Что значит функция непрерывна

Непрерывность функций – теоремы и свойства

Что значит функция непрерывна

Определение непрерывности функции

Определение непрерывности справа (слева)
Функция f ( x ) называется непрерывной справа (слева) в точке x 0 , если она определена на некоторой правосторонней (левосторонней) окрестности этой точки, и если правый (левый) предел в точке x 0 равен значению функции в x 0 :
.

Свойства непрерывных в точке функций

Свойство непрерывности слева и справа
Функция непрерывна в точке тогда и только тогда, когда она непрерывна в справа и слева.

Доказательства свойств приводятся на странице «Свойства непрерывных в точке функций».

Непрерывность сложной функции

Предел сложной функции

Точки разрыва

Определение точки разрыва 1-го рода
Точка называется точкой разрыва первого рода, если является точкой разрыва и существуют конечные односторонние пределы слева и справа :
.

Определение скачка функции
Скачком Δ функции в точке называется разность пределов справа и слева
.

Таким образом, точка устранимого разрыва – это точка разрыва 1-го рода, в которой скачек функции равен нулю.

Определение точки разрыва 2-го рода
Точка называется точкой разрыва второго рода, если она не является точкой разрыва 1-го рода. То есть если не существует, хотя бы одного одностороннего предела, или хотя бы один односторонний предел в точке равен бесконечности.

Свойства функций, непрерывных на отрезке

Вторая теорема Вейерштрасса о максимуме и минимуме непрерывной функции
Непрерывная на отрезке функция достигает на нем своих верхней и нижней граней или, что тоже самое, достигает на отрезке своего максимума и минимума.

Обратные функции

Аналогичным образом можно сформулировать теорему о существовании и непрерывности обратной функции на полуинтервале.

Свойства и непрерывность элементарных функций

Элементарные функции и обратные к ним непрерывны на своей области определения. Далее мы приводим формулировки соответствующих теорем и даем ссылки на их доказательства.

Показательная функция

Логарифм

Экспонента и натуральный логарифм

Степенная функция

Тригонометрические функции

Теорема о непрерывности тригонометрических функций
Тригонометрические функции: синус ( sin x ), косинус ( cos x ), тангенс ( tg x ) и котангенс ( ctg x ), непрерывны на своих областях определения.

Теорема о непрерывности обратных тригонометрических функций
Обратные тригонометрические функции: арксинус ( arcsin x ), арккосинус ( arccos x ), арктангенс ( arctg x ) и арккотангенс ( arcctg x ), непрерывны на своих областях определения.

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Источник

Непрерывность функции в точке, разрывы первого и второго рода

Процесс исследования функции на непрерывность неразрывно связан с навыком нахождения односторонних пределов функции. Поэтому, чтобы приступить к изучению материала данной статьи, желательно предварительно разобрать тему предела функции.

Непрерывность функции в точке

Данное определение позволяет вывести следствие: значение предела функции в точках непрерывности совпадает со значением функции в этих точках.

Решение

Соответствующая последовательность значений функций выглядит так:

на чертеже они обозначены зеленым цветом.

Соответствующая последовательность функций:

на рисунке обозначена синим цветом.

После вычисления значения функции в заданной точке очевидно выполнение равенства:

Что значит функция непрерывна

Устранимый разрыв первого рода

Решение

Ответ: пределы справа и слева являются равными, а заданная функция в точке х 0 = 5 не определена, т.е. в этой точке функция имеет устранимый разрыв первого рода.

Неустранимый разрыв первого рода

Неустранимый разрыв первого рода также определяется точкой скачка функции.

Решение

Определим пределы справа и слева от этих точек и значение заданной функции в этих точках:

Ответ: в конечном счете мы получили:

Нам остается только подготовить чертеж данного задания.

Что значит функция непрерывна

Разрыв второго рода (бесконечный разрыв)

Решение

Зададим произвольную последовательность значений аргумента, сходящуюся к х 0 слева. К примеру:

Ей соответствует последовательность значений функции:

Источник

Непрерывность функций с примерами решения и образцами выполнения

Непрерывность функции:

Непрерывные функции, точки разрыва и их классификация, действия над непрерывными функциями, свойства функций, непрерывных на сегменте.

Определение:

Функция у = f(x) называется непрерывной в точке х₀, если:

Если в точке x₀ функция непрерывна, то точка x₀ называется точкой непрерывности функции.

Пример:

Исследовать на непрерывность функцию Что значит функция непрерывнав точке х = 1.

Решение:

Чтобы доказать, что функция Что значит функция непрерывнанепрерывна в точке х = 1, необходимо проверить выполнение трех следующих условий (определение непрерывности):

Таким образом, доказано, что функция Что значит функция непрерывнанепрерывна в точке х = 1.

Замечание:

Формулу (10.1) можно записать в виде
(10.2) Что значит функция непрерывна
так как Что значит функция непрерывна. Это значит, что при нахождении предела непрерывной функции можно переходить к пределу под знаком функции.

Введем понятие непрерывности функции в точке х₀ справа и слева.
Если, существует Что значит функция непрерывна f(x) = f(x₀), то функция называется непрерывной в точке x₀ слева. Аналогично определяется непрерывность функции справа.

Так как ∆x = x-x₀, a ∆y = f(x)-(x₀), то условие (10.1) равносильно следующему:
Что значит функция непрерывна

Определение:

Функция у = f(x) называется непрерывной в точке х₀, если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции
(10.3) Что значит функция непрерывна

Пример:

Показать, что функция у = х³ непрерывна для любого значения аргумента х.

Решение:

Найдем приращение функции ∆y.

Используя теоремы о пределе суммы и произведения функции, получим
Что значит функция непрерывна(3x²∆x 4- 3x∆x² + ∆x³) = 0.

Следовательно, функция у = х³ непрерывна при — ∞ Точки разрыва функции и их классификация

Определение:

Точка х₀ называется точкой разрыва функции у = f(x), если она принадлежит области определения функции или ее границе и не является точкой непрерывности.

Так, например, функция Что значит функция непрерывна(рис. 89) терпит разрыв при х = 1. Эта функция не определена в точке х = 1, и не существует предела функции в этой точке.

Что значит функция непрерывнаРис. 89. График функции Что значит функция непрерывна

Определение:

Точка разрыва x₀ функции у = f(x) называется точкой устранимого разрыва, если существуют оба односторонних предела в точке x₀ и они равны, т. е. Что значит функция непрерывна

Пример:

Исследовать на непрерывность функцию
Что значит функция непрерывна

Решение:

В точке x=-1 функция не определена, так как, выполнив подстановку, получаем неопределенность Что значит функция непрерывна. В других точках дробь можно сократить на (1 + х), так как в них 1 + х ≠ 0. Легко видеть, что односторонние пределы слева и справа в точке х = — 1 равны между собой и их можно вычислить:
Что значит функция непрерывна

Определение:

Если в точке x₀ односторонние пределы слева и справа существуют, но не равны, точка x₀ называется точкой разрыва I рода.

Пример:

Исследовать на непрерывность функцию
Что значит функция непрерывна(рис. 90).

Что значит функция непрерывнаРис. 90. График функции Что значит функция непрерывна

Решение: Вычислим односторонние пределы функции в точке ее разрыва х = 4.

Предел слева —Что значит функция непрерывна.
Предел справа — Что значит функция непрерывна.
Пределы слева и справа существуют, но не равны, следовательно, точка x = 4 для данной функции — точка разрыва I рода (точка скачка).

Определение:

Точки разрыва, не являющиеся точками разрыва I рода, называются точками разрыва II рода.

В точках разрыва II рода не существует хотя бы один из односторонних пределов. Функция Что значит функция непрерывна, представленная на рис. 89, не имеет ни левого, ни правого конечного предела в точке х = 1. Следовательно, для данной функции x = 1 является точкой разрыва II рода.

Действия над непрерывными функциями

Теорема:

Непрерывность суммы, произведения и частного непрерывных функций. Если функции ϕ(x) и ψ(x) непрерывны в точке Хо, то их сумма и произведение также непрерывны в точке x₀. Если, кроме того, знаменатель в рассматриваемой точке не равен нулю, то частное непрерывных функций есть функция непрерывная.

Докажем непрерывность произведения.

Дано: непрерывность функций в точке x₀:
Что значит функция непрерывнаи Что значит функция непрерывна

Доказать, что f(x) — ϕ(x) ∙ ψ(x) есть функция непрерывная в точке x₀, т. е. Что значит функция непрерывнаf(x) — f(x₀).

Доказательство:
Что значит функция непрерывнаf(x) = Что значит функция непрерывна[ϕ(x) ∙ ψ(x)] = Что значит функция непрерывнаϕ(x) ∙ Что значит функция непрерывнаψ(x) = ϕ(x₀) ∙ ψ(x₀) = f(x₀).

Можно строго доказать, что все основные элементарные функции непрерывны при всех значениях х, для которых они определены.

Например, степенная у = xⁿ, показательная у = Что значит функция непрерывна, тригонометрические у = sin х и у = cos х функции непрерывны на всей числовой оси (х ∈ R), логарифмическая функция Что значит функция непрерывнанепрерывна при х > 0, а тригонометрическая у = tg x непрерывна в каждом из интервалов Что значит функция непрерывнаи терпит разрыв II рода в точках Что значит функция непрерывна(k = 0; ±1; ±2;…).

Теорема:

Непрерывность сложной функции. Если функция и = ϕ(x) непрерывна в точке x₀, а функция у = f(u) непрерывна в точке и₀ = ϕ(x₀), то сложная функция у = f [ϕ(x)] непрерывна в точке x₀.

В заключение этого раздела рассмотрим два предела, которые нам понадобятся в дальнейшем.

Пример:

Вычислить Что значит функция непрерывна

Решение:

Заметим, что при х → 0 числитель и знаменатель одновременно стремятся к нулю, т.е. имеет место неопределенность вида Что значит функция непрерывна. Выполним преобразование
Что значит функция непрерывна

Так как данная логарифмическая функция непрерывна в окрестности точки х = 0, то можно перейти к пределу под знаком функции ( Что значит функция непрерывнаf(x)= f (Что значит функция непрерывнаx)).
Что значит функция непрерывна
но Что значит функция непрерывна— второй замечательный предел.

Следовательно,
(10.4) Что значит функция непрерывна

В частности, при а = е
(10.5) Что значит функция непрерывна

Таким образом, у = ln( 1 + х) и у = х — эквивалентные бесконечно малые функции при х → 0.

Пример:

Вычислить Что значит функция непрерывна

Решение:

Здесь мы имеем дело с неопределенностью вида Что значит функция непрерывна. Для нахождения предела сделаем замену переменной, положив Что значит функция непрерывна— 1 = t. Тогда Что значит функция непрерывна. При х → 0 также и t → 0.
Что значит функция непрерывна

Так как на основании результата, полученного в предыдущем примере, Что значит функция непрерывнато
(10.6) Что значит функция непрерывна

В частности, если а = е, имеем
Что значит функция непрерывна
т.е. у = Что значит функция непрерывна— 1 и y = x — эквивалентные бесконечно малые функции при х → 0.

Свойства функций, непрерывных на сегменте

Определение:

Функция у = f(x) непрерывна на сегменте [а, b], если она непрерывна во всех внутренних точках Этого сегмента, а на концах сегмента (в точках a и b) непрерывна соответственно справа и слева.

Теорема:

Если функция у = f(x) непрерывна на сегменте [а, b], то она достигает на этом сегменте своего наибольшего и(или) наименьшего значения.

Простым доказательством этой теоремы, является геометрическая иллюстрация функции у = f(x) на рисунке 91. Непрерывная на сегменте [α, b] функция достигает наименьшего своего значения в точке х = x₁= а, а наибольшего значения в точке х₂.

Что значит функция непрерывнаРис. 91. Геометрическая иллюстрация условий теоремы 10.3

Следствие:

Если функция у = f(x) непрерывна на сегменте [a, b], то она ограничена на этом сегменте.

Действительно, если по теореме 10.3 функция достигает на сегменте наибольшего M и наименьшего т значений, то имеет место неравенство m ≤ f(x) ≤ M для всех значений функции на рассматриваемом сегменте. Т. е. |f(x)| ≤ M и, следовательно, функция у = f(x) ограничена на сегменте [а, b].

Теорема:

Теорема Больцано-Коши. Если функция у = f(x) непрерывна на сегменте [а, b] и на ее концах принимает значения разных знаков, то внутри этого сегмента найдется, по крайней мере, одна тонка С, в которой функция равна нулю.

Геометрический смысл теоремы заключается в следующем: если точки графика функции у = f(x), соответствующие концам сегмента [a, b], лежат по разные стороны от оси ОХ, то этот график хотя бы в одной точке сегмента пересекает ось OX. На данном рисунке 92 это три точки x₁, x₂, x₃.

Что значит функция непрерывнаРис. 92. Геометрическая иллюстрация условий теоремы 10.4

Теорема:

О промежуточных значениях функции. Если функция у = f(x) непрерывна на сегменте [α, b] и f(α) = A и f(b) = В, то для любого числа С, заключенного между A и B, найдется внутри этого сегмента такая точка с, что f(c) = С.

Из графика на рисунке 93 видно, что непрерывная функция, переходя от одного значения к другому, обязательно проходит через все промежуточные значения.

Что значит функция непрерывнаРис. 93. Геометрическая иллюстрация условий теоремы 10.5

Теорема:

О непрерывности обратной функции.) Если функция у = f(x) непрерывна на сегменте [а, b] в возрастает (убывает) на этом сегменте, то обратная функция х = f⁻¹(y) на соответствующем сегменте оси OY существует и является также непрерывной возрастающей (убывающей) функцией.

Эту теорему мы принимаем без доказательства.

Решение на тему: Непрерывная функция

Пример:

Показать, что функция у = 4x² непрерывна в точке х = 2.

Решение:

Для этого необходимо показать, что в точке х = 2 выполняется все три условия непрерывности функции:

1) функция у = 4х² определена в точке х = 2 ⇒ f(2) = 16;
2) существует Что значит функция непрерывна f(x) = Что значит функция непрерывна4x²= 16;
3) этот предел равен значению функции в точке х = 2

Что значит функция непрерывнаf(x) = f(2) = 16.

Пример:

Показать, что функция у = sin x непрерывна для любого значения аргумента х.

Решение:

Найдем приращение функции ∆y, используя формулы тригонометрических тождеств
Что значит функция непрерывна

Так как Что значит функция непрерывнато при любом х имеем
Что значит функция непрерывна

Эта функция (рис. 94) определена во всех точках сегмента [0,4] и ее значение при х = 3 ⇒ у = 2. Функция терпит разрыв, так как она не имеет предела при х → 3 :
Что значит функция непрерывнаЧто значит функция непрерывна

Следовательно, точка х = 3, точка разрыва первого рода. При этом в граничных точках исследуемого сегмента [0,4], функция f(x) непрерывна справа (х = 0) и непрерывна слева (х = 4).

Пример:

Исследовать на непрерывность функцию Что значит функция непрерывна

Решение:

В точке х = 5 функция не определена, т.к., выполнив подстановку, получаем неопределенность вида 0/0. Легко доказать, что
Что значит функция непрерывна

Следовательно, точка х = 5 точка устранимого разрыва.

Пример:

Исследовать на непрерывность функцию Что значит функция непрерывна

Решение:

В точке х = 0 функция (рис. 95) терпит разрыв, так как она не определена в этой точке. Пределы функции слева и справа от точки х = 0 равны ∞. Следовательно, точка х = 0 для данной функции является точкой разрыва второго

Пример:

Исследовать на непрерывность функцию Что значит функция непрерывна

Решение:

В точке х = 0 функция терпит разрыв 1-го рода, так как односторонние пределы существуют в этой точке, но не равны:
предел слева Что значит функция непрерывна
предел справа Что значит функция непрерывна

Что значит функция непрерывнаРис. 95. График функции Что значит функция непрерывна

Пример:

Исследовать на непрерывность функцию Что значит функция непрерывна.

Решение:

Что значит функция непрерывнаРис. 96. График функции Что значит функция непрерывна

Пример:

Исследовать на непрерывность функцию Что значит функция непрерывна

Решение:

Функция Что значит функция непрерывнане определена в точке х = 0. Точка х = 0 является точкой разрыва I рода, так как при х → 0 существуют пределы справа и слева:
Что значит функция непрерывна

Если доопределить функцию Что значит функция непрерывнав точке х = 0, полагая f(0) = 1, то получим уже непрерывную функцию, определенную так:
f(х) =Что значит функция непрерывна, если х ≠ 0; f(0) = 1.

Доопределив функцию в точке х = 0, мы устранили разрыв.

Непрерывность функций

Что значит функция непрерывна Что значит функция непрерывна Что значит функция непрерывна Что значит функция непрерывна

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Что значит функция непрерывна

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *