Что означает степень с рациональным показателем
Степень числа: определения, обозначение, примеры
В рамках этого материала мы разберем, что такое степень числа. Помимо основных определений мы сформулируем, что такое степени с натуральными, целыми, рациональными и иррациональными показателями. Как всегда, все понятия будут проиллюстрированы примерами задач.
Степени с натуральными показателями: понятие квадрата и куба числа
Сначала сформулируем базовое определение степени с натуральным показателем. Для этого нам понадобится вспомнить основные правила умножения. Заранее уточним, что в качестве основания будем пока брать действительное число (обозначим его буквой a ), а в качестве показателя – натуральное (обозначим буквой n ).
Разберем пример степени с натуральным показателем: для 5 7 пятерка будет основанием, а семерка – показателем.
Понятие степени является обратным другому математическому понятию – корню числа. Если мы знаем значение степени и показатель, мы можем вычислить ее основание. Степень обладает некоторыми специфическими свойствами, полезными для решения задач, которые мы разобрали в рамках отдельного материала.
Что такое степени с целым показателем
В показателях степени могут стоять не только натуральные числа, но и вообще любые целые значения, в том числе отрицательные и нули, ведь они тоже принадлежат к множеству целых чисел.
Степень числа с целым положительным показателем можно отобразить в виде формулы: .
При этом n – любое целое положительное число.
Разберемся с понятием нулевой степени. Для этого мы используем подход, учитывающий свойство частного для степеней с равными основаниями. Оно формулируется так:
Последнее условие важно, поскольку позволяет избежать деления на ноль. Если значения m и n равны, то мы получим следующий результат: a n : a n = a n − n = a 0
При желании легко проверить, что a 0 = 1 сходится со свойством степени ( a m ) n = a m · n при условии, что основание степени не равно нулю. Таким образом, степень любого отличного от нуля числа с нулевым показателем равна единице.
Такая формулировка подтверждает, что для степени с целым отрицательным показателем действительны все те же свойства, которыми обладает степень с натуральным показателем (при условии, что основание не равно нулю).
Проиллюстрируем нашу мысль конкретными примерами:
В последней части параграфа попробуем изобразить все сказанное наглядно в одной формуле:
Что такое степени с рациональным показателем
Мы разобрали случаи, когда в показателе степени стоит целое число. Однако возвести число в степень можно и тогда, когда в ее показателе стоит дробное число. Это называется степенью с рациональным показателем. В этом пункте мы докажем, что она обладает теми же свойствами, что и другие степени.
Далее нам необходимо определить, какие именно ограничения на значения переменных накладывает такое условие. Есть два подхода к решению этой проблемы.
Для степени с нулевым основанием это положение также подходит, но только в том случае, если ее показатель – положительное число.
Степень с нулевым основанием и дробным положительным показателем m / n можно выразить как
При отрицательном отношении m n 0 степень не определяется, т.е. такая запись смысла не имеет.
Отметим один момент. Поскольку мы ввели условие, что a больше или равно нулю, то у нас оказались отброшены некоторые случаи.
Если n – нечетное число, а значение m – положительно, a – любое неотрицательное число, то a m n имеет смысл. Условие неотрицательного a нужно, поскольку корень четной степени из отрицательного числа не извлекают. Если же значение m положительно, то a может быть и отрицательным, и нулевым, т.к. корень нечетной степени можно извлечь из любого действительного числа.
Объединим все данные выше определения в одной записи:
Здесь m/n означает несократимую дробь, m – любое целое число, а n – любое натуральное число.
Определение степени с дробным показателем, которое мы привели первым, удобнее применять на практике, чем второе, поэтому мы будем далее пользоваться именно им.
При вычислении же лучше заменять показатель степени обыкновенной дробью и далее пользоваться определением степени с дробным показателем. Для примеров выше у нас получится:
Что такое степени с иррациональным и действительным показателем
Что такое действительные числа? В их множество входят как рациональные, так и иррациональные числа. Поэтому для того, чтобы понять, что такое степень с действительным показателем, нам надо определить степени с рациональными и иррациональными показателями. Про рациональные мы уже упоминали выше. Разберемся с иррациональными показателями пошагово.
и так далее (при этом сами приближения являются рациональными числами).
1.1.6 Степень с рациональным показателем и её свойства
Видеоурок 1: Степень с рациональным показателем
Видеоурок 2: Степень с рациональным показателем. Решение примеров
Лекция: Степень с рациональным показателем и её свойства
Степень с рациональным показателем
Любую степень с рациональным показателем можно представить в виде корня, чья степень будет равна знаменателю дроби, находящейся в показателе степени, а числитель будет степенью подкоренного выражения.
Свойства степени с рациональным показателем
Все, перечисленные ниже степени используются для рациональных чисел p, q и для положительных a, b.
1. Если Вам необходимо умножить две степени с рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.
2. Если необходимо разделить две степени c рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть.
3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.
4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.
5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.
6. Если некоторая дробь имеет отрицательный рациональный показатель степени, то для избавления от знака минуса, её следует перевернуть.
Очень важно помнить, что знак степени не влияет на знак выражения при возведении в степень.
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №17. Степень с рациональным и действительным показателем.
Перечень вопросов, рассматриваемых в теме
2) определение степени с рациональным и действительным показателем;
3) нахождения значения степени с действительным показателем.
Если n- натуральное число, , m— целое число и частное является целым числом, то при справедливо равенство:
.
При любом действительном х и любом положительном а ) степень является положительным числом:
Но если основание степени а=0, то степень определяют только при и считают, что
При выражение не имеет смысла.
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Пример: вычислим
Мы можем представить , тогда
Таким образом, мы можем записать
или
На основании данного примера можно сделать вывод:
Если n- натуральное число, , m— целое число и частное является целым числом, то при 0 справедливо равенство:
.
Таким образом, степень определена для любого рационального показателя r и любого положительного основания а.
Если , то выражение имеет смысл не только при 0, но и при а=0, причем, Поэтому считают, что при r0 выполняется равенство
Пользуясь формулой степень с рациональным показателем можно представить в виде корня и наоборот.
Рассмотрим несколько примеров:
Отметим, что все свойства степени с натуральным показателем, которые мы с вами повторили, верны для степени с любым рациональным показателем и положительным основанием, а именно, для любых рациональных чисел p и q и любых 0 и 0 ы следующие равенства:
Разберем несколько примеров, воспользовавшись данными свойствами:
В числителе вынесем общий множитель ab за скобки, в знаменателе представим корни в виде дробных показателей степени:
А теперь дадим определение степени с действительным показателем, на примере .
Пусть последовательность десятичных приближений с недостатком :
Эта последовательность стремится к числу , т.е.
Числа являются рациональными, и для них определены степени т.е. определена последовательность
Можно сделать вывод, что данная последовательность стремится к некоторому действительному числу, которое обозначают , т.е. .
Опредление степени с действительным показателем.
При любом действительном х и любом положительном а ) степень является положительным числом:
Но если основание степени а=0, то степень определяют только при и считают, что
При выражение не имеет смысла.
Для степени с действительным показателем сохраняются все известные свойства степени с рациональным показателем, из которых следует теорема.
Теорема. Пусть и . Тогда .
По условию . Поэтому, по свойству 1 имеем
а^(х₂). Умножив обе части этого равенства на положительное число , получим . По свойству умножения степеней получаем: , т.е. .
Из данной теоремы вытекают три следствия:
.
.
Эти теорема и следствия помогают при решении уравнений и неравенств, сравнении чисел.
Примеры и разборы решения заданий тренировочного модуля
Пример 1. Сравнить числа
Сравним показатели
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №17. Степень с рациональным и действительным показателем.
Перечень вопросов, рассматриваемых в теме
2) определение степени с рациональным и действительным показателем;
3) нахождения значения степени с действительным показателем.
Если n- натуральное число, , m— целое число и частное является целым числом, то при справедливо равенство:
.
При любом действительном х и любом положительном а ) степень является положительным числом:
Но если основание степени а=0, то степень определяют только при и считают, что
При выражение не имеет смысла.
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Пример: вычислим
Мы можем представить , тогда
Таким образом, мы можем записать
или
На основании данного примера можно сделать вывод:
Если n- натуральное число, , m— целое число и частное является целым числом, то при 0 справедливо равенство:
.
Таким образом, степень определена для любого рационального показателя r и любого положительного основания а.
Если , то выражение имеет смысл не только при 0, но и при а=0, причем, Поэтому считают, что при r0 выполняется равенство
Пользуясь формулой степень с рациональным показателем можно представить в виде корня и наоборот.
Рассмотрим несколько примеров:
Отметим, что все свойства степени с натуральным показателем, которые мы с вами повторили, верны для степени с любым рациональным показателем и положительным основанием, а именно, для любых рациональных чисел p и q и любых 0 и 0 ы следующие равенства:
Разберем несколько примеров, воспользовавшись данными свойствами:
В числителе вынесем общий множитель ab за скобки, в знаменателе представим корни в виде дробных показателей степени:
А теперь дадим определение степени с действительным показателем, на примере .
Пусть последовательность десятичных приближений с недостатком :
Эта последовательность стремится к числу , т.е.
Числа являются рациональными, и для них определены степени т.е. определена последовательность
Можно сделать вывод, что данная последовательность стремится к некоторому действительному числу, которое обозначают , т.е. .
Опредление степени с действительным показателем.
При любом действительном х и любом положительном а ) степень является положительным числом:
Но если основание степени а=0, то степень определяют только при и считают, что
При выражение не имеет смысла.
Для степени с действительным показателем сохраняются все известные свойства степени с рациональным показателем, из которых следует теорема.
Теорема. Пусть и . Тогда .
По условию . Поэтому, по свойству 1 имеем
а^(х₂). Умножив обе части этого равенства на положительное число , получим . По свойству умножения степеней получаем: , т.е. .
Из данной теоремы вытекают три следствия:
.
.
Эти теорема и следствия помогают при решении уравнений и неравенств, сравнении чисел.
Примеры и разборы решения заданий тренировочного модуля
Пример 1. Сравнить числа
Сравним показатели