Что отвечает за внутриклеточное пищеварение

Что отвечает за внутриклеточное пищеварение

Принято различать несколько типов и подтипов пищеварения.

Гидролиз пищевых веществ за счет ферментов, вырабатываемых пищеварительными железами самого организма, характерен для собственного типа пищеварения. В результате осуществления собственного типа пищеварения образуется основное количество олигомеров, поступающих в кровь и лимфу. Расщепление компонентов пищи ферментами, синтезируемыми микроорганизмами, которые обитают в пищеварительном тракте, называют симбионтным типом пищеварения (поскольку он является следствием симбиоза организмов хозяина и микробов). Так переваривается клетчатка в толстом кишечнике человека.

Гидролиз пищевых веществ ферментами, поступающими в пищеварительный тракт вместе с пищей, относят к аутолитическому типу пищеварения, так как происходит самопереваривание. Аутолитическое пищеварение играет важную роль у новорожденного, потому что компоненты грудного молока перевариваются ферментами, входящими в его состав.

Что отвечает за внутриклеточное пищеварениеРис. 11.1. Схема внеклеточного, внутриклеточного и мембранного гидролиза пищевых веществ.

1 — внеклеточная среда; 2 — перевариваемый субстрат и продукты его гидролиза; 3 — ферменты; 4 — внутриклеточная среда; 5 — мембрана энтероцита; 6 — ядро; 7 — внутриклеточная пищеварительная вакуоль, 8 — мезосома.
А — внеклеточное (дистантное) пищеварение. Полимеры и олигомеры пищевых веществ под влиянием ферментов пищеварительных соков в полости кишки гидролизуются до мономеров, которые через мембрану энтероцита транспортируются в его цитоплазму. Б — внутриклеточное цитоплазматическое пищеварение. Олигомеры пищевых веществ проникают через мембрану энтероцита в его цитоплазму и под влиянием ферментов, находящихся в цитоплазме, превращаются в мономеры. В — внутриклеточное вакуольное (внеплазматическое) пищеварение, связанное с эндоцитозом. В мембране энтероцита образуется выпячивание, которое заполняется перевариваемым субстратом и превращается в вакуоль. Вакуоль соединяется с мезо-сомой, заполненной ферментами, которые расщепляют субстрат до конечных продуктов гидролиза, поступающих через мембрану вакуоли в цитоплазму энтероцита. Г — мембранное пищеварение. Адсорбированные на внешней поверхности мембраны энтероцита ферменты расщепляют олигомеры пищевых веществ до мономеров, которые затем поступают в цитоплазму клетки.

В зависимости от локализации процесса гидролиза пищевых веществ различают два типа пищеварения — внутриклеточное и внеклеточное.

Внутриклеточное пищеварение — расщепление мельчайших частичек пищевых веществ, поступивших в энтероцит путем эндоцитоза, за счет клеточных ферментов. Этот тип пищеварения играет важную роль в кишечном пищеварении в раннем постнатальном периоде развития. По мере формирования функций пищеварительного тракта у ребенка значение внутриклеточного пищеварения уменьшается.

Внеклеточное пищеварение А. М. Уголев предложил делить на 2 подтипа — дистанционное и пристеночное.

Дистанционное (полостное) пищеварение осуществляется в полостях пищеварительного тракта, удаленных от мест выработки ферментов. В процессе полостного пищеварения деполимеризация молекул пищевых веществ совершается в основном до олигомеров. Пристеночное пищеварение (контактное, мембранное) совершается в тонком кишечнике — в пристеночном слое слизи, на поверхности ворсинок и микроворсинок, в гликокаликсе (мукополисахаридных нитях, связанных с мембраной микроворсинок). В слизи и гликокаликсе содержится много адсорбированных ферментов пищеварительных соков, выделенных в полость кишки и расположенных на огромной площади соприкосновения с перевариваемым субстратом. Поэтому в процессе пристеночного пищеварения значительно увеличивается скорость гидролиза пищевых веществ, что приводит к возрастанию объема всасывания продуктов гидролиза.

Схема внеклеточного и мембранного пищеварения представлена на рис. 11.1. Из этой схемы следует, что при внеклеточном пищеварении (А) ферменты расщепляют субстрат в полости пищеварительного тракта до конечных продуктов гидролиза, которые затем проникают в цитоплазму энтероцита.

В процессе внутриклеточного цитоплазматического пищеварения (Б) крупные осколки молекул пищевых веществ проникают через мембрану энтероцита в его цитоплазму и расщепляются ее ферментами до мономеров. При внутриклеточном вакуольном пищеварении (В) мельчайшие частички субстрата захватываются из полости кишки мембраной энтероцита, образующей выпячивание, которое превращается в вакуоль. Вакуоль, содержащая субстрат, объединяется с вакуолью (мезосомой), наполненной ферментом, который и осуществляет гидролиз субстрата. Мембранное пищеварение (Г) характеризуется тем, что интенсивный процесс гидролиза крупных осколков молекулы питательных веществ до мономеров происходит на поверхности энтероцита за счет ферментов, адсорбированных на его мембране.

Что отвечает за внутриклеточное пищеварениеРис. 11.2. Схема деполимеризации частичек пищевых веществ на поверхности микроворсинок энтероцита, апикальном и латеральном гликокаликсе.

1—3 — перевариваемые субстраты в полости кишки; 4 — апикальный гликока-ликс; 5 — латеральный гликокаликс; 6 — мембрана микроворсинки; 7 — микроворсинки энтероцита.
Крупные осколки пищевых веществ в полости кишки под влиянием ферментов пищеварительных соков расщепляются до олигометров (1—3). Их гидролиз на поверхности микроворсинок и нитей гликокаликса (4—6) завершается образованием монометров, молекулы которых проникают в микроворсинку, а затем — в цитоплазму энтероцита (8).

На рис. 11.2 схематически показано, что на поверхности микроворсинок энтероцитов и нитей апикального и латерального гликокаликса происходит гидролиз частичек пищевых веществ за счет адсорбированных ферментов. Поскольку суммарная площадь, на которой происходит гидролиз пищевых веществ, очень большая, то это обусловливает высокую эффективность мембранного пищеварения

Заключительные стадии гидролиза пищевых веществ осуществляют ферменты, синтезируемые энтероцитами и встроенные в структуры их мембран. Образующиеся на поверхности мембраны энтероцита мономеры всасываются за счет активности ее ионных каналов.

Источник

Органоиды клетки

Что отвечает за внутриклеточное пищеварение

Клеточная мембрана (оболочка)

Запомните, что в отличие от клеточной стенки, которая есть только у растительных клеток и у клеток грибов (она придает им плотную, жесткую форму) клеточная мембрана есть у всех клеток без исключения! Этот важный момент объясню еще раз 🙂 У клеток животных имеется только клеточная мембрана, а у клеток растений и грибов есть и клеточная стенка, и клеточная мембрана.

Что отвечает за внутриклеточное пищеварение

Интегральные (пронизывающие) белки образуют каналы, по которым молекулы различных веществ могут поступать в клетку или удаляться из нее. «Заякоренные» молекулы олигосахаридов на поверхности клетки образуют гликокаликс, который выполняет рецепторную функцию, участвует в избирательном транспорте веществ через мембрану.

Что отвечает за внутриклеточное пищеварение

Вирусы и бактерии не являются исключением: они взаимодействуют только с теми клетками, на которых есть подходящие к ним рецепторы. Так, вирус гриппа поражает преимущественно клетки слизистой верхних дыхательных путей. Однако, если рецепторов нет, то вирус не может проникнуть в клетку, и организм приобретает невосприимчивость к инфекции. Вспомните врожденный иммунитет: именно по причине отсутствия рецепторов человек не восприимчив ко многим болезням животных.

Что отвечает за внутриклеточное пищеварение

Итак, вернемся к клеточной мембране. Ее можно сравнить со стенами помещения, в котором, вероятно, вы находитесь. Стены дома защищают его от ветра, дождя, снега и прочих факторов внешней среды. Рискну предположить, что в вашем доме есть окна и двери, которые по мере необходимости открываются и закрываются 🙂 Так и клеточная мембрана может сообщать внутреннюю среду клетки с внешней средой: через мембрану вещества поступают в клетку и удаляются из нее.

Внутрь клетки с помощью осмоса поступает вода. Путем простой диффузии в клетку попадают O2, H2O, CO2, мочевина. Облегченная диффузия характерна для транспорта глюкозы, аминокислот.

Активный транспорт чаще происходит против градиента концентрации, в ходе него используются белки-переносчики и энергия АТФ. Ярким примером является натрий-калиевый насос, который накачивает ионы калия внутрь клетки, а ионы натрия выводит наружу. Это происходит против градиента концентрации, поэтому без затрат энергии (АТФ) не обойтись.

Что отвечает за внутриклеточное пищеварение

Фагоцитоз был открыт И.И. Мечниковым, который создал фагоцитарную теорию иммунитета. Это теория гласит, что в основе иммунной системы нашего организма лежит явление фагоцитоза: попавшие в организм бактерии уничтожаются фагоцитами (T-лимфоцитами), которые переваривают их.

В ходе эндоцитоза мембрана сильно прогибается внутрь клетки, ее края смыкаются, захватывая бактерию, пищевые частицы или жидкость внутрь клетки. Образуется везикула (пузырек), который движется к пищеварительной вакуоли или лизосоме, где происходит внутриклеточное пищеварение.

Что отвечает за внутриклеточное пищеварение

Клеточная стенка

Что отвечает за внутриклеточное пищеварение

Цитоплазма

Постоянное движение цитоплазмы поддерживает связь между органоидами клетки и обеспечивает ее целостность.

Что отвечает за внутриклеточное пищеварение

Прокариоты и эукариоты

Что отвечает за внутриклеточное пищеварение

Немембранные органоиды

Очень мелкая органелла (около 20 нм), которая была открыта после появления электронного микроскопа. Состоит из двух субъединиц: большой и малой, в состав которых входят белки и рРНК (рибосомальная РНК), синтезируемая в ядрышке.

Что отвечает за внутриклеточное пищеварение

Что отвечает за внутриклеточное пищеварение

Что отвечает за внутриклеточное пищеварение

Это органоиды движения, которые выступают над поверхностью клетки и имеют в основе пучок микротрубочек. Реснички встречаются только в клетках животных, жгутики можно обнаружить у животных, растений и бактерий.

Что отвечает за внутриклеточное пищеварение

Одномембранные органоиды

ЭПС представляет собой систему мембран, пронизывающих всю клетку и разделяющих ее на отдельные изолированные части (компартменты). Это крайне важно, так как в разных частях клетки идут реакции, которые могут помешать друг другу, что нарушит процессы жизнедеятельности.

Выделяют гладкую ЭПС и шероховатую ЭПС. Обе они выполняют функцию внутриклеточного транспорта веществ, однако между ними имеются различия. На мембранах гладкой ЭПС происходит синтез липидов, обезвреживаются вредные вещества. Шероховатая ЭПС синтезирует белок, так как имеет на мембранах многочисленные рибосомы (потому и называется шероховатой).

Что отвечает за внутриклеточное пищеварение

Модифицированные вещества упаковываются в пузырьки и могут перемещаться к мембране клетки, соединяясь с ней, они изливают свое содержимое во внешнюю среду. Можно догадаться, что комплекс Гольджи хорошо развит в клетках эндокринных желез, которые в большом количестве синтезируют и выделяют в кровь гормоны.

В комплексе Гольджи появляются первичные лизосомы, которые содержат ферменты в неактивном состоянии.

Что отвечает за внутриклеточное пищеварение

Что отвечает за внутриклеточное пищеварение

В ходе апоптоза ферменты лизосомы изливаются внутрь клетки, ее содержимое переваривается. Предполагают, что нарушение апоптоза в раковых клетках ведет к бесконтрольному росту опухоли.

Что отвечает за внутриклеточное пищеварение

Пероксисомы (микротельца) содержат окислительно-восстановительные ферменты, которые разлагают H2O2 (пероксид водорода) на воду и кислород. Если бы пероксид водорода оставался неразрушенными, это приводило бы к серьезным повреждениям клетки.

Трудно переоценить значение вакуолей в жизнедеятельности растительной клетки. Вакуоли создают осмотическое давление, придают клетке форму.

Примечательно, что по размеру вакуолей можно судить о возрасте клетки: молодые клетки имеют вакуоли небольшого размера, а в старых клетках вакуоли могут настолько увеличиваться, что оттесняют ядро и остальные органоиды на периферию.

Что отвечает за внутриклеточное пищеварение

Двумембранные органоиды

Оболочка ядра состоит из двух мембран и пронизана большим количеством ядерных пор, через которые происходит сообщение между кариоплазмой и цитоплазмой. Главными функциями ядра является хранение, защита и передача наследственного материала дочерним клеткам.

Что отвечает за внутриклеточное пищеварение

Замечу, что хромосомы видны только в момент деления клетки. Хромосомы представляют собой сильно спирализованные молекулы ДНК, связанные с белками.

Что отвечает за внутриклеточное пищеварение

Хромосомы отличаются друг от друга по строению, форме, размерам. Совокупность всех признаков (форма, число, размер) хромосом называется кариотип. Кариотип может быть представлен по-разному: существует кариотип вида, особи, клетки.

Что отвечает за внутриклеточное пищеварение

Что отвечает за внутриклеточное пищеварение

В связи с этим, митохондрия считается полуавтономным органоидом. Вероятнее всего, изначально митохондрии были самостоятельными организмами, однако со временем вступили в симбиоз с эукариотами и стали частью клетки.

Что отвечает за внутриклеточное пищеварение

Так же, как и митохондрии, пластиды относятся к полуавтономным органоидам: в них имеется кольцевидная ДНК (находится в нуклеоиде), рибосомы.

Пластиды, которые содержат пигменты каратиноиды в различных сочетаниях. Сочетание пигментов обуславливает красную, оранжевую или желтую окраску. Находятся в плодах, листьях, лепестках цветков.

Хромопласты могут развиваться из хлоропластов: во время созревания плодов хлоропласты теряют хлорофилл и крахмал, в них активируется биосинтез каротиноидов.

Не содержат пигментов, образуются в запасающих частях растения (клубни, корневища). В лейкопластах накапливается крахмал, липиды (жиры), пептиды (белки). На свету лейкопласты могут превращаться в хлоропласты и запускать процесс фотосинтеза.

Что отвечает за внутриклеточное пищеварение

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Что отвечает за внутриклеточное пищеварение

Основными актами ротового пищеварения являются сосание, жевание и глотание, являющиеся двигательными или моторными актами, а также слюноотделение – секреторный акт.

Ротовая полость играет исключительно важную роль в обеспечении начальных этапов пищеварения, а также последующих этапов – желудочного и кишечного.

Пища находится в ротовой полости около 16–18 сек, за это время она механически измельчается, перетирается, смачивается слюной и трансформируется в пищевой комок-болюс. В ротовой полости осуществляется анализ и апробация вкусовых качеств пищи, начинается ее химическая обработка за счет различных ферментов, в частности амилолитических [1, 2, 3, 6, 7, 8].

В процессе ротового пищеварения раздражаются многочисленные рецепторы ротовой полости, что обеспечивает рефлекторную стимуляцию деятельности слюнных желез, пищеварительных желез желудка, поджелудочной железы, печени, двенадцатиперстной кишки, а также моторной и эвакуаторной деятельности желудочно-кишечного тракта. В ротовой полости начинается частично процесс всасывания воды, некоторых лекарственных препаратов [1, 3, 4, 5, 6, 7, 8].

Акт сосания – двигательный акт, соответствующий у новорожденных детей и детей грудного возраста акту жевания. У новорожденного он осуществляется по принципу безусловного рефлекса. Аппарат сосания обеспечивают поперечные складки губ, десны, жировые комочки или подушечки Биша в толще щек и языка. При раздражении тактильных, температурных, вкусовых рецепторов слизистой возникает поток афферентной импульсации, распространяющейся по чувствительным волокнам V пары черепно-мозговых нервов в продолговатый мозг, в частности в комплексный пищеварительный центр, в центр акта сосания. Оттуда импульсация распространяется по эфферентным волокнам в состав V, VII, XII пары черепно-мозговых к аппарату сосания, обеспечивая безусловно-рефлекторное сокращение мышц рта и языка. Язык выполняет функцию поршня в насосе. За счет сокращений его мышц он оттягивается вниз и назад, одновременно опускается нижняя челюсть, в связи с чем создается разрежение в ротовой полости в пределах 100–150 мм рт. ст. Снижение давления в ротовой полости ниже атмосферного обеспечивает присасывающее действие в момент акта сосания, способствует поступлению молока в ротовую полость. Акту сосания способствует также отрицательное внутригрудное давление, которое передается в ротовую полость по тонким стенкам пищевода. Через 7–10 дней после рождения вырабатываются первые условные рефлексы, в том числе и рефлекс сосания [1, 2, 3, 6, 7, 8].

У человека имеется три пары больших слюнных желез; околоушные, подъязычные и подчелюстные и большое количество мелких желез, рассеянных в слизистой оболочке рта, губ, щек. Выводные протоки околоушных желез открываются на уровне верхних вторых моляров в области небольшого бугорка, а выводные протоки двух других пар открываются на дне полости рта, позади нижних вторых резцов по обе стороны от уздечки языка. Значение слюнных желез неодинаково: мелкие железы постоянно выделяют секрет, который увлажняет слизистую и предохраняет ее от высыхания, а крупные железы выделяют свой секрет периодически и принимают участие в процессе пищеварения. Следует отметить, что слюнные железы функционируют как экзо- и эндокринные железы.

Экзокринная функция связана с образованием слюны, а эндокринная с выработкой гормоноподобных веществ, таких как:

а) паротин, обеспечивающий регуляцию фосфорно-кальциевого обмена в костной ткани и ткани зуба;

б) эритропоэтин, регулирующий процессы эритропоэза в костном мозге;

в) фактор роста и регенерации эпителия слизистой полости рта, пищевода, желудка;

г) фактор регенерации симпатических нервов;

д) инсулиноподобное вещество и др. Слюнные железы состоят из слизистых и серозных клеток, которые неравномерно распределены в составе желез [1, 3, 4, 5, 6, 7, 8].

В связи с функциональными особенностями можно выделить три группы желез:

1. Слизистые, или мукоидные, в составе секрета которых содержится много слизи или вязкого мукоидного секрета. К этой группе относятся мелкие железы корня языка, твердого и мягкого нёба.

2. Белковые железы – в их составе преобладают серозные клетки, а слюна содержит в значительном количестве белки-ферменты. К числу этих желез относится околоушная железа, мелкие слюнные железы боковой поверхности языка. Околоушные железы продуцируют жидкую слюну, содержащую большое количество хлоридов натрия, кальция, ферменты амилазу, каталазу, кислую фосфатазу.

3. Смешанные железы. В составе их секрета есть муцин, вода, соли, белок. К числу этих желез относятся подъязычная, подчелюстная слюнные железы,’ мелкие железы губ и кончика языка.

Подъязычная слюнная железа продуцирует слюну, богатую муцином вязкой консистенции, обладающую щелочной реакцией и высокой активностью кислой и щелочной фосфатазы.

Поднижнечелюстная слюнная железа выделяет секрет, содержащий большое количество муцина, амилазы, хлоридов натрия, кальция, фосфатов кальция и магния, незначительное количество роданистого калия.

Ротовая жидкость, чистая и смешанная слюна

Слюна – это смесь секретов трех пар больших и множества мелких слюнных желез. Такую слюну можно рассматривать как смешанную слюну.

Чистая слюна – это слюна, которая получена непосредственно из выводного протока слюнной железы и не успела выделиться в ротовую полость, где быстро смешивается и превращается в ротовую жидкость.

Ротовая жидкость образуется за счет примешивания к слюне клеток слущенного эпителия, частиц пищи, микроорганизмов полости рта, слюнных телец (нейтрофильных лейкоцитов, мигрирующих из кровеносных сосудов в полость рта), слизи, зубного налета. Ротовая жидкость имеет вязкую консистенцию, непрозрачна, состав ротовой жидкости может изменяться в зависимости от состояния ротовой полости, качества пищи, факторов внешней среды [3, 4, 5, 6, 7, 8].

Состав, свойства и функции слюны

Слюна – пищеварительный сок. В течение суток образуется у взрослого человека от 0,5 до 2,0 л слюны, которая имеет вид вязкой опалесцирующей жидкости, несколько мутноватой за счет наличия в ней клеточных элементов; pH смешанной слюны составляет от 5,8 до 8,0.

Смешанная слюна содержит около 99,5 % воды и соответственно около 0,5–0,6 % сухого вещества, включающего органические и неорганические компоненты [3, 4, 5, 6, 7, 8].

Неорганические вещества слюны – ионы натрия, калия, кальция, магния, железа, кальция, хлора, фтора, а также фосфаты, хлориды, сульфаты, бикарбонаты.

Органические вещества слюны:

а) гликопротеиды, трансферрин, церулоплазмин, альбумины, глобулины, свободные аминокислоты, иммуноглобулины;

б) небелковые азотсодержащие соединения – мочевина, аммиак, креатин;

в) вещества с бактерицидным действием – лизоцим, обладающий также и противокариесным эффектом, а также способностью стимулировать регенераторные процессы;

г) в смешанной слюне содержатся до 3 мг % свободных моносахаридов, а также продукты их превращений – лактат, пируват, цитрат;

д) вещества мукоидной природы, в частности муцин. Муцин – важнейший органический компонент слюны, обеспечивает вязкость слюны, способствует склеиванию частичек пищи и формированию пищевого комка, подготовляет его к проглатыванию;

е) гормоны: кортизон; кортизол, эстрогены, тестостерон, саливопаротин, урогастрон, инсулиноподобное вещество, глюкагон, тонин и др.

ё) в смешанной слюне в небольших количествах присутствуют холестерин и его эфиры, жирные кислоты глицерофосфолипиды;

ж) витамины: витамин С, никотиновая, пантотеновая, фолиевая кислота, тиамин, рибофлавин, пиридоксин;

Слюна – активный пищеварительный сок, в ней содержится около 50 различных ферментов, относящихся к гидролазам, оксиредуктазам, трансферазам, липазам, изомеразам. Оптимум действия ферментов слюны – слабощелочная среда. Основным ферментом слюны является альфа-амилаза, гидролитический фермент, обеспечивающий расщепление гликозидных связей в молекуле крахмала и гликогена с образованием декстринов, а затем мальтозы и сахарозы. Мальтаза слюны расщепляет мальтозу и сахарозу до моносахаров. Кроме амилолитических ферментов в слюне обнаружены протеолитические, напоминающие по субстратной специфике трипсин: саливаин, гландулаин, калликреиноподобная пептидаза. Оптимум действия саливаина при pH 9,2–9,9., а для гландулаина оптимальна кислая среда. Протеолитические ферменты слюны, попадая в системный кровоток, оказывают депрессорное действие. Важными ферментами слюны являются кислая и щелочная рибонуклеазы, трансаминазы, пероксидаза, обеспечивающие деградацию нуклеиновых кислот вирусов и соответственно противовирусную защиту слизистой оболочки полости рта, а также альдолаза, малат- и лактатдегидрогеназа. Источниками ферментов слюны могут быть лейкоциты, микробы, эпителий [1, 3, 4, 5, 6, 7, 8].

Слюна содержит комплекс веществ, регулирующих процессы местного гемостаза в полости рта, в частности прокоагулянтные и антикоагулянтные факторы, а также компоненты системы фибринолиза. Так, слюна содержит тромбопластин, антигепариновый фактор, а также факторы, идентичные V, VIII, X плазменным факторам свертывания крови. Естественными антикоагулянтами слюны являются антитромбопластины и антитромбины. Кроме того, в слюне содержатся плазминоген, проактиватор и активатор плазминогена, антиплазмин – соединение, стабилизирующее фибрин, идентичное XIII плазменному фактору [3, 4, 5, 6, 7, 8].

Кровотечение в ротовой полости быстро прекращается на фоне сбалансированного в условиях нормы содержания факторов прокоагулянтной, антикоагулянтной и фибринолитической систем. Факторы системы фибринолиза, содержащиеся в слюне, обладают и выраженным стимулирующим воздействием на процессы физиологической и патологической репарации слизистой рта [5, 7, 8].

Все многообразие функций слюны можно представить в виде трех основных: пищеварительной, защитной и трофической [1, 3, 4, 5, 6, 7, 8].

Пищеварительная функция слюны

1. За счет ферментов амилазы и мальтазы слюна обеспечивает химическую обработку пищи, в частности расщепление углеводов до ди- и моносахаров.

2. Слюна смачивает, увлажняет пищу и связывает ее отдельные частицы за счет муцина, т.е. принимает участие в формировании пищевого комка.

3. В слюне происходит растворение солей, сахаров и других компонентов пищи; в растворенном виде указанные соединения воздействуют на вкусовые рецепторы, и таким образом слюна принимает участие в формировании вкусовых ощущений.

4. Слюна необходима для осуществления физиологического акта – глотания. За счет наличия муцина пищевой комок становится более скользким и подвижным.

5. Слюна способствует рефлекторной секреции желудочного и других пищеварительных соков.

Защитная функция слюны проявляется в следующем:

1. Слюна постоянно увлажняет слизистую оболочку рта, предохраняет ее от высыхания, защищает зубы от воздействия физических и химических факторов.

2. Слюна способствует самоочищению полости рта и зубов, отмыванию налета.

3. Слюна обеспечивает регуляцию температуры полости рта и соответственно принимаемой пищи.

4. При попадании в ротовую полость кислых или отвергаемых веществ образуется большое количество жидкой слюны с высоким содержанием белка, обеспечивающей нейтрализацию кислот, снижение концентрации токсических факторов.

5. Слюна обладает выраженными буферными свойствами, является амфотерным электролитом, регулирует pH полости рта, связывая как излишки кислот, так и оснований.

6. Слюна повышает неспецифическую резистентность полости рта к воздействию инфекционных патогенных факторов за счет наличия в ней лизоцима, миелопероксидазы, лактоферрина, катионных белков, нуклеаз и т. д.

7. Слюна участвует в противовирусной и противобактериальной защите полости рта за счет иммуноглобулинов классов G, А, М, интерферона, комплемента, а также нейтрофилов и моноцитов, мигрирующих в слюну.

8. Защитное действие слюны обеспечивается наличием в ней факторов свертывания крови. При повреждении слизистой оболочки и тканей полости рта происходит быстрая остановка кровотечения, а за счет факторов фибринолитической системы обеспечивается быстрое очищение слизистой от фибриновых налетов, создаются благоприятные условия для регенерации.

9. Постоянная (резидентная) микрофлора слюны и тканей ротовой полости препятствует размножению случайной транзиторной микрофлоры, попадающей в полость рта с пищей, водой.

10. Слюна, являясь основным источником кальция и фосфора для эмали зуба, влияет на формирование резистентности зуба к кариесу.

Трофическая функция слюны

Слюна и ротовая жидкость могут оказывать выраженное влияние на проницаемость эмали зуба практически для всех веществ, которые могут поступать в полость рта с пищевыми продуктами и водой. Различная проницаемость эмали для органических и неорганических веществ, содержащихся в слюне, обусловлена их биологической активностью, способностью связываться с элементами эмали. Слюна является основным источником кальция, фосфора, цинка, используемых для образования эмали и других компонентов зуба, причем интенсивность поступления кальция в эмаль зуба из слюны максимальна при pH 7,0–8,0, когда слюна перенасыщена кальцием. При подкислении слюны и снижении pH ниже 6,5 в ротовой жидкости падает содержание ионов кальция, что способствует его выходу из эмали [1, 3, 4, 5, 6, 7, 8].

Трофическая функция слюны обеспечивается также за счет наличия в ней различных ферментов и гормонов. Такие ферменты, как калликреин и саливаин, регулируют микроциркуляторное кровообращение в тканях слюнных желез и слизистой оболочке полости рта. Между тем избыточное содержание в слюне нуклеаз может приводить к снижению регенеративного потенциала тканей и развитию дистрофии [5, 7, 8].

Из слюнных желез выделен гормон паротин, способствующий обызвествлению зубов и скелета при одновременном снижении содержания кальция в крови.

В слюне содержатся также фосфопротеины, кальцийсвязывающий белок с высоким сродством к гидрооксиапатиту, способствующий образованию зубного камня.

Экскреторная функция слюнных желез

В составе слюны могут выделяться некоторые конечные продукты обмена (мочевина, мочевая кислота, аммиак, креатин), лекарственные препараты, алкоголь, а также ионы металлов экзогенного происхождения, в частности ртути, свинца, висмута. Экскреторная функция слюнных желез заметно усиливается при почечной или печеночной недостаточности, эндокринопатиях, когда в организме человека начинают накапливаться различные токсические продукты эндогенной природы [5, 7, 8].

Кровоснабжение слюнных желез осуществляется от ветвей наружных сонных артерий, оттекает кровь в систему наружной и внутренней яремной вен. Особенностью кровеносной системы слюнных желез является наличие многочисленных анастамозов, по которым кровь из артерий и артериол попадает в венулы и вены, минуя капиллярное русло, что способствует перераспределению крови в железе. Лимфа оттекает в подподбородочные, поднижнечелюстные и глубокие шейные лимфатические узлы [5, 7].

Механизм слюноотделения. Слюноотделение является сложным рефлекторным актом, который осуществляется на базе условных и безусловных рефлексов. Безусловно-рефлекторный механизм осуществляется при непосредственном раздражении различными веществами, в том числе и пищевыми тактильных, температурных, вкусовых, болевых рецепторов полости рта. Афферентная импульсация поступает по чувствительным волокнам V, VII, IX, X пар черепно-мозговых нервов в продолговатый мозг, в частности в центр слюноотделения. Центр слюноотделения представлен верхним и нижним слюноотделительными ядрами, являющимися соответственно ядрами лицевого (VII пара) и языкоглоточного (IX пара) нервов. От этих ядер распространяется эфферентная холинергическая импульсация по парасимпатическим нервным волокнам к слюнным железам. Причем от верхнего слюноотделительного ядра возбуждение распространяется к подъязычной и подчелюстной железам по преганглионарным волокнам в составе барабанной струны (VII пара). Преганглионарные волокна заканчиваются в поднижнечелюстном и подъязычном ганглиях, расположенных в теле соответствующих желез. От нейронов этих ганглиев постганглионарные секреторные нервные волокна идут к секреторным клеткам и сосудам подчелюстной и подъязычной слюнных желез. От нижнего слюноотделительного ядра идут преганглионарные волокна в составе нерва Якобсона (ветвь IX пары) и прерываются в ушном ганглии. Отсюда импульсы идут по постганглионарным волокнам ушновисочного нерва к секреторным клеткам и сосудам околоушной железы [3, 5, 6, 7, 8].

Эфферентная симпатическая иннервация слюнных желез также является двухнейронной. Преганглионарные волокна выходят из боковых рогов II–VI грудных сегментов спинного мозга и заканчиваются в верхнем шейном симпатическом узле, от нейронов которого отходят подстганглионарные симпатические волокна к слюнным железам [7, 8].

Влияние симпатических и парасимпатических эффекторных воздействий на секреторную функцию слюнных желез и их кровоснабжение неодинаково. При усилении парасимпатических нервных влияний на слюнные железы наблюдается обильное выделение жидкой слюны, содержащей много солей, мало органических соединений. Парасимпатические нервы являются для слюнных желез секреторными [3, 5, 6, 7, 8].

Усиление холинергических нервных влияний и процесса слюноотделения сочетается с расширением кровеносных сосудов слюнных желез и интенсификацией в них кровообращения. Эти эффекты обусловлены освобождением ацетилхолина с постганглионарных нервных окончаний, а также воздействием кининов [5, 7, 8, 9].

Усиление адренергических нервных влияний на слюнные железы сопровождается выделением небольшого количества вязкой густой слюны с большим содержанием муцина, органических соединений и малым количеством солей, поэтому симпатические нервы называют трофическими для слюнных желез. Ограничение слюноотделения при усилении адренергических нервных влияний сочетается с сужением кровеносных сосудов слюнных желез и уменьшением в них интенсивности кровотока.

В момент ротового пищеварения при так называемой «пищевой секреции» парасимпатические нервные влияния на слюнные железы выражены в большей степени, чем симпатические [5, 7, 8].

Условно-рефлекторный механизм слюноотделения. Формирование данного механизма имеет место при раздражении зрительных, слуховых, обонятельных рецепторов под влиянием различных раздражителей: вида, запах пищи, разговоров о пище, звуков, связанных с приготовлением пищи, и т. д. При виде или запахе пищи раздражаются зрительные и обонятельные рецепторы, импульсы поступают в мозговые отделы этих сенсорных систем, а оттуда по принципу доминанты возбуждения за счет временных нервных связей поступают в корковое представительство комплексного пищевого центра, затем в продолговатый мозг в комплексный пищевой центр, в частности центр слюноотделения, и, наконец, по эфферентным секреторным волокнам к слюнным железам. У человека условнорефлекторная секреция слюны может начинаться также при воспоминании о вкусной пище [7, 8].

Помимо рефлекторной регуляции слюноотделения существуют и другие виды регуляции, в частности гуморальная регуляция.

Гуморальная регуляция слюноотделения. На секрецию слюны влияют многие гормоны и биологически активные соединения, в частности гормоны гипоталамо-гипофизарной системы, поджелудочной, щитовидной железы, половых желез, а также гистамин, калликреины, кинины, изменения концентрации питательных веществ, СО2 в крови. Так, кровь, богатая питательными веществами, тормозит деятельность центра слюноотделения, наоборот, усиление слюноотделения отмечается при уменьшении в крови уровня питательных веществ [5, 7, 8].

При увеличении концентрации СО2 в крови в случае развития асфиксии происходит повышение возбудимости нейронов комплексного пищевого центра. Интенсивность слюноотделения может изменяться на фоне приема некоторых лекарственных препаратов, например, при использовании холиномиметиков (пилокарпина, физиостигмина) интенсивность слюноотделения возрастает, а при введении холинолитика – атропина возникает гипосаливация. Гуморальные факторы могут двояко влиять на интенсивность слюноотделения: непосредственно на центры головного мозга или действовать на периферический аппарат – синаптические структуры или секреторные клетки [4, 5, 7, 8].

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *