Что отвечает за цвет крови у человека
Что отвечает за цвет крови у человека
Большая часть людей считает, что вся кровь, которая есть на свете, — красная. Однако это не так. В природе существует как минимум три разных цвета крови, причем они могут меняться в зависимости от внешних химических факторов и реакций, которые происходят в организме.
Кровь красного цвета течет по венам у всех млекопитающих, у рыб, у птиц, рептилий и амфибий. Ее цвет обусловлен гемоглобином, который содержится в эритроцитах и помогает им развозить по организму кислород. В гемоглобине есть ионы железа — именно их соединение с кислородом придает крови красный цвет. Когда кровь насыщена кислородом, она имеет ярко-алый оттенок. Кровь, насыщенная углекислым газом, — темно-бордового цвета. Известен случай, когда во время операции из ноги 42-летнего канадца потекла темно-зеленая кровь. Оправившись от изумления, врачи выяснили, что гемоглобин пациента содержит не только железо, но и серу, вероятно, от длительного приема серосодержащих препаратов. В результате химическая реакция изменила структуру гемоглобина, что изменило и цвет крови.
Кровь голубого цвета, вопреки литературной метафоре, течет не в жилах аристократов, а в теле осьминогов и других моллюсков, скорпионов, пауков и некоторых червей. Собственно говоря, в их организме она бесцветная, но при контакте с воздухом голубеет и может даже слабо светиться в темноте. Синюю окраску крови придает аналог гемоглобина — гемоцианин. В его состав входит не железо, а медь. Вступая в связь с кислородом, она окисляется, приобретая сине-зеленый оттенок.
Кровь желтого, а также зеленого и белого цветов встречается в основном у насекомых. Эта жидкость называется «гемолимфа» и, как следует из названия, она выполняет одновременно и питательные, и иммунные функции. У многих насекомых она не участвует в газообмене, в ней нет эритроцитов, поэтому и вступать в связь с кислородом нечему. В зависимости от вида насекомого и от его состояния гемолимфа может быть прозрачной, белой, зеленоватой или желтой.
Спасибо за ваше внимание! Уделите нам, пожалуйста, еще немного времени. Кровь5 — издание Русфонда, и вместе мы работаем для того, чтобы регистр доноров костного мозга пополнялся новыми участниками и у каждого пациента с онкогематологическим диагнозом было больше шансов на спасение. Присоединяйтесь к нам: оформите ежемесячное пожертвование прямо на нашем сайте на любую сумму — 500, 1000, 2000 рублей — или сделайте разовый взнос на развитие Национального регистра доноров костного мозга имени Васи Перевощикова. Помогите нам помогать. Вместе мы сила.
Ваша,
Кровь5
Цветовой показатель в общем анализе крови (ЦП)
Для определения содержания гемоглобина в эритроцитах используется цветовой показатель. Это довольно старый параметр, который сегодня вытесняется MCH, более современным, вычисляемым с помощью автоматических анализаторов. Тем не менее, ЦП не теряет своей актуальности и применяется для дифференциальной диагностики гипо-, нормо- и гиперхромных анемий.
Данный параметр не имеет размерности, и его норма составляет 0,84-1,11. Если на этом фоне отмечается сниженное количество эритроцитов – говорят о нормохромии, характерной для острого или хронического кровотечения, почечной патологии, приводящей к нехватке эритропоэтина, внутрисосудистого гемолиза и апластических состояний.
Уменьшение свидетельствует о гипохромной анемии, что бывает при:
Дефиците железа и витамина В6;
Отравлении тяжелыми металлами;
Нарушении синтеза белков и других соединений, входящих в состав гемоглобина (талассемия);
Общем тяжелом состоянии пациента.
Гиперхромия, когда ЦП выше нормы, свидетельствует о:
Недостаточности в организме витамина В12 и фолиевой кислоты;
Токсическом поражении костного мозга;
Передозировке или длительном лечении цитостатиками, противосудорожными, противовирусными препаратами;
Нарушении работы печени.
Однако для полноценной диагностики одного только цветного значения недостаточно. При появлении первых признаков малокровия или симптомов других заболеваний необходимо обратиться к врачу, который составит план обследования.
Какого цвета бывает кровь у человека и от чего зависит
Кровь у человека в норме красного оттенка. Ее цвет зависит от типа белка в организме и железа, которое присутствует в его составе. У человека это – гемоглобин. Именно он окрашивает жидкость.
Состав
Кровь человека становится алой благодаря гемоглобину, обогащающему ее кислородом. В этот момент образуется оксигемоглобин. В своей структуре он содержит клетки железа. Этот элемент обеспечивает кислородом клетки всего тела. Собирая углекислый газ, он превращается в карбогемоглобин и выбрасывает скопившийся углекислый газ в легкие. Жидкость в этот момент имеет темно-красный бордовый цвет.
Белок состоит из четырех блоков (они называются гемы). В них есть атомы железа. Благодаря ему кровь приобретает алый оттенок.
Плазма
Плазма – это жидкая светло-желтая часть крови. Составляет 50-60% от ее общей массы. Состоит из воды с белками и минеральными и органическими соединениями. Неорганические вещества занимают лишь 1% от массы.
В медицинских целях плазму используют для регенерации и заживления повреждений тканей организма. Материал плотнее воды благодаря веществам, растворенным в ней: жиры, соли, углеводы, антитела и так далее.
Форменные элементы
Форменные элементы – это клетки: эритроциты, лейкоциты, тромбоциты. Эритроциты – самая большая группа – кровяные тельца. В 1 мм биоматериала содержится примерно 5 млн эритроцитов. Они придают ей красный оттенок. Образуются тельца в костном мозге. Именно они формируют белок. Элементы не могут делиться, поэтому после 4 месяцев жизни они распадаются в селезенке или печени. Процесс образования и распада форменных элементов происходит постоянно.
Лейкоциты – белые тельца. Они сражаются с вредителями, вирусами, чужеродными микроорганизмами. Их меньше эритроцитов в 1000 раз. Благодаря белому оттенку, легко определяются при медицинских исследованиях.
Тромбоциты – небольшие цветные пластинки. Отвечает за свертываемость:
Лейкоциты и тромбоциты составляют всего 10% от объема всей массы крови. Все остальное место занимают эритроциты.
От чего зависит цвет
В первую очередь цвет крови зависит от эритроцитов. Они вырабатывают гемоглобин. В нем находятся клетки железа. Благодаря им она и становится алой.
Она отвечает за поставку питательных веществ, кислорода, воды, глюкозы к органам, следит за температурой тела и при необходимости может немного охладить его. Для этого жидкость забирает лишнее тепло из, например, печени и передает его коже, которая быстро остывает.
У некоторых морских жителей нет гемоглобина, но есть другое вещество, выполняющее точно такую же транспортную функцию – хлорокруорин. Из-за этого у них по сосудам течет зеленая жидкость.
Оттенок зависит от того, какой металл присутствует в составе белка.
У крабов, раков пауков и осьминогов сине-зеленая кровь. В ней течет гемоцианин. В некоторых видах рыб находится прозрачный биоматериал, похожий на воду. Она состоит из гемованадия и ионов ванадия.
Почему вены синие, а не красные
Вены разносят бордовую кровь. Они кажутся синими из-за многих факторов. В первую очередь из-за цветовосприятия глаза человека.
Цвет – это длина волны света, исходящая от объекта или отражается объектом от другого источника света. Красный свет имеет самую большую длину волны (700 нм). Это значит, что он проходит через предметы и не отображается от них. Проходит он и через кожу и, доходя до вен, поглощается гемоглобином. Если направить красный свет на руку, он будет отражаться везде, кроме мест с венами. Там он превратится в черный, так как будет поглощен. С помощью этого трюка медики могут найти сложно доступные вены.
Фиолетовый свет – это самая короткая волна (400 нм). Синий имеет примерно такие же показатели – 475 нм. Он легко рассеивается и не проходит глубоко в кожу, а отражается от нее. Если посмотреть на руку под синим светом, никаких вен найти будет нельзя.
Этот трюк часто используют против тех, кто любит бывать в клубах или других местах. Фиолетовый или синий свет в туалете не оставляет шансов обнаружить свои вены.
Подставьте руку под обычный белый свет. В нем есть и другие цвета, не только белый. Вены будут синего оттенка, так как он отразится от нее, а красный будет проходить вглубь кожи и поглощаться там.
Почему же мы не видим другие сосуды, по которым течет кровь
Человек не видит сосуды, потому что они слишком глубоко под кожей. Свет туда не доходит. Если же кровеносные сосуд находится ближе, чем 0,5 мм, он поглощает уже весь синий свет. Красный же частично отражается,поэтому люди видят эту часть кожи румяной, розоватой. Вены, которые отчетливо видны, располагаются на расстоянии не больше 0,5 мм от поверхности кожи.
Почему мы не видим артерии из-под кожи
Большая часть крови находится именно в венах, поэтому они намного объемнее артерий и сосудов. Из-за того, что кровь оказывает сильное давление на артерии, они имеют более толстые стенки. Из-за этого они не такие прозрачные и не могут быть видны через кожу. Если бы их было видно, артерии, скорее всего, выглядели бы точно также, как вены. Хотя жидкость в них ярко-красная.
Какого же на самом деле цвета вены
Пустые кровеносные сосуды имеют красно-коричневый оттенок. Примерно такого же цвета и вены, так как различий между ними немного. У вен тонкие стенки, у артерий – более толстые и мускулистые. Эту разницу можно увидеть только при поперечном сечении.
Артериальная кровь
Артериальная кровь насыщена кислородом. Имеет ярко-алый оттенок благодаря высокой концентрации оксигемоглобина. Она идет от сердца, доставляя полезные вещества в органы.
Из-за того, что по артериям жидкость движется очень быстро, такой вид кровотечения остановить очень сложно. Она будет вытекать очень интенсивно, что опасно для жизни.
Венозная кровь
Насыщенная углекислым газом кровь, которая по венам возвращается к сердцу. Имеет более темный оттенок, высокую температуру,мало глюкозы и других питательных веществ. В ней больше конечных продуктов метаболизма.
Этот вид чаще всего используется врачами для обследований, так как в нем собраны продукты жизнедеятельности организма.
Она течет медленно, ее движение и скорость регулируют специальные клапаны. Она гораздо гуще артериальной, вытекает медленно, без повреждений. Остановить такое кровотечение гораздо проще и безопаснее.
Фиолетовый цвет
Такой оттенок встречается у беспозвоночных, например, моллюсков. Вместо гемоглобину у них присутствует другой белок – гемэритрин. Он также выполняет дыхательную функцию в организме. В нем в несколько раз больше железа, чем в белке человека.
Пока жидкость насыщена кислородов гемэритрин придает ей фиолетовый оттенок. После отдачи кислорода жидкость приобретает розовый цвет. Этот белок гораздо менее эффективен в своей транспортной функции, чем гемоглобин.
Зеленый цвет
Другой белок – хлорокруорин – придает крови зеленый оттенок. Он находится в плазменной жидкости. По составу схож с гемоглобином. Главное отличие – окисное железо (в крови млекопитающих железо закисное). Он и придает зеленый цвет.
Некоторые виды животных содержат не только хлорокруорин, но и гемоглобин. При насыщении крови кислородом приобретает насыщенный зеленый оттенок, после его отдачи – светло-зеленый. Иногда становится светло-красной (при перенасыщении кислородом).
В норме цвет кровь человека бывает алой или бордовой. Это зависит от функции, которую жидкость выполняет – доставка кислорода в органы или углекислого газа в легкие. В сосудах морских обитателей может течь бесцветная, зеленая или фиолетовая жидкость. Это зависит от вида белка (например, хлорокруорин или гемэритрин) и железа, вырабатываемого в их организме.
Кровавая история
Кровь нужна не всем. Великое множество животных – таких как морские звезды, губки, полипы и медузы – достаточно проницаемы для того, чтобы их ткани насыщались кислородом за счет простой диффузии из воды. Но чем сложнее становится тело и чем активнее животное движется, тем актуальнее для него вопрос об «искусственной вентиляции» всего организма. Поэтому кровь – или некий ее аналог – имеется у всех прочих животных.
Их (наши) последние общие предки жили еще в Докембрии, более 600 млн лет назад, – возможно, что к этому периоду относится и появление «протокрови», разносившей кислород по телу. Древнейшие палеонтологические следы крови несколько моложе. их возраст оценивается в 500 млн лет. Обнаруживаются они в знаменитых сланцах Бёрджес на юго-западе Канады. Это – одно из самых крупных захоронений кембрийской эпохи.
У останков Marella, галлюциногений и некоторых других представителей удивительной фауны сланцев Бёрджес встречается характерное «темное пятно», похожее на следы жидкости, которая вытекала из тела вскоре после гибели. Предполагается, что такие пятна – это и есть остатки «крови» (а скорее, гемолимфы, аналогичной жидкости членистоногих). На это указывает повышенное содержание в пятне меди – металла, который членистоногие используют для той же цели, для которой люди и другие млекопитающие – железо: переносить кислород.
До первой крови
Все началось с фотосинтеза. Первыми его освоили цианобактерии, причем менее миллиарда спустя после появления жизни. Сперва они научились использовать энергию солнечных фотонов, чтобы отнимать электроны у молекул сероводорода (окислять их) и в конечном итоге производить органику, а в качестве отходов создавали отложения серы. Однако сероводород доступен далеко не везде, тем более там где достаточно света. Поэтому новая революция была связана с заменой сероводорода на аналогичное соединение кислорода – воду, которой на Земле предостаточно.
Этот шаг изменил все и позволил фотосинтезирующим микробам процветать. Но он же привел к тому, что в окружающую среду стали поступать все большие количества свободного кислорода. Его появление оказалось серьезной проблемой для организмов, неприспособленных к присутствию этого мощного и опасного окислителя. Простейший способ обезвредить его – позволить кислороду атаковать не важные для жизни молекулы, а что-нибудь ненужное, например, ион металла.
Живые организмы уже неплохо освоились в использовании металлов для проведения различных окислительно-восстановительных реакций. Они уже имели молекулы порфиринов – сложные органические комплексы, похожие на бублики и великолепно приспособленные для удержания различных металлов в своей центральной «дырке». Такие порфирины содержатся в активных центрах фотосинтетических пигментов, у растений они несут марганец. А в составе других белков порфирины могли участвовать в нейтрализации кислорода у древних организмов.
Хранители и переносчики
Однако кислород оказался не только угрозой, но и новой потенциальной возможностью: благодаря ему органику, полученную при фотосинтезе, можно использовать намного эффективнее. При обычном бескислородном брожении «сжигание» одной молекулы глюкозы дает две молекулы АТФ (главного носителя энергии в живых организмах), а при кислородном окислении (дыхании) – до 32 молекул! Разница весьма ощутима. Использовать кислород для получения энергии позволяет процесс клеточного дыхания, для которого были приспособлены белки-цитохромы. Они также содержат порфириновое кольцо, но уже определенного типа – гем.
Так большинство живых организмов «подсело» на кислород окончательно. Со временем это привело к проблеме его хранения и доставки ко всем уголкам сложного многоклеточного тела. Разные группы животных, уже возникшие к тому моменту, решали эти задачи по-разному, хотя все полагались на древнюю и великолепно отработанную схему: кислород связывается атомом металла, «подвешенным» в порфириновом кольце, которое, в свою очередь, помещено в белковую оболочку, чтобы лучше управлять его работой.
Самыми распространенными из таких молекул стали гемоглобины и гемоцианины – пигменты крови, которые встречаются у большинства позвоночных, членистоногих и моллюсков. В отличие от гемоглобинов, несущих атомы железа, гемоцианины связывают медь, что придает крови не красный, а сине-зеленый цвет, словно у покрытых патиной древних статуй. Считается, что гемоцианины не так эффективны для переноски кислорода, как гемоглобины, но, возможно, они лучше работают при низких температурах. При этом гемоцианины моллюсков и членистоногих так непохожи, что, по-видимому, имеют совершенно разное и независимое происхождение.
Почему кровь красного цвета
Наверняка каждый человек задавался вопросом: «Почему кровь красная?» Чтобы получить ответ, нужно рассмотреть, из чего она состоит.
Состав
Кровь – это быстро обновляющаяся соединительная ткань, которая циркулирует по всему организму и переносит газы и вещества, необходимые для обмена веществ. Она состоит из жидкой части, которая называется плазмой, и форменных элементов – кровяных клеток. В норме плазма составляет около 55% от общего объема, клетки – около 45%.
Плазма
Эта бледно-желтая жидкость выполняет очень важные функции. Благодаря плазме, клетки, находящиеся в ней во взвешенном состоянии, могут перемещаться. На 90% она состоит из воды, остальные 10% – это органические и неорганические компоненты. В плазме содержатся микроэлементы, витамины, промежуточные элементы обмена веществ.
Клети
Существует три вида форменных элементов:
Эритроциты
Эти клетки, которые называются красными кровяными тельцами, составляют большую часть форменных элементов – более 90%. Основная их функция – перенос кислорода из легких к периферическим тканям и углекислого газа от тканей в легкие для дальнейшего выведения его из организма. Эритроциты непрерывно производятся в костном мозге. Срок их жизни составляет около четырех месяцев, после чего они разрушаются в селезенке и печени.
Цвет крови бывает разным в зависимости от того, течет она от сердца или к сердцу. Кровь, поступившая из легких и затем по артериям направляющаяся к органам, насыщена кислородом и имеет ярко-алый цвет. Дело в том, что гемоглобин в легких связывает молекулы кислорода и превращается в оксигемоглобин, который имеет светло-красную окраску. Поступая в органы, оксигемоглобин высвобождает O₂, превращается вновь в гемоглобин. В периферических тканях он связывает углекислый газ, принимает форму карбогемоглобина и темнеет. Поэтому кровь, текущая по венам от тканей к сердцу и легким, темная, с синеватым оттенком.
Незрелый эритроцит содержит мало гемоглобина, поэтому сначала он синий, затем становится серым, и лишь созрев, приобретает красный цвет.
Гемоглобин
Это сложный белок, в состав которого входит пигментная группа. Эритроцит на одну треть состоит из гемоглобина, который и делает клетку красной.
Гемоглобин состоит из белка – глобина, и небелкового пигмента – гема, содержащего ион двухвалентного железа. Каждая молекула гемоглобина включает четыре гема, которые составляют 4% от всей массы молекулы, в то время как на долю глобина приходится 96% массы. Главная роль в активности гемоглобина принадлежит иону железа. Чтобы осуществить транспортировку кислорода, гем обратимо связывается с молекулой O₂. Двухвалентное окисное железо и придает крови красный цвет.