мерцают, что ведет к усталости глаз и, в перспективе, даже к заболеваниям. Следует признать, что это не совсем миф — мерцающее изображение действительно вредно для зрения. И мониторы действительно могут мерцать. Вот только это никак не связано с частотой обновления экрана.
Раньше, когда все мониторы делались на основе электронно-лучевых трубок (ЭЛТ), причиной мерцания экрана действительно была частота обновления. В ЭЛТ люминофор на экране светится только в момент «пробегания» по нему электронного луча. Поэтому чем меньше была «частота монитора», тем заметнее мерцал экран. 60 Гц для такого монитора было совершенно недостаточно.
Однако изображение на экране ЖК-монитора не гаснет в промежутке между обновлениями кадров. Да, на некоторых мониторах заметно мерцание, но не из-за обновления экрана, а из-за режима работы ламп подсветки. Фактически, на статичном изображении нет никакой разницы между мониторами с частотой обновления в 60 Гц и 200 Гц. Если вы используете монитор для работы, в высокой частоте нет необходимости. 60 Гц вполне достаточно.
Не требуется высокая частота и в том случае, если вы любите смотреть видео на экране монитора. Несмотря на то, что кинопленка уже стала историей, стандарт в 24 кадра в секунду остается основным для видеоконтента. Качественное видео иногда снимают с частотой в 60 кадров/сек, а вот большая частота кадров встречается редко. Причины примерно те же, что и сто лет назад: чем больше частота кадров, тем больше объем файла и выше требования к камере и к производительности процессора плеера. Поэтому нет никакого смысла в мониторе с частотой обновления больше 60 Гц, если он нужен вам для просмотров фильмов. По крайней мере, пока.
Кому же нужна высокая частота?
В абзаце, где шла речь о 24 кадрах, не зря упоминалась компьютерная игра. Именно в динамичных играх наиболее заметно влияние частоты обновления. Но если вы любите после работы «погонять в танчики», не спешите бежать в магазин за 240-герцовым монитором. Сначала определитесь, действительно ли вам нужна высокая частота обновления.
А вот киберспортсменам высокая частота обновления действительно важна. Игрок с монитором на 100 Гц получает реальное преимущество перед теми, кто «сидит» на 60 герцах. Именно по этой причине появляются мониторы с частотой 240, 280 и даже 360 Гц.
Впрочем, не все способны воспользоваться эффектом от увеличения частоты обновления. Исследования показали, что мозгу достаточно 13 мс на то, чтобы распознать изображение, но вот на то, чтобы правильно отреагировать на полученный кадр, может потребоваться в десятки раз больше времени. Не стоит рассчитывать, что, сменив монитор, вы сразу и многократно улучшите свои игровые показатели.
Частота обновления и вертикальная синхронизация
Еще один аргумент в пользу высокой частоты обновления — с ее помощью можно устранить влияние рассинхронизации частоты обновления и FPS игры. Поскольку эти числа часто не совпадают, может случиться так, что перерисовка кадра игры попадет на момент обновления экрана. В итоге на одну половину экрана будет выведен предыдущий кадр, а на другую половину — последующий.
Если кадры сильно отличаются (например, когда игрок быстро движется или крутится на месте), на экране будут заметны неприятные рывки изображения. Переход на большую частоту не избавит от этого явления, но оно станет куда менее заметным за счет того, что «резаный» кадр будет демонстрироваться намного меньше.
Некоторые мониторы предлагают решить эту проблему без увеличения частоты обновления — при помощи технологий (G-Sync, V-Sync и Freesync), подгоняющих перерисовку кадра к обновлению экрана.
Но и в этом решении есть минусы. Во-первых, технология должна поддерживаться как монитором, так и игрой. Во-вторых, при работе V-sync могут теряться некоторые кадры, что не нравится киберспортсменам.
Частота обновления и время отклика
Время отклика — это период, который требуется пикселям экрана для изменения цвета после получения соответствующей команды. Очевидно, что этот параметр связан с частотой обновления экрана: за время между сменами кадров экран должен не только успеть перерисоваться, но и некоторое время экспонироваться. К примеру, на частоте 100 Гц время демонстрации каждого кадра составляет 10 мс (1000 мс /100 Гц). Если время отклика монитора больше, то нет никакой пользы от высокой частоты обновления, даже наоборот — будет некоторый вред. Когда время отклика сравнимо со временем экспозиции кадра, в динамичных сценах пиксели не успевают «набрать» цвет и правильных цветов на экране вы просто не увидите. Зато заметите «след» старого изображения, отображающегося одновременно с новым.
Поэтому, выбирая монитор с высокой частотой обновления, смотрите, чтобы время отклика у него было минимальным и хотя бы не превышало интервал, необходимый на перерисовку кадра (1000 / частота в Гц).
Выводы
Высокая частота обновления монитора — это не то, что требуется каждому. Если вы не проводите часы за 3D-шутерами или симуляторами, вряд вы вообще ощутите эффект от увеличения частоты обновления. А вот киберспортсменам высокая частота обновления монитора даст реальное преимущество. Да и просто любители динамичных игр почти наверняка (если позволит производительность системы) заметят улучшение игрового процесса, которое последует за увеличением частоты.
Монитор 144 Гц — чем отличается от обычного и как выбрать
Мониторы с маркировкой «144 Гц» часто вызывают вопросы: на первый взгляд, они ничем не отличаются, кроме этой маркировки, но стоят дороже. Сегодня мы рассмотрим, в чем преимущества таких мониторов и почему стоит обратить на них внимание.
Обычно покупатель руководствуется несколькими параметрами — это разрешение, контрастность, тип матрицы и цветопередача. От этих показателей зависит качество картинки.
Есть еще одна техническая характеристика монитора, которая напрямую на изображение не влияет, но сильно сказывается на нашем восприятии. Речь идет о частоте развертки — именно этот параметр обозначается в Гц.
Что такое частота развертки?
Частота развертки — это количество кадров («FPS» — «frames per second»), которое монитор может вывести в секунду.
Чем больше кадров, тем более плавное изображение мы видим на экране. Частота кадров особенно важна в играх: при низком количестве кадров играть некомфортно. Человеческий глаз различает 24 кадра в секунду — если изображение в игре меняется медленнее, игрок замечает, что картинка «тормозит».
Минимально комфортный уровень — это 30 кадров в секунду: именно на такой скорости мы обычно смотрим фильмы. Xbox и Playstation по умолчанию тоже выдают 30 кадров.
Чтобы ощутить разницу между 30 и 60 FPS, можно посмотреть ролики со сравнением.
Общепринятая частота развертки монитора — 60 герц, то есть он технически не способен выводить на экран больше 60 кадров в секунду. Некоторое время назад стали получать широкое распространение 144-герцовые мониторы. Они могут показывать до 144 кадров, что делает картинку еще плавнее.
Кому нужен монитор 144 Гц?
Такие мониторы востребованы в играх — изображение в игре на таком мониторе более гладкое, живое и натуральное, чем на мониторе со стандартными 60 Гц.
При этом важно производительность ПК: если ваши видеокарта и процессор не выдают больше 60 кадров, вы не оцените монитор в 144 Гц в полной мере.
Если у вас уже есть мощный ПК или вы планируете его сборку, рекомендуем присмотреться к мониторам с высокой частотой развертки. Они дороже традиционных аналогов, но в долгосрочной перспективе разница в цене будет не так критична.
Раньше цена подобных мониторов была выше, однако сейчас вы можете найти в каталоге множество моделей до 20 тысяч.
Какой выбрать: изогнутый или плоский?
Изогнутые мониторы сконструированы с учетом нашего периферийного зрения, поэтому создают эффект погружения. Они обеспечивают широкое поле зрения, и за счет этого картинка кажется больше. Форма изогнутого экрана повторяет естественную форму человеческого глаза: вы можете охватить большее по площади изображение, при этом не напрягая зрение — за таким монитором глаза меньше устают. Еще один плюс изогнутых мониторов — они исключают искажения, которые особенно заметны на больших мониторах.
Есть два момента, к которым придется привыкнуть при использовании изогнутых мониторов.
Во-первых, сама форма экрана создает проблемы при настенном креплении — его нужно закреплять специальными приспособлениями и в определенном положении.
Во-вторых, изогнутый экран бликует, если посмотреть на него определенным углом. На плоском экране блик может отразиться всего в одном месте, а на изогнутом — в нескольких. Эта проблема решаемая — достаточно установить экран подальше от источников света.
Плоские мониторы
Все представленные в этом разделе плоские мониторы обладают резрешением Full HD (1920×1080), типом матрицы TN и временем отклика 1 мс. Также все модели содержат видео порты HDMI и DisplayPort.
Самый выгодный монитор 144 Гц — Acer EG220QPbipx с диагональю экрана 21.5 дюйма. Яркость — 250 кд/м², контрастность 600:1. Подставка поддерживает возможность наклона вперед-назад.
Следом идут LG 24GL650-B с диагональю экрана 23.5 дюйма и Lenovo G25-10 с диагональю экрана 24.5 дюйма. Подставка поддерживает поворот экрана в портретный режим (Pivot). Контрастность монитора составляет 1000:1.
Из моделей подороже есть Acer KG271CBMIDPX с диагональю экрана 27 дюймов и Benq XL2430 с диагональю экрана 24 дюйма. Время отклика — 1 мс. Помимо HDMI и DisplayPort в этих моделях есть порт DVI и D-Sub.
В чем отличия между ними? Acer оснащен встроенными динамиками, а его подставка поддерживает возможность наклона вперед-назад. В свою очередь, у Benq есть встроенный USB-концентратор и подставка с регулировкой высоты (HAS) и поворотом экрана в портретный режим (Pivot).
Также среди плоских мониторов есть две модели с разрешением WQHD (2560×1440) — это Samsung S32R750QEI с диагональю 31.5 дюйма и типом матрицы VA и Acer Nitro VG272UPbmiipx с диагональю 27″ и типом матрицы IPS.
Обе модели поддерживают возможность наклона вперед-назад и видеопорт HDMI. Еще Acer оснащен встроенными динамиками и портом DisplayPort. Также модели отличаются временем отклика: у Samsung S32R750QEI — 4 мс, а у Acer Nitro VG272UPbmiipx — 1 мс.
Изогнутые мониторы
Большинство изогнутых мониторов в каталоге представлены с разрешением Full HD (1920×1080), типом матрицы VA и контрастностью 3000:1. Модели содержат порты HDMI и DisplayPort.
Вы можете выбрать Acer Nitro EI242QRPbiipx с диагональю экрана 23.6 дюйма и Acer ED322QRPbmiipx с диагональю экрана 31.5 дюйма. Подставка обеих моделей поддерживает возможность наклона вперед-назад. Яркость — 250 кд/м². Acer ED322QRPbmiipx дополнительно оснащен встроенными динамиками.
Также можно выбрать изогнутый монитор с поддержкой регулировки высоты и портретного режима — Samsung C27FG73FQI с диагональю экрана 27 дюймов. Время отклика составляет 1 мс, яркость — 350 кд/м².
Помимо Full HD, еще есть монитор Acer Nitro XZ272UPbmiiphx с разрешением WQHD (2560×1440). Его диагональ составляет 27 дюймов, тип матрицы VA. Модель имеет встроенные динамики и возможность поворота экрана в портретный режим (Pivot). Время отклика — 4 мс, яркость — 400 кд/м², контрастность — 3000:1. Монитор имеет два порта HDMI и один DisplayPort.
Разница между мониторами с 60 и 144 Гц особенно наглядно видна в замедленных видео-сравнениях
Об игровых мониторах и 144 герцах
Привет, GT! Так уж получилось, что последние несколько постов мы обсуждаем мониторную тематику. Началось всё с поста о важных характеристиках мониторов «для дома», потом мы осветили вопрос сверхширокого формата 21:9 (холивар в комментариях прилагается), ну а теперь настало время для последнего вопроса, который мне задавли в личку и на почту несколько раз.
Игровые мониторы. Что нам пытаются втолкнуть под видом «игровых» моделей, что в них хорошо, а что не очень, почему они почти все работают на TN-матрицах и чего можно вообще достичь с такой моделькой. Поехали!
О маркетолухах и лапше на ушах
Помните, в своё время нам успешно пытались продавать «мегагерцы» (а потом и гигагерцы). Времена P4 и архитектуры NetBurst с двумя, а потом и тремя гигагерцами, высокопроизводительные нагревательные элементы от AMD (компания до сих пор верна традициям, но об этом чуть позже), 512 МБ и даже 1 ГБ оперативки, первые массовые «винты» на 80-120 ГБ… Шикарные были времена.
Примерно так же «навешали» и про одну из основных характеристик матриц монитора: скорость отклика. Но чтобы полностью разобраться в этом термине и всех подводных камнях, давайте обратимся к истории. В современном мире, если вы откроете он-лайн каталог каких-нибудь мониторов и посмотрите на фильтры, то среди технологий производства ЖК-матриц вы увидите длиннющий список:
Технически же ощутимо отличающихся реализаций всего три: TN+Film (TwistedNematic), IPS (In-plane Switching) и *VA (Vertical Alignment). Суть их работы примерно одинаковая: на матрице имеется массив микроскопических ячеек, в которые заключены специального вида молекулы. Подсветка дисплея имеет специальный поляризующий фильтр, который пропускает только излучение с «правильной» ориентацией. Два таких фильтра расположены под углом в 90 градусов, и меняя ориентацию поляризации можно регулировать количество проходящего через ячейку света. При подаче напряжения на светопропускающие электроды положение или форма ЖК молекул меняется, из-за чего меняется поляризация света и светопропускание всей ячейки.
Собственно, всё различие в стандартах заключается именно в том, какой формы и как расположены эти ЖК-молекулы, как они запитываются. От этого зависят характеристики и светопропускания (яркость, контрастность), и точность цветопередачи. По сути своей, сама по себе матрица управляет лишь градациями серого, а специальные цветовые фильтры, особенности зрения и размер ячеек позволяют отображать всё то многообразие цветов, что мы с вами видим на наших экранах.
Именно в работе переключения между различными положениями ЖК-молекулы и отображением различного уровня серого цвета (который, пройдя через светофильтр, будет отображён как тот или иной цветной оттенок) и зарыта собака, которая называется «скорость отклика».
О типе матрицы, скорости отклика и её влиянии на картинку
Во времена ЭЛТ-мониторов производители не особо парились на эту тему, скорость работы лучевой трубки условно можно было назвать бесконечной, в основном «задержку» в выводе изображения давал люминофор, который светился некоторое время после получения заряда от сканирующего луча. Из-за этого на ЭЛТ-мониторах можно было видеть шлейф за быстродвижущимися объектами.
Когда же настала эпоха ранних ЖК (тогда технология была только одна, TN), производители столкнулись с тем, что технология производства матриц не даёт «шлейфов» от люминофора, зато имеет некоторую задержку между переключениями из состояния «ячейка выключена» (белый цвет в случае с TN) и «ячейка включена» (чёрный цвет).
С попроавкой на некоторыех проблемы технологии (идеально чёрного и идеально белого положений тогда достичь не могли в силу конструктивных особенностей), изменение от 10% до 90% яркости назвали скоростью отклика BtW (black-to-white). Переключение между «крайними» положениями занимало меньше времени, чем между промежуточным (GtG, gray-to-gray), так как на скорость реакции влияло напряжение, приложенное к электродом, и чем меньше была разница, тем медленнее ячейка TN-матрицы приходила в «нужное» положение.
Как вы сами понимаете, с такими характеристиками завоевать рынок было тяжело, и достаточно быстро появились технологии «разгона» матрицы, которые позволили значительно сократить время переключения как раз «проблемного» GtG-режима.
Первым конкурентом TN-матриц стали IPS-решения. Их основное отличие заключается в том, что во «включённом» состоянии кристаллы не располагаются хаотично, а сохраняют свою структуру. Изменяется положение кристаллов относительно друг друга и поляризаторов, в результате чего светопропускание каждой конкретной ячейки изменяется. Ещё одно важное отличие заключается в состоянии «по умолчанию»: напряжение в данном случае «включает» светопропускание, а не «выключает» её, и исходное состояние ЖК-молекулы делает все сабпикселы чёрными.
Подобная структура треубет больше энергии на управление, работает намного точнее и умеет показывать куда больше оттенков, чем TN, но расплата за подобные преимущества — скорость работы. Примерно также работает PLS-матрица производства Samsung.
*VA-матрицы (прим.: кроме AHVA, которые по сути своей, скорее, IPS) создавались как компромисс между скоростью работы TN и глубоким чёрным цветом и хорошей цветопередачей IPS. Их особенность заключается в том, что каждый субпиксель состоит из нескольких «фрагментов», ориентированных под разными углами, которые могут переключаться между различными состояниями. Существует множество вариаций построения *VA, матриц, но наиболее распространены MVA (и её вариации) и PVA (Samsung опять изобретал велосипеды).
Когда ЖК-технологии только начинали завоёвывать рынок, у *VA были свои преимущества (они были почти также быстры, как TN и при этом обладали неплохой цветопередачей), сейчас же, с развитием IPS и TN технологий, из которых выжали почти все соки, бонусы от *VA практически незаметны, а вот минусы — никуда не делись.
*VA матрицы страдают от т.н. black crush’а: хоть их структура и позволяет надёжно «закрывать» ячейки и показывать глубочайший чёрный цвет, различные оттенки тёмно-серого под прямым углом (собственно, под тем, под которым мы и смотрим на монитор) даются *VA-шкам с трудом.
Тем не менее, *VA до сих пор используются в качестве альтернативы IPS в сравнительно недорогих мониторах: по части цветопередачи (а главное — стабильности и воспроизводимости цветов) они всё равно в сто раз лучше дешёвых TN’ок, а особенности недорогих IPS (шестибитная матрица с FRC) практически сводят на нет все преимущества точной цветопередачи данной технологии.
Игровые мониторы
Итак, вернёмся к игровым мониторам. Если рассматривать компьютерные игры как определённый вид спорта, вроде футбола, автомобильных гонок, биатлона или ещё чего, то, естественным образом, появятся и профессиональные спортсмены, которые хотят получать максимум не только за счёт своих навыков, но и за счёт технических преимуществ.
Уменьшение каких-либо задержек между передачей команды компьютеру и полученным результатом — один из самых эффективных и заметных способов улучшить свои результаты. Несколько миллисекунд могут решить исход поединка.
Именно поэтому активно развиваются всякие мыши и клавиатуры с моментальным срабатыванием и скоростью обработки данных, сильно превышающих разумные пределы. По тому же пути развивается мониторное направление. Общая задержка между появлением какого-либо события и реакцией на него складывается из всех возможных задержек: пинга, времени на обработку кадра компьютером, времени на пересылку кадра монитору, времени на чтение и отрисовку кадра. Затем в работу вступает уже человек, чьи зрительные органы, мозг и мышцы тоже имеют ряд задержек, после чего клавиатура и мышь (или любые другие устройства ввода) должны передать назад результаты деятельности, а компьютер снова выполнить расчёты и показать результат.
Задержки вывода информации на дисплей состоят из двух крупных частей: т.н. Input lag’а и, собственно, самой скорости отклика / частоты развёртки. Собственно, игровые мониторы отличаются ото всех остальных именно тем, что поддерживают высокие частоты развёртки (100, 120, 144 Гц), обладают минимально возможным Input Lag’ом, а все остальные характеристики могут быть принесены в жертву именно этим двум.
Естественным выбором для таких потребностей является TN-матрица: если пользователю главное скорость отображения картинки, то применение среднестиатистических IPS-матриц попросту неоправдано — их средний показатель в 12мс BtW просто не позволит выводить изображение на дисплей чаще, чем 83 раза в секунду (1/0.012 = 83.3(3), и про 100 Гц можно будет забыть. *VA же при всех свои плюсах уступают нынешним TN и в стоимости производства, и в скорости работы. Кто в таком случае захочет платить больше?
Что ещё стараются внедрить в игровые мониторы? У Nvidia есть технология, убирающая «разрывы» в рассинхронизированных кадрах. Технология проприетарная, требует отдельной платы в мониторе, работает только с определёнными карточками, но именно она позволяет избежать каких бы то ни было проблем с синхронизацией кадровой частоты и развёртки монитора. Рассказывать здесь можно много и нудно, ребята из Ферры сняли отличное видео, которое наглядно демонстрирует работу данной технологии. Просто посмотрите:
AMD пошли своим путём, и внедрили (благодаря стандарту DisplayPort 1.2a) технологию FreeSync. Она не требует никаких дополнительных плат, и позволяет видеокарте и монитору на лету изменять частоту развёртки: от 9(!) до 144 Гц. Максимально плавное изображение без «разрывов» и каких-либо задержек.
От «программного» VSync эти штуки отличаются тем, что VSync в настройках игры хорошо работает, когда частота кадров выше частоты развёртки: видеокарта просто «не делает лишнего». А вот если FPS проседает, то классический VSync будет показывать один и тот же кадр изображения по времени нескольких «кадров» развёртки. Соответственно, просадки FPS будут очень заметны и ощутимо влиять на геймплей.
Типичные представители
90% всех игровых моделей (если не 95) — дисплеи с диагональю 23-24 или 27 дюймов c разрешением — FullHD (зачем лишний раз нагружать видеокарту в динамических дисциплинах, в которых на графику никто особо не смотрит?). Технология производства матриц у большинства моделей, как мы выяснили выше — современные TN-Film. Разумеется, ставят не что попало, и не безликие серые офисные панели с никакущими характеристиками, а вполне качественные продукты.
У Acer и ASUS есть свои «игровые» линейки: Predator и ROG соответственно (впрочем, ASUS успешно выпускает «игровые» гаджеты и без маркировки Republic of Gamers). Неплохие модели были у ViewSonic, кое-что есть у BENQ, не сидит без дела и AOC.
Недорогим решением для игрушек можно назвать Iiyama ProLite GE2488HS. За 13 с небольшим тысяч рублей вы не получите ни G-Sync, ни AMD FreeSync, ни 144Гц развёртки, но это будут полноценных 24 дюйма с 2 мс откликом. У монитора крайне неплохая (для его цены, разумеется) отстройка цветов «из коробки», которая покрывает sRGB на 97%, не мерцающая ни на каком из уровней яркости подсветка, 100-мм сверловка под VESA-кронштейн, невысокий Input Lag.
К сожалению, промежуточных моделей между «недорогими» и заточенными под максимум производительности в играх практически нет: бонусов от какого-нибудь монитора за 18 тысяч относительно этой Iiyama практически нет (при условии того, что у вас средненькое железо), а лишние 6 килорублей лучше потратить на SSD-диск под игрушки.
UPD: Как правильно подсказал a553 до сих пор в продаже можно найти 144 Гц модельку BenQ XL2411Z, правда, единственным бонусом относитльно Iiyama будет поддержка 3D-очков Nvidia. А вот цена на него уже не такая гуманная, но его по праву можно назвать самым бюджетным игровым решением с необходимыми плюшками.
За 25 тысяч рублей можно приобрести Viewsonic VG2401MH. 24 дюйма, 144 ГЦ, подъёмно-поворотная подставка, россыпь интерфейсных портов, G-Sync. В общем, полный набор. Что касается цветопередачи, то здесь всё неплохо: хоть и используется TN-матрица, но она неплохо откалибрована и цветовой охват близок к sRGB.
Беда в другом. Температурная равномерность подсветки сильно зависит от яркости, т.к. используются светодиоды с синим излучателем и жёлтым люминофором. В сумме, конечно, они дают белый свет, но вот его температура сильно зависит от яркости, из-за чего тени проваливаются в синеву, а вот яркие и насыщенные оттенки, наоборот, чуть желтят. Input lag находится на грани различимого (на самом деле, он чуть ниже, чем способны заметить лучшие игроки в CS), так что данную модельку можно смело назвать начальным профессиональным уровнем. Кстати, здесь встречается типичная «игровая» фича: возможность нанести «прицел» аппаратными средствами поверх любой картинки. В CS со снайперской винтовкой вполне зайдёт и за чит. 😉 Эта же фишка есть и у ASUS’ов серии ROG, и у AOC’ов.
Может показаться, что Acer Predator XB240HAbpr почти ничего не отличается от Viewsonic’а, а стоит почему-то на треть дороже. На самом деле отличие есть, и какое. Acer — один из немногих поддерживает и 144 Гц развёртку, и технологию Nvidia G-Sync, и Nvidia 3D с затворными очками. Правда, в комплекте их нет, ценник у него не самый гуманный, а 3D в играх — на любителя. Ещё не Oculus Rift, но уже создаёт проблемы: и производительность требуется другая, и не во всех играх хорошо работает.
Ну и в качестве вишенки на торте: ASUS MG279Q, подрывающий устои игрового мониторостроения. Во-первых, он создан на базе AHVA (помните! AHVA это технология-аналог IPS, и к *VA не имеет отношения) матрице. Более того, она честная, восьмибитная, при этом заявленное время отклика — 4 мс. Ну и разрешение: вместо «игровых» FullHD используется WHQGA (2560*1440), которое требует минимум GTX 970 для комфортной работы в игрушках.
Nvidia G-sync здесь нет, зато есть AMD Freesync (мониторов с ней, кстати, достаточно много, потому что за FreeSync денег никто не просит). Версия с G-Sync тоже существует, но найти её в продаже очень тяжело. К тому же она дороже из-за лицензионных отчислений чёрно-зелёным. При всей своей игронаправленности ASUS MG279Q показывает отличную цветопередачу, его не стыдно использовать для работы с графикой. Правда, перед этим придётся изрядно повозиться с колориметром, т.к. заводские гамма-кривые откровенно… кривые, да и точка белого, судя по отзывам и обзорам, часто уплывает.
Личный опыт
Не сказать, что я прям шедеврально играю в шутеры, но рассказывать о том, что сам не трогал я не люблю. 144 Гц с G-Sync я тестировал на AOC G2460pg и GTX 980Ti.
Сейчас такой не найти, но технологии там всё те же. С поправкой на то, что я пользователь избалованный всякими 980Ti, высокими разрешениями, SSD-дисками и прочими излишествами… можно смело сказать, что на игры я взглянул под совершенно другим углом. С FullHD и мощной видеокартой выдать честных 144 FPS и упереться в G-Sync вообще не проблема, но такой потрясающей чёткости и плавности картинки я не видел. Примерно такой же эффект я испытал, когда впервые увидел честные 48/60 FPS ролики голливудских блокбастеров. Вот вам нарезка из баяна семилетней давности с 60 FPS:
Здесь привычное кино становится похоже на трёхмерную игрушку, а вот какой-нибудь Battlefield 4 или TitanFall полностью преображается. Не скажу, что это позволило улучшить статистику фрагов так, чтобы это было статистически заметно, но после 144Гц развёртки и соответствующего фреймрейта смотреть, как счётчик замирает на значении 60 FPS немного… обидно, что ли. Словно потерял контакт с происходящим и смотришь на всё это дело сквозь запотевшее стекло. Через пару дней эффект исчезает, но вот вернуться к тем заоблачным скоростям и моментальным реакциям очень и очень хочется. К хорошему быстро привыкаешь. А несчастным консольщикам такого не видать, как ушей своих, как минимум в этом поколении приставок.
На этом всё. Если у вас остались вопросы — задавайте. Последняя тема, которая у меня осталась по мониторам — это 4k2k в домашних условиях, но об этом в другой раз.