Что значит эпсилон в формуле

что какой эпсилон

Ε, ε (название: э́псилон, греч. έψιλον) — 5-я буква греческого алфавита. В системе греческой алфавитной записи чисел имеет числовое значение 5. Происходит от финикийской буквы hé — hé. От буквы «эпсилон» произошли латинская E и кириллическая Е. Название «эпсилон» (греч. Ε ψιλόν — «е простое» ) было введено для того, чтобы отличать эту букву от созвучного сочетания αι.
Использование

Заглавная буква эпсилон в основном не используется как символ, поскольку пишется так же, как и заглавная латинская буква E.

В различных дисциплинах при помощи строчной буквы ε обозначаются:

в математическом анализе — положительное сколь угодно малое вещественное число; см. примеры в статье Предел последовательности;
в алгебре — предельное порядковое число последовательности \omega,\omega^<\omega>,\omega^<\omega^<\omega>>,\dots.
в теории множеств — отношение принадлежности элемента множеству (такое обозначение является устаревшим, сейчас для той же цели используется символ ∈);
в тензорном исчислении — символ Леви-Чивиты;
в теории автоматов — эпсилон-переход;
в физике — угловое ускорение; коэффициент экстинкции оптического поглощения; проводимость среды; электронный захват; относительное удлинение; диэлектрическая проницаемость среды; энергия активации; ЭДС; ε0 — универсальная электрическая постоянная.
в астрономии — пятая (как правило) по яркости звезда в созвездии;
в программировании — точность численного типа данных;
в информатике — пустая строка;
в фонетике — неогубленный гласный переднего ряда средне-нижнего подъёма.
в теории метаболического контроля — эластичность фермента

Источник

Что такое предел? Что такое |Xn-A| Математика Наука

Для начала успокойтесь, я понимаю на носу экзамен, но для математики нужна «холодная голова». Сейчас мы во всем разберемся, все очень просто на самом деле 🙂

Начнем с того, что вы немного запутались в обозначениях. Последовательность принято записывать в фигурных скобках: , в то время, как ее элемент — без скобок: Xn. В первом случае n — это абстрактный номер, а во втором — это уже какой-то конкретный номер. Я могу сказать, возьмем пятый элемент последовательности , тогда n=5, то есть элемент Xn=X5, но при этом последовательность по-прежнему будет обозначаться , а не в коем случае не .

Я допускаю, что иногда лектор (учитель) опускает фигурные скобки и обзывает последовательность просто Xn, и тут уже надо понимать из контекста, где речь идет о целой последовательности, а где о ее конкретном элементе (это не сложно, как правило).

Теперь, собственно, предел. Говорим о числовых последовательностях (для нечисловых все тоже самое, только слова другие). Так как нельзя брать предел от числа — это бессмыслица, то нет нужды писать фигурные скобки в пределе : lim , пишется просто lim Xn, и имеется в виду предел последовательности (Здесь и далее, когда я пишу lim и говорю «предел последовательности», то всегда имею ввиду «при n стремящимся к бесконечности»).

Запись, lim Xn = A, значит, что при стремлении n к бесконечности, то есть вы берете все больше и больше членов последовательности и так доходите до бесконечного их числа, существует некое ЧИСЛО А, которое является пределом для этой числовой последовательности, причем А может, как являться членом , так и не являться, это никак не регулируется определением.

Вот собственно и все! Теперь вы можете попробовать посмотреть, как работает это определение на простых последовательностях, например:

2) такая, что Xn=1, для любого n, lim Xn = 1.

Обратите внимание, в первом случае предел не принадлежит последовательности, а во втором — принадлежит.

Источник

Что значит эпсилон в формуле

Когда говорят об эпсилонах или о языке эпсилон-дельта, речь идет вовсе не о секретных кодах Министерства обороны, а о сложном математическом аппарате, который напрямую связан с понятием предела. Первое определение понятию предела сформулировал Бернард Больцано (1781–1848), не получивший, к сожалению, при жизни должного признания. Первым, кто использовал это понятие на практике, был Огюстен Луи Коши (1789–1857), однако окончательное строгое определение предела дал Карл Вейерштрасс. Определение предела на языке эпсилон-дельта является чрезвычайно точным в той части, которая касается делимости на бесконечное множество частей. Хотя это определение очень сложно понять тому, кто не владеет некоторыми математическими знаниями, оно тем не менее долгое время использовалось в учебниках для средней школы. Мы не хотим сказать, что старшеклассники недостаточно умны, чтобы понять его, но не стоит ожидать, что все поймут его с одинаковой легкостью. Во многих учебниках оно приводится мелким шрифтом, и преподаватели обходят его молчанием.

Что значит эпсилон в формуле

Карл Вейерштрасс на литографии 1895 года. Этот немецкий математик был первым, кто использовал на практике язык эпсилон-дельта.

Переписка, несомненно, является древнейшей формой общения между учеными. С ее помощью формулируется и решается множество задач. По сравнению с другими формами общения письма обладают преимуществом — конфиденциальностью: они адресуются конкретному человеку или группе людей. В виде переписки проходили многие научные дискуссии.

Одной из самых известных стало жаркое противостояние между Ньютоном и Лейбницем об авторстве математического анализа. Абсолютно независимо друг от друга они получили аналогичные результаты, однако Ньютон опубликовал свои работы первым, что дало ему основания обвинить Лейбница в плагиате. Это привело к ожесточенному и абсурдному спору, не имевшему аналогов в истории науки.

Попробуем сделать понятие предела более ясным, несколько упростив его.

По сути оно имеет много общего с понятием накопления. Представим, что перед входом в помещение образовалась очередь. Можно заметить, что люди постепенно становятся ближе ко входу и друг к другу. Это совершенно естественно: изначально, когда в очереди немного людей, они стараются сохранять комфортное расстояние между собой, но по мере того как число людей растет, расстояние между ними уменьшается. Интересно, что мы говорим о двух разных расстояниях, которые, однако, тесно связаны между собой: о расстоянии между началом очереди и входом и о расстоянии между людьми в очереди, которое по мере того как мы приближаемся к концу, увеличивается. Это логично, так как те, кто становится в очередь, стараются сохранять комфортное расстояние между собой, но по мере того как очередь движется вперед, люди чувствуют давление тех, кто находится позади. Можно сказать, что люди скапливаются у входа.

Можно определить степень скопления людей с помощью параметра, который будет описывать, например, изменение расстояния между людьми в очереди по мере приближения к ее началу. Как правило, этот параметр будет постепенно уменьшаться.

Что значит эпсилон в формуле

В очереди, например у входа в кинотеатр, люди собираются у дверей, где расстояние между ними будет минимальным. По мере отдаления от входа расстояние между людьми увеличивается.

Степень скопления людей можно определить, выбрав в качестве единицы измерения конкретное расстояние, например 50 см. Если в 50 см от входа находятся люди, это будет соответствовать определенной степени скопления. В зависимости от величины этой единицы измерения число людей будет изменяться. Аналогично можно измерить степень скопления людей, оценив расстояние между ними.

Здесь возникает первый интересный вопрос: когда мы видим скопление людей, логично предположить, что они собрались по какой-то причине, то есть это скопление возникает вокруг определенного места, где происходит что-то важное. Когда мы видим на дороге скопление муравьев, то сразу же понимаем, что где-то поблизости находится еда или вход в муравейник. Еще один пример — скопление машин на автомагистрали, которое служит признаком того, что поблизости находится пункт оплаты проезда или произошла авария. Эти примеры помогут нам понять одно из самых интересных открытий в истории математики. Оно касается существования определенных чисел, которые в течение веков скрывались в мире бесконечно малых.

В предыдущих примерах речь шла о дискретных множествах. Рассмотрим непрерывные величины, так как они допускают возможность бесконечного деления.

Оставим скопления людей и автомашин и рассмотрим возможные множества точек на прямой. Допустим, что дана последовательность точек а 1, a 2, а 3, а n…, которые обладают одним свойством: соседние члены последовательности располагаются все ближе и ближе друг к другу. Очевидно, что они скапливаются вокруг некоторой точки — обозначим ее Р. Допустим, что выбранной нами основной мерой длины является отрезок длиной d. Если мы поместим один конец этого отрезка в точку Р, то увидим, что некоторые точки последовательности окажутся внутри этого отрезка длиной d.

Что значит эпсилон в формуле

Более того, мы сможем найти точку а n, после которой все точки будут располагаться внутри отрезка d. Если мы уменьшим длину отрезка и сделаем ее равной d’ d, то все точки, начиная с более удаленной, а m, будут располагаться внутри этого нового отрезка. Именно такое значение имеет эпсилон в математическом анализе.

Мы можем гарантировать, что для любой величины d всегда найдется такое n, начиная с которого все элементы последовательности будут находиться внутри отрезка d. В этом случае говорят, что последовательность сходится в точке Р. Это означает следующее: во-первых, эта последовательность бесконечна, во-вторых, расстояние между точкой Р и произвольным членом последовательности может быть сколь угодно малым.

Когда мы работаем с дискретными множествами, все изложенное выше практически неприменимо. Рассмотрим последовательность чисел 100, 50, 25, 12, 6, 3, 1 (можно представить эту последовательность как очередь из семи чисел у входа, которым, например, является ноль). Очевидно, что разница между произвольным членом последовательности и нулем постепенно уменьшается, равно как и разница между двумя соседними членами последовательности. Например, между 100 и 50 находится 49 чисел, между 6 и 3 — всего два. Тем не менее нельзя сказать, что члены последовательности скапливаются в окрестности точки 0. Очевидно, что если мы возьмем отрезок длиной 1/2 и поместим один из его концов в точку 0, на этом отрезке не будет находиться ни один член последовательности. А если мы рассмотрим последовательность

Что значит эпсилон в формуле

то вблизи нуля всегда будет находиться какой-либо ее член, сколь бы малым ни было расстояние до нуля.

На языке математики эти расстояния называются окрестностями. Окрестность подобна скобкам, в которые заключена точка Р. Основная идея заключается в том, что сколь малыми ни были бы эти скобки (то есть радиус окрестности), в них всегда будут находиться элементы последовательности. В языке эпсилон-дельта основную роль играет соотношение между двумя числами: шириной скобок (радиусом окрестности, который обычно обозначают ε — эпсилон) и числом n, определяющим элемент а n, начиная с которого все элементы последовательности будут располагаться внутри заданной окрестности. На языке математики это звучит так: «Для любого эпсилон существует n, такое что…»

Именно так определяется понятие бесконечного деления, очень близкое к понятию предела. Когда в одном из парадоксов Зенона интервал делится пополам бесконечное число раз, мы формируем последовательность, подобную описанной в предыдущем примере. Теперь мы можем воспользоваться строгим определением перехода к пределу и подтвердить, что последним членом последовательности будет 0. Это не помогает разрешить парадокс, так как ситуация, по сути, не изменилась: точки образуют бесконечную последовательность и скапливаются вблизи нуля, и мы считаем, что существует последняя точка последовательности, 0, но в действительности 0 не является членом этой последовательности. Это утверждение не является оправданным, но четко определено на языке математики. Как говорил Бертран Рассел, «математика может быть определена как доктрина, в которой мы никогда не знаем ни о чем говорим, ни того, верно ли то, что мы говорим».

В действительности Коши в своем определении предела использовал не точки, которые скапливаются вокруг некоторой данной точки, а точки, которые скапливаются рядом друг с другом. Иными словами, скопление точек, которое рассматривал Коши, подобно скоплениям автомобилей на разных участках дороги, вызванным множеством аварий в разных местах. Ситуация значительно осложняется тем, что если мы рассматриваем исключительно рациональные числа, то прямая, на которой они располагаются, не будет заполнена — на ней останутся промежутки. Например: дана последовательность точек (теперь мы связываем точки на прямой с рациональными числами), которые скапливаются все плотнее и плотнее. Эту ситуацию можно четко определить на языке математики, что сделал Коши. Однако проблема заключается в том, что эти точки могут скапливаться вокруг пустого места на прямой, точнее вокруг точки, которой не соответствует никакое рациональное число.

Так происходит, например, в случае с последовательностью

Что значит эпсилон в формуле

о которой мы говорили в главе 2 и которая сходится к числу √2, а оно не является рациональным. Разумеется, мы можем построить прямоугольный треугольник, гипотенуза которого будет равна √2, но так мы определим это число геометрически, а во времена Коши математики пытались дать определение числам чисто арифметическими или аналитическими методами. Рациональные числа, по сути, вообще не были определены как числа, пока Дедекинд и, позднее, Кантор не сформулировали для них точной дефиниции. Последний сделал не только это, но и устранил промежутки на числовой прямой, которых в действительности существует бесконечное множество, так как иррациональных чисел, равно как и рациональных, бесконечно много.

Однако Кантор заслуживает отдельной главы, ведь он не только заполнил числовую прямую, устранив эти промежутки, но и первый встретился с бесконечностью лицом к лицу.

Источник

Что такое точность epsilon?

Напишите программу, которая оценивает значение математической константы e по формуле e*=*1*+*1/1!*+*1/2!*+*1/3!*+*. с заданной введенной точностью epsilon.

ну вот написал я прогу, Е у меня высчитывается, а что за ЭПСИЛОН? какона работает как ее задать? зачем она ваще нужна и где могла бы пригодиться?

Что такое файловый буфер? Что такое режим (модификатор) доступа, при работе с файлами?
Что такое файловый буфер? Что такое режим (модификатор) доступа, при работе с файлами?

Что такое IIS и что такое PWS? Почему одно без другого не работает?
вот уже второй день пытаюсь немного разобраться в АСП. накидал небольшую тестовую страничку. но с.

Что значит эпсилон в формулеЧто такое рекурсивный тип данных? Что такое конструкция рекурсивного типа?
Что такое рекурсивный тип данных? Что такое конструкция рекурсивного типа?

Что такое напряжение и что такое сила тока с позиции заряженных частиц
Объясните пожалуйста, что такое напряжение и что такое сила тока с позиции заряженных частиц.

пошарил значит на википедии, и вот что там нашел:

Упоминания о чем-то схожем попадаются в книжке Подбельского В. В. » Введение в программирование на языке си » 2004 года, которую можно откопать, например тут, в ней, на странице 83 приведен алгоритм «оценки машинного нуля», и сдается мне, что этот мышиный ноль именно то, что вам нужно. Если описать эту зверушку в коде, получится примерно так:

результат вывода странный, что я делаю не так?

Добавлено через 17 минут
например при EPSILON = 0.5 а X = 2 выдает INF в выводе

Добавлено через 36 минут
Только что заменил глупую ошибку в функции подсчета, вроде заработало, но прошу экспертной оценки

— очень плохой код. Прежде, чем программировать, нужно вывести рекуррентную формулу, которая связывает следующий член ряда с предыдущим:

Если что, мой пост был не с целью критики а анализ библиотечной реализации, вашей и SadiQ228‘а. Как ни странно, по эффективности методы не так уж сильно отличались. ну за исключением того, что вычисление факториала и степени с нуля давало громадную ошибку. Но это я еще перепроверю

Добавлено через 1 час 16 минут
Итак, результаты
библиотечный exp(): 0.040448 мкс
функция SadiQ228’а: 1.07945 мкс
функция Catstail’а: 0.142243 мкс
То есть способ с использованием предыдущего значения в 7,5 раз быстрее «лобового», но в 3,5 раза медленнее библиотечного (наверняка там пошаманили с оптимизациями). Если поставить epsilon = 1e-5 то результаты ближе:
exp(): 0.040998
SadiQ228’а: 0.814409
Catstail’а: 0.0630968

ребят, продолжая тему точности, пытаюсь высчитать E по другому ряду.
1/e = (-1)^n/n!; n=2

пытаюсь сделать но ответы удивляют, подскажите где ошибаюсь?

Решение

Легко. Просто надо вспомнить, что n! = n*(n-1)!

Добавлено через 8 минут

Типа того. А где ты здесь видишь факториалы? Хотя они, конечно, естьЧто значит эпсилон в формуле

Источник

Содержание:

При измерении разных физических величин мы получаем их числовые значения с определенной точностью. Например, при определении размеров листа бумаги (длины, ширины) мы можем указать их с точностью до миллиметра; размеры стола – с точностью до сантиметра, размеры дома, стадиона – с точностью до метра.

Нет необходимости указывать размеры стола с точностью до миллиметра, а размеры стадиона с точностью до сантиметра или миллиметра. Мы сами в каждой ситуации, опыте и эксперименте определяем, с какой точностью нам нужны данные физические величины. Однако очень важно оценивать, насколько точно мы определяем физическую величину, какую ошибку (погрешность) в ее измерении допускаем.

При измерении мы не можем определить истинное значение измеряемой величины, а только пределы, в которых она находится.

Пример:

Измерим ширину стола рулеткой с сантиметровыми и миллиметровыми делениями на ней (рис. 5.1). Значение наименьшего деления шкалы называют ценой деления и обозначают буквой С. Видно, что цена деления рулетки С = 1 мм (или 0,1 см).

Совместим нулевое деление рулетки с краем стола и посмотрим, с каким значением
шкалы линейки совпадает второй край стола (рис. 5.1). Видно, что ширина стола составляет чуть больше 70 см и 6 мм, или 706 мм. Но результат наших измерений мы запишем с точностью до 1 мм, то есть L = 706 мм.

Что значит эпсилон в формуле

Абсолютная погрешность измерения ∆ (ДЕЛЬТА)

Из рис. 5.1 видно, что мы допускаем определенную погрешность и определить ее «на глаз» достаточно трудно. Эта погрешность составляет не более половины цены деления шкалы рулетки. Эту погрешность называют погрешностью измерения и помечают ∆L («дельта эль»). В данном эксперименте ее можно записать
Что значит эпсилон в формуле

Сам результат измерения принято записывать таким образом: ширина стола L = (706,0 ± 0,5) мм, читают: 706 плюс-минус 0,5 мм. Эти 0,5 мм в нашем примере называют абсолютной погрешностью. Значения измеряемой величины (706,0 мм) и абсолютной погрешности (0,5 мм) должны иметь одинаковое количество цифр после запятой, то есть нельзя записывать 706 мм ± 0,5 мм.

Такая запись результата измерения означает, что истинное значение измеряемой величины находится между 705,5 мм и 706,5 мм, то есть 705,5 мм ≤ L ≤ 706,5 мм.

Относительная погрешность измерения ε (ЭПСИЛОН)

Иногда важно знать, какую часть составляет наша погрешность от значения
измеряемой величины. Для этого разделим 0,5 мм на 706 мм. В результате получим: Что значит эпсилон в формуле. То есть наша ошибка составляет 0,0007 долю ширины стола, или 0,0007 · 100% = 0,07%. Это свидетельствует о достаточно высокой точности измерения. Эту погрешность называют относительной и обозначают греческой буквой (эпсилон):

Что значит эпсилон в формуле(5.1)

Относительная погрешность измерения свидетельствует о качестве измерения. Если длина какогото предмета равна 5 мм, а точность измерения – плюс-минус 0,5 мм, то относительная погрешность будет составлять уже 10%.

Стандартная запись результата измерений и выводы

На точность измерения влияет много факторов, в частности:

Все это необходимо учитывать при проведении измерений.

Измерительные приборы

Устройства, с помощью которых измеряют физические величины, называют измерительными приборами.

Простейший и хорошо известный вам измерительный прибор — линейка с делениями. На ее примере вы видите, что у измерительного прибора есть шкала, на которой нанесены деления, причем возле некоторых делений написано соответствующее значение физической величины. Так, значения длины в сантиметрах нанесены на линейке возле каждого десятого деления (рис. 3.11). Значения же, соответствующие «промежуточным» делениям шкалы, можно найти с помощью простого подсчета.

Что значит эпсилон в формуле

Разность значений физической величины, которые соответствуютближайшим делениям шкалы, называют ценой деления прибора. Ёе находят так: берут ближайшие деления, возле которых написаны значения величины, и делят разность этих значений на количество промежутков между делениями, расположенными между ними.

Например, ближайшие сантиметровые деления на линейке разделены на десять промежутков. Значит, цена деления линейки равна 0,1 см = 1 мм.

Как определяют единицы длины и времени

В старину мерами длины служили большей частью размеры человеческого тела и его частей. Дело в том, что собственное тело очень удобно как «измерительный прибор», так как оно всегда «рядом». И вдобавок «человек есть мера всех вещей»: мы считаем предмет большим или малым, сравнивая его с собой.

Так, длину куска ткани измеряли «локтями», а мелкие предметы — «дюймами» (это слово происходит от голландского слова, которое означает «большой палец»).

Однако человеческое тело в качестве измерительного прибора имеет существенный недостаток: размеры тела и его частей у разных людей заметно отличаются. Поэтому ученые решили определить единицу длины однозначно и точно. Международным соглашением было принято, что один метр равен пути, который проходит свет в вакууме за 1/299792458 с. А секунду определяют с помощью атомных часов, которые сегодня являются самыми точными.

Можно ли расстояние измерять годами

Именно так и измеряют очень большие расстояния — например, расстояния между звездами! Но при этом речь идет не о годах как промежутках времени, а о «световых годах». А один световой год — это расстояние, которое проходит свет за один земной год. По нашим земным меркам это очень большое расстояние — чтобы убедиться в этом, попробуйте выразить его в километрах! А теперь вообразите себе, что расстояние от Солнца до ближайшей к нему звезды составляет больше четырех световых лет! И по астрономическим масштабам это совсем небольшое расстояние: ведь с помощью современных телескопов астрономы тщательно изучают звезды, расстояние до которых составляет много тысяч световых лет!

Что надо знать об измерительных приборах

Приступая к измерениям, необходимо, прежде всего, подобрать приборы. Что надо знать об измерительных приборах?

Что значит эпсилон в формуле

На рисунке 34 изображены три линейки с одинаковыми верхними пределами (25 см). По эти линейки измеряют длину с различной точностью. Наиболее точные результаты измерений дает линейка 7, наименее точные — линейка 3. Что же такое точность измерений и от чего она зависит? Для ответа на эти вопросы рассмотрим сначала понятие цена деления шкалы прибора.

Что значит эпсилон в формуле

Цена деления — это значение наименьшего деления шкалы прибора.

Как определить цену деления шкалы? Для этого необходимо:

Полученное значение и будет ценой деления шкалы прибора. Обозначим ее буквой С.

Точно так же можно определить и цену деления шкалы мензурок 1 и 2 (рис. 35). Цена деления шкалы мензурки 1:

Что значит эпсилон в формуле

Цена деления шкалы мензурки 2:

Что значит эпсилон в формуле

Что значит эпсилон в формуле

А какими линейкой и мензуркой можно измерить точнее?

Измерим один и тот же объем мензуркой 1 и мензуркой 2. Но показаниям шкал в мензурке 1 объем воды V = 35 мл; в мензурке 2 — V = 37 мл.

Что значит эпсилон в формуле

Итак, любым прибором, имеющим шкалу, измерить физическую величину можно с точностью, не превышающей цены деления шкалы.

Линейкой 1 (см. рис. 34) можно измерить длину с точностью до 1 мм. Точность измерения длины линейками 2 и 3 определите самостоятельно.

Главные выводы:

Для любознательных:

В истории науки есть немало случаев, когда повышение точности измерений давало толчок к новым открытиям. Более точные измерения плотности азота, выделенного из воздуха, позволили в 1894 г. открыть новый инертный газ — аргон. Повышение точности измерений плотности воды привело к открытию в 1932 г. одной из разновидностей тяжелых атомов водорода — дейтерия. Позже дейтерий вошел в состав ядерного горючего. Оценить расстояния до звезд и создать их точные каталоги ученые смогли благодаря повышению точности при измерении положения ярких звезд на небе.

Пример решения задачи

Для измерения величины угла используют транспортир. Определите: 1) цену деления каждой шкалы транспортира, изображенного на рисунке 38; 2) значение угла BАС, используя каждую шкалу; укажите точность измерения угла ВАС в каждом случае.

Что значит эпсилон в формуле

Решение:

1) Цена деления нижней шкалы:

Что значит эпсилон в формуле

Цена деления средней шкалы:

Что значит эпсилон в формуле

Цена деления верхней шкалы:

2) Определенный но нижней шкале с точностью до 10° Что значит эпсилон в формулеопределенный по средней шкале с точностью до 5° Что значит эпсилон в формулеопределенный по верхней шкале с точностью до 1° Что значит эпсилон в формуле

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *