Что значит число кратно другому числу
Делитель и кратное в математике
Что такое делители и кратные числа
Деление — математическое действие, которое определяет, сколько раз одно число содержится в другом. Обратной операцией является умножение.
Выделяют следующие компоненты деления:
Делимое — число, которое делят на несколько частей.
Делитель — число, которое показывает, на сколько частей нужно разделить делимое.
Частное — число, которое является результатом деления.
Умножение частного на делитель дает делимое.
Чтобы получить делитель, нужно делимое разделить на частное.
Д е л и м о е = ч а с т н о е * д е л и т е л ь Д е л и т е л ь = д е л и м о е / ч а с т н о е
Например, нужно поровну разделить 16 мандаринов между двумя детьми. Для этого 16:2=8. Таким образом, каждый ребенок получит по 8 мандаринов.
16 в этом примере является делимым, 2 — делителем, 8 — частным. Шестнадцать поделили на две части, по восемь в каждой. Или восемь содержится в 16 два раза. Или 2 содержится в 16 восемь раз. Деление прошло без остатка — нацело. Тогда число 2 является делителем числа 16.
Делителем числа a называется такое число b, на которое a делится нацело.
Например, 9 : 4 = 2 (остаток 5 ).
В примере 9 — делимое, 4 — делитель, 2 — неполное частное, 5 — остаток.
Остаток от деления — число, которое меньше делителя. Образуется при делении с остатком. Значит, в примере 9 : 4 = 2 (остаток 5 ) — число 4 не является делителем числа 9.
Задание: найдите такую пару делителей числа 144, если один из делителей равен 2.
Пусть неизвестный делитель равен x. Чтобы найти еще один делитель, если какой-то известен, нужно данное нам число разделить на известный делитель.
Тогда представим решение данной задачи в виде уравнения:
72 — целое число, без остатка.
Произведение делителей должно дать в результате 144:
72 * 2 = 144 — верно, значит, 72 — корень уравнения и делитель 144.
Ответ: числа 2 и 72 — делители 144.
Число называют кратным, если оно делится на данное число нацело, без остатка.
Например, 15:3 нацело.
Тогда число 15 является кратным 3.
Слово «кратно» синонимично слову «делится».
Фразу «15 кратно 3» можно в уме заменить на «15 делится на 3 нацело».
Основные понятия и определения
Делитель — это число, на которое данное число делится нацело. Делитель всегда меньше или равен числу.
Делится нацело = без остатка.
Наименьшим делителем любого числа является единица.
Наибольшим делителем числа является само число.
Делителем нуля будет любое число, но сам 0 делителем не будет.
При делении нуля на любое число получаем 0. А делить на ноль нельзя.
У единицы только один делитель — единица.
Другие числа, кроме 1, имеют не меньше двух делителей.
Кратное — число, которое делится на данное число нацело. Всегда больше или равно числу.
Наименьшее кратное числа является равным самому числу.
Наибольшее кратное подобрать нельзя, потому что ряд натуральных чисел бесконечен. У любого натурального числа бесконечное множество кратных.
Ноль является кратным для любого числа. При умножении на ноль всегда получается ноль.
Когда одно число делится нацело на другое, то первое число — кратное второго, а второе — делитель первого.
Чем отличаются друг от друга, как найти
Делитель отличается от кратного тем, что:
Чтобы найти делители числа, нужно данное число разложить на множители.
Разложить на множители — представить число в виде произведения целых чисел.
Чтобы проверить, является ли одно число делителем другого, нужно разделить число на данное нам.
Для нахождения кратного числа заданному числу, нужно это число последовательно умножать на натуральные числа. Каждое полученное число будет кратно — будет делиться — заданному.
Делители и кратные связаны между собой. Например, делителем числа 15 является 3 и число, кратное 3, равно 15.
Примеры решения задач
Необходимо найти делители числа 14.
Решить задание можно двумя способами.
Последовательно делим 14 на натуральные числа от 1 до 14. Помним, что делитель всегда меньше или равен заданному числу.
Выбираем такие числа в качестве делителя, при делении на которые мы не получили остаток: 1, 2, 7, 14.
Ответ: делители числа 14: 1, 2, 7, 14.
Представим 14 в виде произведения чисел:
Делителями будут множители, так как можем разделить 14 нацело на каждый из них.
Ответ: делители 14: 1, 2, 7, 14.
Найдите три числа, кратных 7.
Чтобы найти число, кратное данному, нужно это число умножить на любое натуральное число.
7 * 1 = 7 — семь кратно семи;
7 * 2 = 14 — 14 кратно 7;
7 * 3 = 21 — 21 кратно 7.
Ответ: числа, кратные 7: 7, 14, 21.
Самостоятельно проверьте, 225 кратно 3 или нет.
Чтобы проверить, кратно ли одно число другому, нужно разделить числа друг на друга.
75 — целое число, при делении нет остатка. Тогда 225 кратно 3.
Найдите любое число, делителями которого являются числа 7 и 8.
Самый простой способ, если в задании не оговорены еще какие-либо условия, просто перемножить эти делители:
Что такое кратное число? Ответ на
Понятие кратных чисел
Начнем, как всегда, с определения.
Число a называется кратным b, если его можно разделить на b без остатка.
Возьмем несколько примеров кратных чисел.
Наименьшее положительное кратное положительного числа есть само это число. Обратите внимание, что наименьшее кратное в этом случае не нужно путать с наименьшим общим кратным для нескольких чисел (НОК).
Далее будут рассмотрены другие случаи с натуральными кратными целых положительных чисел.
Всё ещё сложно? Наши эксперты помогут разобраться Все услуги
Видео
Признаки делимости чисел
Признаки делимости чисел используются для того, чтобы ускорить процесс деления чисел. Существует множество признаков делимости и других интересных алгоритмов, значительно ускоряющих решение и освобождающих от излишней волокиты. Рассмотрим наиболее популярные из них.
Признак делимости на 10
Любое число, которое оканчивается нулем, делится без остатка на 10. Чтобы получить частное, достаточно отбросить цифру 0 в делимом.
Например, 380 : 10 = 38. Мы просто отбросили последний ноль в числе 380.
В случае, если мы имеем выражение такого вида 385 : 10, то получится 38 и 5 в остатке, поскольку 380 : 10 = 38, а пятерка это остаток, который не разделился.
Таким образом, если число оканчивается цифрой 0, то оно делится без остатка на 10. Если же оно оканчивается другой цифрой, то оно не делится без остатка на 10. Остаток в этом случае равен последней цифре числа. Действительно, в примере 385 : 10 = 38 (5 в остатке), остаток равен последней цифре в числе 385, то есть пятерке.
Признак делимости на 5 и на 2
Любое число, которое оканчивается нулем, делится без остатка и на 5, и на 2.
Признак делимости на 5
Если число оканчивается цифрой 0 или 5, то оно делится без остатка на 5.
Признак делимости на 3
Число делится на 3, если сумма цифр этого числа делится на 3. Например, рассмотрим число 27, сумма его цифр 2 + 7 = 9. Девять, как мы знаем делится на 3, значит и 27 делится на 3:
Признак делимости на 9
Число делится на 9, если сумма его цифр делится на 9. Например, рассмотрим число 18. Сумма его цифр 1 + 8 = 9. Девять делится на девять, значит и 18 делится на 9
Рассмотрим число 846. Сумма его цифр 8 + 4 + 6 = 18. Восемнадцать делится на девять, значит и 846 делится на 9:
Основные понятия и определения
Делитель — это число, на которое данное число делится нацело. Делитель всегда меньше или равен числу.
Делится нацело = без остатка. Наименьшим делителем любого числа является единица. Наибольшим делителем числа является само число. Делителем нуля будет любое число, но сам 0 делителем не будет. При делении нуля на любое число получаем 0. А делить на ноль нельзя. У единицы только один делитель — единица. Другие числа, кроме 1, имеют не меньше двух делителей.
Кратное — число, которое делится на данное число нацело. Всегда больше или равно числу.
Наименьшее кратное числа является равным самому числу.
Наибольшее кратное подобрать нельзя, потому что ряд натуральных чисел бесконечен. У любого натурального числа бесконечное множество кратных.
Ноль является кратным для любого числа. При умножении на ноль всегда получается ноль.
Когда одно число делится нацело на другое, то первое число — кратное второго, а второе — делитель первого.
Примеры решения задач
Необходимо найти делители числа 14. Решить задание можно двумя способами. Способ 1: Последовательно делим 14 на натуральные числа от 1 до 14. Помним, что делитель всегда меньше или равен заданному числу. 14:1=14;14:2=7;14:3=4(остаток2);14:4=3(остаток2);14:5=2(остаток4);14:6=2(остаток2);14:7=2;14:8=1(остаток6);14:9=1(остаток5);14:10=1(остаток4;)14:11=1(остаток3);14:12=1(остаток2);14:13=1(остаток1);14:14=1. Выбираем такие числа в качестве делителя, при делении на которые мы не получили остаток: 1, 2, 7, 14. Ответ: делители числа 14: 1, 2, 7, 14. Способ 2: Представим 14 в виде произведения чисел: 14=14*1=2*7 Делителями будут множители, так как можем разделить 14 нацело на каждый из них. Ответ: делители 14: 1, 2, 7, 14.
Найдите три числа, кратных 7. Решение: Чтобы найти число, кратное данному, нужно это число умножить на любое натуральное число. 7*1=7 — семь кратно семи; 7*2=14— 14 кратно 7; 7*3=21 — 21 кратно 7. Ответ: числа, кратные 7: 7, 14, 21.
Самостоятельно проверьте, 225 кратно 3 или нет. Чтобы проверить, кратно ли одно число другому, нужно разделить числа друг на друга. 225:3=75. 75 — целое число, при делении нет остатка. Тогда 225 кратно 3.
Найдите любое число, делителями которого являются числа 7 и 8. Самый простой способ, если в задании не оговорены еще какие-либо условия, просто перемножить эти делители: 7*8=56. Ответ: 56.
Что такое кратное число
Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. В этой статье мы расскажем, что такое КРАТНЫЕ ЧИСЛА.
Эту тему каждый школьник в России проходит в 6 классе, когда подробно изучают деление.
Хотя с самой этой математической функцией дети знакомятся гораздо раньше – уже во 2 классе.
Деление – это математическая операция, благодаря которой можно узнать, сколько частей чего-то одного содержится в другом. Или, другими словами, заменяет многократное вычитание из одного числа другое.
Операция деления в математике может обозначаться разными значками. Это двоеточие (:), косая черта (/), горизонтальная черта (-) или специальным значком под названием «обелюс» (÷).
А у чисел, которые участвуют в делении, есть определенные названия:
Частное, которое получается полным или не полным. Первый вариант, это когда число-делимое, было полностью поделено на делитель. Например, 12 / 3 = 4. Но бывают варианты и с неполным частным, когда появляется некий остаток. Например, 14 / 3 = 4 (2), где 4 – это неполное частное, а 2 – остаток.
Почему мы так подробно рассказали о делении? Это имеет непосредственное отношение к теме статьи.
Одно число называется кратным другому, если его можно на него поделить без остатка.
Но речь идет только о натуральных числах. То есть тех, которые мы используем для счета в обычной жизни. Например, 1, 2, 5, 10, 35, 100 и так далее. При этом дробные числа (например, 2/5 или 0,5) к натуральным не относятся, а значит, в отношении них понятие «кратности» не применяется.
Например, возьмем число 12. Оно может быть кратно сразу нескольким числам.
12 / 3 = 4
12 / 4 = 3
12 / 6 = 2
12 / 2 = 6
Таким образом, можно сказать, что 12 – кратное число 2, 3, 4 и 6. И точно так же можно разложить по кратности любое число.
Внимательный читатель мог бы возразить, что есть еще два числа, на которые можно поделить 12 без остатка. Во-первых, это само 12. А во-вторых, это единица. Что ж, это абсолютная правда, и ее можно даже записать в одном математическом правиле:
Любое натуральное число всегда кратно само себе и единице. В первом случае получается единица, а во втором само число.
Таблицы чисел кратных 2,3,4,5,6,7,9
В первую очередь рассмотрим самый простой вариант. Это числа, которые являются кратными двум. Определить их совсем просто, так как к ним относятся все четные числа. Вот, например, как выглядит таблица от 1 до 100.
А вот так будет выглядеть таблица чисел кратных трем. Обратите внимание, что все они в результате располагаются по диагонали. Получается весьма красиво.
Теперь покажем таблицу чисел, которые можно поделить без остатка на 4. Как можно заметить, это только четные цифры.
А вот так выглядит таблица чисел, которые кратны пяти. Запомнить их очень просто. Числа, кратные пяти, должны оканчиваться или на 5, или на 0. Других вариантов быть просто не может.
А если взглянуть на таблицу чисел, которые кратны числу 6, то можно сделать интересный вывод. Есть числа, которые никогда не попадут в эту категорию. Они оканчиваются на 1, 3, 5, 7 и 9. Другими словами, только четные числа могут быть кратными 6. Но при этом не все четные числа таковыми являются.
Интересно будет посмотреть и таблицу чисел, которые являются кратными 7. Чтобы определить их, нужно ходить по таблице вниз, как ходить шахматная фигура «конь». В народе это называется «буквой Г», в нашем случае это «шаг влево и два шага вниз».
И наконец, интересно рассмотреть числа, которые кратны 9. Их очень легко определить, это своеобразный математический лайфхак.
Надо просто сложить все цифры в числе, и если в сумме получится 9, то тогда число кратно девятке.
Числа, кратные 9 | 27 | 198 | 5 877 | 3 816 | 117 | 72 |
---|---|---|---|---|---|---|
Сумма | 9 | 18 | 27 | 18 | 9 | 9 |
Да, тут указаны еще и числа 18 и 27. Но они при повторном сложении также дадут девятку.
Вместо заключения
А знаете, что есть число, которое можно назвать кратным всем другим натуральным числам? Это ноль. Ведь если ноль поделить на любое число, то получится опять же ноль. И никакого остатка. А значит, это утверждение верно.
Вот и все, что мы хотели рассказать о КРАТНЫХ ЧИСЛАХ.
Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru
Эта статья относится к рубрикам:
Комментарии и отзывы (1)
Тут надо запомнить всего лишь одно, то что число должно делиться без остатка, а дальше все будет просто и для этого даже никакой таблицы не надо.
Но кстати за таблицы все равно спасибо. Сейчас моя как раз в школе проходит, и распечатал ей, чтобы было просто понятнее. Не знаю, нас как то лучше обучали что ли. У меня эта тема вообще в школе трудностей никаких не вызвала, а современные школьники вообще не понимают что это такое.
Урок 1 Бесплатно Делители и кратные
Операция деления известна с давних времен.
Привычные нам сегодня обозначения операции деления появлялись постепенно, в более древние времена люди использовали другие знаки.
Первый из символов ( / ), в обиходе косая черта, впервые был применен в 1631 году в одной из работ англичанина Уильяма Отреда.
Со временем в математике стали использовать и знак ( : ). Его в своих работах использовал немецкий математик Готфрид Вильгельм Лейбниц (1646—1716)
При выполнении операции деления используют три математических составляющих:
Сегодня мы познакомимся с делителями и на связанном с ними понятии кратных.
Делители и кратные
Допустим, у вас есть 30 конфет и их надо разделить поровну шести друзьям.
В этом случае 6 друзей получат по 5 конфет, потому что 30 : 6 = 5
Если любое натуральное число делится без остатка на второе натуральное число, то первое называется кратным, а второе называют делителем.
Другими словами, 30 кратно 6, а 6 это делитель 30.
Могут быть и другие варианты решения задачи, которые зависят от данного нам условия.
Если друзей будет 7, тогда раздать всем равное количество конфет не получится, так как 30 без остатка на 7 не делится.
Значит, 30 не кратно 7, и 7 не является делителем 30
Натуральное число, на которое делится без остатка другое число, называется его делителем.
Само число 15 имеет четыре делителя: 1; 3; 5; 15, так как на каждое из этих чисел оно делится без остатка.
Натуральное число, которое делится на другое без остатка, называется его кратным.
Любое натуральное число имеет бесконечно много кратных.
Наименьшим из кратных натурального числа является само это число.
Например, кратными 4 будут числа: 4; 8; 12; 16; 20 и т.д.
У меня есть дополнительная информация к этой части урока!
Существуют числа, равные сумме всех их делителей, не считая самого числа.
Его делители 1, 2, 3.
Само число 6 не учитываем.
Сложив их, получим в сумме 6
К числам с таким свойством можно отнести еще 28 или 496
Пройти тест и получить оценку можно после входа или регистрации
Использование понятий делителя и кратного при решении примеров и задач
Любые математические понятия используются при решении примеров и задач, ответах на вопросы из жизни.
Разберем некоторые из них подробнее.
Пример 1
На сколько равных кучек можно разделить 24 ореха?
Решение:
Нужно выяснить все делители числа 24
Такими будут числа: 1; 2; 3; 4; 6; 8; 12; 24
Каждое из этих чисел будет являться ответом на поставленный вопрос, таким образом:
1 кучка из 24 орехов
2 кучки по 12 орехов
3 кучки по 8 орехов и т.д.
Пример 2
Напишите все двузначные числа, кратные 44
Решение:
Еще нам дано условие, что такие числа должны быть двузначными.
Значит, это два числа 44 и 88.
Оба они делятся на 44 без остатка, в чем можно легко убедиться: 44 : 44 = 1; 88 : 44 = 2
Пример 3
Какое число и кратно 15, и является делителем 15?
Решение:
Оно кратно самому себе и является для себя делителем.
Пример 4
В строю 300 солдат. Можно ли их разделить на 7 равных групп для проведения физической подготовки?
Решение:
Чтобы проверить, можно ли разделить 300 солдат на 7 равных групп, поделим число 300 на 7.
Имеем: 300 : 7 = 42 и в остатке 6. То есть 300 не делится нацело на 7.
Значит, разбить 300 солдат на 7 равных групп не получится.
Пример 5
Докажите, что число 70525 кратно числу 217.
Доказательство:
Выполним деление 70525 на 217 уголком.
Видим, что деление выполнено без остатка, значит, число 70525 кратно числу 217.
У меня есть дополнительная информация к этой части урока!
Делителем любого натурального числа является единица.
И правда, ведь на единицу делится любое натуральное число без остатка
Пройти тест и получить оценку можно после входа или регистрации
Интересная информация
Раньше алгоритм деления в России выглядел совершенно иначе и не имел ничего общего с современным видом.
Например, деление могло получиться в виде полумесяца или по форме напоминать геометрическую фигуру- ромб.
Пусть требуется разделить 598432 на 678
Вот как выглядела запись деления:
1792
5603
5984/
5424
5424
1356
598432 верно разделено
Или разделить 9649378 на 5634:
59417
4015530
9649378
5634444
56333
Заключительный тест
Пройти тест и получить оценку можно после входа или регистрации
Что такое кратное число
Определение кратного числа
Некоторые признаки делимости натуральных чисел
Признак делимости на 2.
Число делится на 2, если его последняя цифра есть число четное (то есть 2, 4, 6, 8) или 0.
Признак делимости на 3.
Число делится на 3, если сумма его цифр делится на 3.
Признак делимости на 4.
Признак делимости на 5.
Число делится на 5, если оно заканчивается либо на 0, либо на 5.
Признак делимости на 8.
Признак делимости на 9.
Число делится на 9, если сумма его цифр делится на 9.
Признак делимости на 11.
Число делится на 11, если сумма цифр, стоящих на четных местах либо равна сумме цифр, стоящих на нечетных местах, либо отличается от неё на число, делящееся на 11.
Признак делимости на 25.
Задание. Среди ниже перечисленных чисел выбрать числа кратные 3:
$$27: 36 ; 58 ; 1119 ; 2345 ; 12354$$
Решение. Будем использовать признак делимости на 3, для этого найдем сумму цифр для каждого числа:
; ;
;
Таким образом, на 3 делятся числа:
$$27 ; 36 ; 1119: 12354$$
Наименьшее общее кратное (НОК)
Общим кратным нескольких натуральных чисел называется натуральное число, являющееся кратным для каждого из них. Наименьшее из всех кратных называется наименьшим общим кратным (НОК).
Алгоритм нахождения наименьшего общего кратного нескольких чисел:
Что такое кратное число не по зубам? Тебе ответит эксперт через 10 минут!
Задание. Найти НОК(360; 420)
Решение. Запишем каноническое разложение заданных чисел: