Что относится к гладким мышцам

Гладкие мышцы

Что относится к гладким мышцам

Что относится к гладким мышцам

Гладкие мышцы — сократимая ткань, состоящая, в отличие от поперечнополосатых мышц, из клеток (а не синцития) и не имеющая поперечной исчерченности.

Содержание

Гладкие мышцы у беспозвоночных и позвоночных

У некоторых беспозвоночных гладкие мышцы образуют всю мускулатуру тела. У позвоночных они входят в состав оболочек внутренних органов: кишечника, кровеносных сосудов, дыхательных путей, выделительных и половых органов, а также многих желёз. Клетки гладких мышц у беспозвоночных разнообразны по форме и строению; у позвоночных в большинстве случаев веретенообразные, сильно вытянутые, с палочковидным ядром, длиной 50—250 мкм, в матке беременных животных — до 500 мкм; окружены волокнами соединительной ткани, образующими плотный футляр.

Сократимый материал

Сократимый материал — протофибриллы — обычно располагается в цитоплазме изолированно; только у некоторых животных они собраны в пучки — миофибриллы. В гладких мышцах найдены все три вида сократимого белка — актин, миозин и тропомиозин. Преимущественно встречаются протофибриллы одного типа (диаметром около 100 ).

Клеточные органоиды

Клеточных органоидов (митохондрии, комплекс Гольджи, элементы эндоплазматического ретикулума) в гладких мышцах меньше, чем в поперечнополосатой мускулатуре. Они располагаются преимущественно на полюсах ядра в цитоплазме, лишённой сократимых элементов. Клеточная мембрана часто образует карманы в виде пиноцитозных пузырьков, что указывает на резорбцию и всасывание веществ поверхностью клетки.

Различие гладких мышц

Установлено, что гладкие мышцы — группа различных по происхождению тканей, объединяемых единым функциональным признаком — способностью к сокращению. Так, у беспозвоночных гладкие мышцы развиваются из мезодермальных листков и целомического эпителия. У позвоночных гладкие мышцы слюнных, потовых и молочных желёз происходят из эктодермы, гладкие мышцы внутренних органов — из мезенхимы и т.д. Соседние клетки гладких мышц контактируют друг с другом отростками так, что мембраны двух клеток соприкасаются. В мышцах кишки мышцы зоны контакта занимают 5% поверхности клеточной мембраны. Здесь, вероятно, происходит передача возбуждения от одной клетки к другой (см. Синапсы).

Сокращения гладких мышц

В отличие от поперечнополосатых мышц, для гладких мышц характерно медленное сокращение, способность долго находиться в состоянии сокращения, затрачивая сравнительно мало энергии и не подвергаясь утомлению. Двигательная иннервация гладких мышц осуществляется отростками клеток вегетативной нервной системы, чувствительная — отростками клеток спинальных ганглиев. Не каждая клетка гладких мышц имеет специализированное нервное окончание.

Полезное

Смотреть что такое «Гладкие мышцы» в других словарях:

ГЛАДКИЕ МЫШЦЫ — (непроизвольно сокращающиеся мышцы), один из трех типов мышц у позвоночных. В отличии от СКЕЛЕТНЫХ МЫШЦ, они не поддаются сознательному контролю со стороны мозга, а стимулируются ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМОЙ и ГОРМОНАМИ в крови. Поми мо гладких… … Научно-технический энциклопедический словарь

ГЛАДКИЕ МЫШЦЫ — сократимая (мышечная) ткань, состоящая из веретенообразных одноядерных клеток. В отличие от поперечнополосатых мышц не имеют поперечной исчерченности. У большинства беспозвоночных составляют всю мускулатуру тела; у позвоночных входят в состав… … Большой Энциклопедический словарь

гладкие мышцы — сократимая (мышечная) ткань, состоящая из веретенообразных одноядерных клеток. В отличие от поперечно полосатых мышц не имеют поперечной исчерченности. У большинства беспозвоночных составляют всю мускулатуру тела; у позвоночных входят в состав… … Энциклопедический словарь

ГЛАДКИЕ МЫШЦЫ — мышцы внутренних органов, образующие мышечный слой желудка, кишечника, кровеносных сосудов и т.д. В отличие от поперечнополосатых мышц сокращение Г. м. более медленны и длительны; они могут продолжительное время находиться в сокращенном состоянии … Психомоторика: cловарь-справочник

Гладкие мышцы — ГЛÁДКИЕ МЫ́ШЦЫ (musculi glaberi), сократимая ткань, состоящая из отд. клеток и не имеющая поперечной исчерченности. У беспозвоночных (кроме членистоногих и нек рых представителей др. групп, напр. крылоногих моллюсков) Г. м. образуют всю… … Биологический энциклопедический словарь

Гладкие мышцы — сократимая ткань, состоящая, в отличие от поперечнополосатых мышц (См. Поперечнополосатые мышцы), из клеток (а не симпластов) и не имеющая поперечной исчерченности. У беспозвоночных (кроме всех членистоногих и отдельных представителей др … Большая советская энциклопедия

ГЛАДКИЕ МЫШЦЫ — сократимая (мышечная) ткань, состоящая из веретенообразных одноядерных клеток. В отличие от поперечно полосатых мышц не имеют поперечной исчерченно сти. У большинства беспозвоночных составляют всю мускулатуру тела; у позвоночных входят в состав… … Естествознание. Энциклопедический словарь

МЫШЦЫ — МЫШЦЫ. I. Гистология. Общеморфодогически ткань сократительного вещества характеризуется наличием диференцировки в протоплазме ее элементов специфич. фибрилярной структуры; последние пространственно ориентированы в направлении их сокращения и… … Большая медицинская энциклопедия

МЫШЦЫ — мускулы (musculi), органы тела животных и человека, состоящие из мышечной ткани, способной сокращаться под влиянием нервных импульсов. Осуществляют перемещение тела в пространстве, смещение одних его частей относительно других (динамич. функция) … Биологический энциклопедический словарь

МЫШЦЫ ЧЕЛОВЕКА — «80 №№ Наименование латинское и русские. Синонимы. Форш, и положение Начало и прикрепление Иннервация и отношение к сет.ентам Thyreo epiglotticus (щитовидпо надгортан ная М.). Син.: thyreo epiglotticus inferior, s. major, thyreo membranosus … Большая медицинская энциклопедия

Источник

Гладкие мышцы

Содержание

Гладкие мышцы [ править | править код ]

В данной статье описаны основные характеристики гладкой мускулатуры. Рассматриваются следующие темы.

Гистологическое строение [ править | править код ]

Что относится к гладким мышцам

В отличие от скелетных мышц, которые состоят из многоядерных элементов, образованных в результате слияния многих клеток, гладкая мышечная ткань образована отдельными клетками. Форма клеток приближается к веретеновидной (фузиформной), однако в отдельных случаях они могут иметь и другую форму (рис. 1.15). Клетки окружены базальной мембраной, содержащей большое количество белков, и имеют одно ядро в центре. В расслабленном состоянии клетки ядро продолговатое, а при сокращении принимает штопорообразную форму. При классическом окрашивании цитоплазма гладкомышечных клеток в световом микроскопе выглядит гомогенной. В гладкомышечной клетке отсутствуют саркомеры, поэтому ни в продольном, ни в поперечном срезе не видны миофибриллы (рис. 1.16). [[Image:|250px|thumb|right|рис. 1.16. Гистологическое строение гладких мышц — гладкомышечные веретенообразные клетки с одиночным расположенным в центре ядром; миофибриллы не видны]] Необходимые для сокращения актиновые и миозиновые филаменты прикрепляются либо к клеточной мембране (якорные бляшки), либо к так называемым плотным тельцам в цитоплазме.

Что относится к гладким мышцам

Ядро гладкомышечной клетки содержит хорошо выраженное ядрышко. Большинство клеточных органелл расположено около полюсов ядра. В отличие от скелетных мышц в гладкомышечных клетках слабо выражен саркоплазматический ретикулум, поэтому их сократимость значительно отличается (Welsch, 2006).

Формы и расположение гладких мышц [ править | править код ]

Гладкомышечные клетки помимо других свойств характеризуются непроизвольными сокращениями. Гладкие мышцы способны непроизвольно сокращаться, поэтому они не нуждаются в произвольном контроле. Соответственно этому, они расположены преимущественно в следующих органах человеческого организма.

Гладкие мышцы являются составной частью кровеносных и лимфатических сосудов. Количество гладкомышечной ткани пропорционально диаметру сосуда, причем при одинаковых размерах артерии содержат больше гладкой мускулатуры, чем вены и лимфатические сосуды. По мере разветвления сосудов уменьшается и абсолютное количество гладких мышц, при этом в артериолах относительно их диаметра содержание гладкой мышечной ткани максимально. В капиллярах гладкомышечная ткань отсутствует.

Гладкомышечная ткань также встречается в некоторых немышечных органах.

Что относится к гладким мышцамЗапомните:Необходимо упомянуть, что некоторые мышцы, выполняющие более или менее непроизвольные сокращения, являются поперечно-полосатыми. К ним относятся следующие мышцы.

Строение гладких мышц [ править | править код ]

Как и у поперечно-полосатых мышц, сокращение гладких мышц происходит за счет взаимного скольжения миофиламентов — тонких актиновых и толстых миозиновых филаментов (миозин II типа). Гладкомышечные клетки содержат в 3 раза меньше миозина, чем поперечно-полосатые. В отличие от скелетных мышц миозиновые филаменты в гладкомышечных клетках расположены неупорядоченно и не образуют саркомеры и миофибриллы, что и послужило причиной появления термина «гладкие мышцы». Тонкие актиновые филаменты, как уже было указано, прикрепляются к плотным тельцам в цитоплазме или к якорным бляшкам клеточной мембраны. Эти образования являются аналогами Z-линии в поперечно-полосатых мышцах. Помимо хаотичного расположения миофиламентов сократительный аппарат гладких мышц отличается от поперечно-полосатых как ультраструктурно, так и биохимически. Одним из важных структурных различий является активность Са2+-каналов

и фермента АТФазы миозина, которая влияет на скорость мышечных сокращений. Плохо развитый саркоплазматический ретикулум позволяет депонировать лишь небольшое количество ионов Са2+, а большая часть ионов, необходимых для мышечного сокращения, поступает при возбуждении клетки из межклеточного пространства. По этой причине в гладкомышечной ткани наблюдается, с одной стороны, медленный ток ионов Са2+, а с другой — меньшая активность АТФазы миозина (в 10-100 раз ниже, чем в поперечно-полосатых мышцах). Таким образом, сокращения гладких мышц характеризуются низкой скоростью, но большей длительностью (Widmaier et al., 2008).

Сократительная способность [ править | править код ]

Характер, процесс и контроль мышечных сокращений в гладких мышцах значительно отличается от таковых в поперечно-полосатых мышцах. Последние способны к быстрым сокращениям и быстро утомляются, в то время как гладкие мышцы характеризуются относительно медленными сокращениями, но обладают большей выносливостью. Причиной этого является особая ультраструктура гладкомышечных клеток, а также молекулярная структура миофиламентов. Кроме этого, деполяризация клеточной мембраны (и, следовательно, поступление ионов Са2+ и возникающее сокращение) гладкомышечных клеток вызывается множеством факторов, в то время как деполяризация мембраны скелетных мышц регулируется нейромедиатором ацетилхолином (АЦХ), выделяемым двигательными нейронами.

Именно последняя особенность считается причиной непроизвольности сокращений гладких мышц. Иногда утверждают, что гладкие мышцы вообще не способны к произвольным сокращениям, однако это не всегда так. Более правильно утверждать, что гладкие мышцы не нуждаются в произвольном контроле, т. к. центры в стволе головного мозга, ответственные за кровообращение, функцию пищеварительного тракта и т. д., функционируют без сознательного контроля. Это также справедливо для нервных центров, регулирующих функцию сердца и дыхания, хотя сердечная мышца и дыхательные мышцы (особенно диафрагма) являются поперечно-полосатыми.

Необходимо отметить, что контроль скелетных мышц только частично произволен. Единственные мышцы, которые поодиночке выполняют истинные произвольные движения (причем некоторые только при тренировке), — мышцы кисти. Все остальные движения возникают в результате сложных неосознанных взаимодействий многих мышц (мышц-синергистов), т. к. при этом всегда изменяются статические силы тела. Для простого сгибания руки в локте требуется напряжение сгибателей кисти, лучезапястного сустава и локтевого сустава. При этом должны также одновременно расслабиться мышцы-антагонисты (все разгибатели соответствующих суставов, например трехглавая мышца плеча). Дополнительно активируются различные мышцы плечевого пояса, которые стабилизируют лопатку относительно туловища, а также различные мышцы, стабилизирующие туловище, тазобедренный сустав и нижние конечности, чтобы поддерживать статику (позу) тела. Из этого примера видно, что произвольное напряжение одной мышцы, не говоря уже об отдельных мышечных волокнах, невозможно, как и произвольное напряжение отдельных гладких мышц. Возможна лишь активация мышечной системы, а именно совокупности синергистов для выполнения одного движения (например, сгибания локтевого сустава).

Учитывая вышесказанное, читателя не должно удивить, что произвольная активация системы гладких мышц все же возможна. К примеру, с помощью методов биологической обратной связи или расслабления в результате тренировок возможно относительно легко получить контроль над активностью мышц сердечно-сосудистой системы. Эти методы часто применяются в лечении мигреней и артериальной гипертензии.

Кроме этого, было продемонстрировано, что различный уровень тренированности влияет не только на внутри- и межмышечную координацию скелетных мышц, но и на активность гладких мышц сердечнососудистой системы (артериальное давление) или желез внешней секреции (выделение пота), которая может значительно изменяться под влиянием спортивных тренировок.

В заключение необходимо отметить, что гладкие мышцы до определенного предела все же подчиняются произвольному контролю. Из этого следует очевидный вывод, который давно известен в спорте: гладкие мышцы можно тренировать с помощью специальных методик и повышать их работоспособность и эффективность. Простые тренировки на выносливость через несколько недель позволяют значительно повысить эффективность работы, например, сердечно-сосудистой системы. Схожие результаты известны и для потовых желез: после упражнений на выносливость тренированные люди начинают потеть раньше, чем нетренированные.

Физиология сокращения гладких мышц [ править | править код ]

Отличия физиологических функций гладких мышц определяют их биохимические и анатомические особенности. Наиболее важными являются следующие особенности (Widmaier et al., 2008).

Контроль сокращений [ править | править код ]

В отличие от скелетных мышц гладкие и сердечные мышцы способны к спонтанной деполяризации и сокращению, независимому от нервных стимулов. В сердце процессы спонтанной деполяризации являются одной из функций органа, имеют систему внешнего контроля и выполняются в здоровом сердце только группой специфических мышечных клеток (клетки синусного и атриовентрикулярного узлов). В гладких мышцах существует множество факторов, которые могут вызывать эти процессы и на них влиять.

Вегетативная нервная система [ править | править код ]

Первичным органом контроля гладких мышц являются центры вегетативной нервной системы (ВНС, автономная нервная система). Филогенетически это очень старая часть нервной системы, расположенная преимущественно в стволе головного мозга и контролируемая гипоталамусом. ВНС участвует в поддержании важных параметров гомеостаза и адаптации к изменяющимся условиям среды, например к физической нагрузке: повышение тонуса сосудов, расширение дыхательных путей, уменьшение перистальтики кишечника и т. д. без участия непосредственного контроля со стороны коры больших полушарий. Существует три типа ВНС.

Помимо вышеперечисленных нейромедиаторов на сократимость гладких мышц влияет множество веществ, например моноокись азота и серотонин или яды растительного происхождения мускарин (мухоморы), атропин (красавка/белладонна), никотин (табачные растения) и кураре (южноамериканская лилия).

Высвобождение Са2+ при растяжении [ править | править код ]

Потенциалы действия в гладких мышцах также возникают при их растяжении. При этом открываются чувствительные к растяжению Са2+-каналы в клеточной мембране и ионы Са2+ устремляются в клетку. Данный механизм не только чрезвычайно важен для поддержания гомеостаза, но и является причиной возникновения колик. При этом гладкие мышцы полых органов (мочеточников, желчевыводящих путей, кишечника и т.д.) растягиваются конкрементом, что приводит к их рефлекторному сокращению. Присутствие конкремента нарушает моторику этих органов, сокращение мышц не позволяет продвинуть конкремент, что вызывает новые сокращения (периодические спазмы) (Widmaier et al., 2008).

Физиология гладких мышц [ править | править код ]

Что относится к гладким мышцам

Что относится к гладким мышцам

Мембранный потенциал гладкомышечных клеток многих органов (например, кишечника) не постоянный, а ритмично изменяется с низкой частотой (от 3 до 15 мин-1) и амплитудой (от 10 до 20 мВ), таким образом образуя медленные волны. Эти волны вызывают вспышки потенциала действия (пики), если превосходят некоторый потенциал покоя. Чем дольше медленная волна остается выше потенциала покоя, тем больше количество и частота потенциалов действия, которые она производит. Сравнительно вялое сокращение происходит примерно через 150 мс после пика. Тетанус наступает при довольно низкой частоте пиков. Следовательно, гладкая мускулатура постоянно находится в состоянии более или менее сильного сокращения (тонуса). Потенциал действия гладкомышечных клеток некоторых органов имеет плато, аналогичное таковому у сердечного потенциала действия.

Существуют два типа гладкой мускулатуры (А). Клетки однородной гладкомышечной ткани электрически сопряжены друг с другом щелевыми контактами. В таких органах, как желудок, кишечник, желчный пузырь, мочевой пузырь, мочеточники, матка и в некоторых типах кровеносных сосудов, т. е. там, где присутствует этот тип гладкомышечной ткани, стимулы передаются от клетки к клетке. Стимулы генерируются автономно изнутри гладкой мускулатуры (частично клетками-водителями ритма). Другими словами, стимул не зависит от иннервации и во многих случаях является спонтанным (миогенный тонус). Второй тип, неоднородная гладкомышечная ткань, характеризуется тем, что межклеточные взаимодействия там осуществляются в основном при помощи стимулов, передаваемых вегетативной нервной системой (нейрогенный тонус). Это происходит в таких структурах, как артериолы, семенные канальцы, радужная оболочка глаза, ресничное тело, мышцы у корней волос. Поскольку между этими гладкомышечными клетками обычно нет щелевых контактов, стимуляция остается локальной, как в двигательных единицах скелетной мышцы.

Следующие факторы ведут к снижению тонуса: снижение концентрации Са 2+ в цитоплазме ниже 10-6 моль/л (Б7), фосфатазная активность (Б8), а также активность протеинкиназы С, когда она фосфорилирует другое положение легкой цепи миозина (Б9).

При регистрации зависимости «длина-сила» для гладкой мышцы выявляется постоянное снижение мышечной силы, в то время как длина мышцы остается постоянной. Это свойство мышцы называется пластичностью.

Источник

Гладкие мышцы

Содержание

Гладкие мышцы [ править | править код ]

В данной статье описаны основные характеристики гладкой мускулатуры. Рассматриваются следующие темы.

Гистологическое строение [ править | править код ]

Что относится к гладким мышцам

В отличие от скелетных мышц, которые состоят из многоядерных элементов, образованных в результате слияния многих клеток, гладкая мышечная ткань образована отдельными клетками. Форма клеток приближается к веретеновидной (фузиформной), однако в отдельных случаях они могут иметь и другую форму (рис. 1.15). Клетки окружены базальной мембраной, содержащей большое количество белков, и имеют одно ядро в центре. В расслабленном состоянии клетки ядро продолговатое, а при сокращении принимает штопорообразную форму. При классическом окрашивании цитоплазма гладкомышечных клеток в световом микроскопе выглядит гомогенной. В гладкомышечной клетке отсутствуют саркомеры, поэтому ни в продольном, ни в поперечном срезе не видны миофибриллы (рис. 1.16). [[Image:|250px|thumb|right|рис. 1.16. Гистологическое строение гладких мышц — гладкомышечные веретенообразные клетки с одиночным расположенным в центре ядром; миофибриллы не видны]] Необходимые для сокращения актиновые и миозиновые филаменты прикрепляются либо к клеточной мембране (якорные бляшки), либо к так называемым плотным тельцам в цитоплазме.

Что относится к гладким мышцам

Ядро гладкомышечной клетки содержит хорошо выраженное ядрышко. Большинство клеточных органелл расположено около полюсов ядра. В отличие от скелетных мышц в гладкомышечных клетках слабо выражен саркоплазматический ретикулум, поэтому их сократимость значительно отличается (Welsch, 2006).

Формы и расположение гладких мышц [ править | править код ]

Гладкомышечные клетки помимо других свойств характеризуются непроизвольными сокращениями. Гладкие мышцы способны непроизвольно сокращаться, поэтому они не нуждаются в произвольном контроле. Соответственно этому, они расположены преимущественно в следующих органах человеческого организма.

Гладкие мышцы являются составной частью кровеносных и лимфатических сосудов. Количество гладкомышечной ткани пропорционально диаметру сосуда, причем при одинаковых размерах артерии содержат больше гладкой мускулатуры, чем вены и лимфатические сосуды. По мере разветвления сосудов уменьшается и абсолютное количество гладких мышц, при этом в артериолах относительно их диаметра содержание гладкой мышечной ткани максимально. В капиллярах гладкомышечная ткань отсутствует.

Гладкомышечная ткань также встречается в некоторых немышечных органах.

Что относится к гладким мышцамЗапомните:Необходимо упомянуть, что некоторые мышцы, выполняющие более или менее непроизвольные сокращения, являются поперечно-полосатыми. К ним относятся следующие мышцы.

Строение гладких мышц [ править | править код ]

Как и у поперечно-полосатых мышц, сокращение гладких мышц происходит за счет взаимного скольжения миофиламентов — тонких актиновых и толстых миозиновых филаментов (миозин II типа). Гладкомышечные клетки содержат в 3 раза меньше миозина, чем поперечно-полосатые. В отличие от скелетных мышц миозиновые филаменты в гладкомышечных клетках расположены неупорядоченно и не образуют саркомеры и миофибриллы, что и послужило причиной появления термина «гладкие мышцы». Тонкие актиновые филаменты, как уже было указано, прикрепляются к плотным тельцам в цитоплазме или к якорным бляшкам клеточной мембраны. Эти образования являются аналогами Z-линии в поперечно-полосатых мышцах. Помимо хаотичного расположения миофиламентов сократительный аппарат гладких мышц отличается от поперечно-полосатых как ультраструктурно, так и биохимически. Одним из важных структурных различий является активность Са2+-каналов

и фермента АТФазы миозина, которая влияет на скорость мышечных сокращений. Плохо развитый саркоплазматический ретикулум позволяет депонировать лишь небольшое количество ионов Са2+, а большая часть ионов, необходимых для мышечного сокращения, поступает при возбуждении клетки из межклеточного пространства. По этой причине в гладкомышечной ткани наблюдается, с одной стороны, медленный ток ионов Са2+, а с другой — меньшая активность АТФазы миозина (в 10-100 раз ниже, чем в поперечно-полосатых мышцах). Таким образом, сокращения гладких мышц характеризуются низкой скоростью, но большей длительностью (Widmaier et al., 2008).

Сократительная способность [ править | править код ]

Характер, процесс и контроль мышечных сокращений в гладких мышцах значительно отличается от таковых в поперечно-полосатых мышцах. Последние способны к быстрым сокращениям и быстро утомляются, в то время как гладкие мышцы характеризуются относительно медленными сокращениями, но обладают большей выносливостью. Причиной этого является особая ультраструктура гладкомышечных клеток, а также молекулярная структура миофиламентов. Кроме этого, деполяризация клеточной мембраны (и, следовательно, поступление ионов Са2+ и возникающее сокращение) гладкомышечных клеток вызывается множеством факторов, в то время как деполяризация мембраны скелетных мышц регулируется нейромедиатором ацетилхолином (АЦХ), выделяемым двигательными нейронами.

Именно последняя особенность считается причиной непроизвольности сокращений гладких мышц. Иногда утверждают, что гладкие мышцы вообще не способны к произвольным сокращениям, однако это не всегда так. Более правильно утверждать, что гладкие мышцы не нуждаются в произвольном контроле, т. к. центры в стволе головного мозга, ответственные за кровообращение, функцию пищеварительного тракта и т. д., функционируют без сознательного контроля. Это также справедливо для нервных центров, регулирующих функцию сердца и дыхания, хотя сердечная мышца и дыхательные мышцы (особенно диафрагма) являются поперечно-полосатыми.

Необходимо отметить, что контроль скелетных мышц только частично произволен. Единственные мышцы, которые поодиночке выполняют истинные произвольные движения (причем некоторые только при тренировке), — мышцы кисти. Все остальные движения возникают в результате сложных неосознанных взаимодействий многих мышц (мышц-синергистов), т. к. при этом всегда изменяются статические силы тела. Для простого сгибания руки в локте требуется напряжение сгибателей кисти, лучезапястного сустава и локтевого сустава. При этом должны также одновременно расслабиться мышцы-антагонисты (все разгибатели соответствующих суставов, например трехглавая мышца плеча). Дополнительно активируются различные мышцы плечевого пояса, которые стабилизируют лопатку относительно туловища, а также различные мышцы, стабилизирующие туловище, тазобедренный сустав и нижние конечности, чтобы поддерживать статику (позу) тела. Из этого примера видно, что произвольное напряжение одной мышцы, не говоря уже об отдельных мышечных волокнах, невозможно, как и произвольное напряжение отдельных гладких мышц. Возможна лишь активация мышечной системы, а именно совокупности синергистов для выполнения одного движения (например, сгибания локтевого сустава).

Учитывая вышесказанное, читателя не должно удивить, что произвольная активация системы гладких мышц все же возможна. К примеру, с помощью методов биологической обратной связи или расслабления в результате тренировок возможно относительно легко получить контроль над активностью мышц сердечно-сосудистой системы. Эти методы часто применяются в лечении мигреней и артериальной гипертензии.

Кроме этого, было продемонстрировано, что различный уровень тренированности влияет не только на внутри- и межмышечную координацию скелетных мышц, но и на активность гладких мышц сердечнососудистой системы (артериальное давление) или желез внешней секреции (выделение пота), которая может значительно изменяться под влиянием спортивных тренировок.

В заключение необходимо отметить, что гладкие мышцы до определенного предела все же подчиняются произвольному контролю. Из этого следует очевидный вывод, который давно известен в спорте: гладкие мышцы можно тренировать с помощью специальных методик и повышать их работоспособность и эффективность. Простые тренировки на выносливость через несколько недель позволяют значительно повысить эффективность работы, например, сердечно-сосудистой системы. Схожие результаты известны и для потовых желез: после упражнений на выносливость тренированные люди начинают потеть раньше, чем нетренированные.

Физиология сокращения гладких мышц [ править | править код ]

Отличия физиологических функций гладких мышц определяют их биохимические и анатомические особенности. Наиболее важными являются следующие особенности (Widmaier et al., 2008).

Контроль сокращений [ править | править код ]

В отличие от скелетных мышц гладкие и сердечные мышцы способны к спонтанной деполяризации и сокращению, независимому от нервных стимулов. В сердце процессы спонтанной деполяризации являются одной из функций органа, имеют систему внешнего контроля и выполняются в здоровом сердце только группой специфических мышечных клеток (клетки синусного и атриовентрикулярного узлов). В гладких мышцах существует множество факторов, которые могут вызывать эти процессы и на них влиять.

Вегетативная нервная система [ править | править код ]

Первичным органом контроля гладких мышц являются центры вегетативной нервной системы (ВНС, автономная нервная система). Филогенетически это очень старая часть нервной системы, расположенная преимущественно в стволе головного мозга и контролируемая гипоталамусом. ВНС участвует в поддержании важных параметров гомеостаза и адаптации к изменяющимся условиям среды, например к физической нагрузке: повышение тонуса сосудов, расширение дыхательных путей, уменьшение перистальтики кишечника и т. д. без участия непосредственного контроля со стороны коры больших полушарий. Существует три типа ВНС.

Помимо вышеперечисленных нейромедиаторов на сократимость гладких мышц влияет множество веществ, например моноокись азота и серотонин или яды растительного происхождения мускарин (мухоморы), атропин (красавка/белладонна), никотин (табачные растения) и кураре (южноамериканская лилия).

Высвобождение Са2+ при растяжении [ править | править код ]

Потенциалы действия в гладких мышцах также возникают при их растяжении. При этом открываются чувствительные к растяжению Са2+-каналы в клеточной мембране и ионы Са2+ устремляются в клетку. Данный механизм не только чрезвычайно важен для поддержания гомеостаза, но и является причиной возникновения колик. При этом гладкие мышцы полых органов (мочеточников, желчевыводящих путей, кишечника и т.д.) растягиваются конкрементом, что приводит к их рефлекторному сокращению. Присутствие конкремента нарушает моторику этих органов, сокращение мышц не позволяет продвинуть конкремент, что вызывает новые сокращения (периодические спазмы) (Widmaier et al., 2008).

Физиология гладких мышц [ править | править код ]

Что относится к гладким мышцам

Что относится к гладким мышцам

Мембранный потенциал гладкомышечных клеток многих органов (например, кишечника) не постоянный, а ритмично изменяется с низкой частотой (от 3 до 15 мин-1) и амплитудой (от 10 до 20 мВ), таким образом образуя медленные волны. Эти волны вызывают вспышки потенциала действия (пики), если превосходят некоторый потенциал покоя. Чем дольше медленная волна остается выше потенциала покоя, тем больше количество и частота потенциалов действия, которые она производит. Сравнительно вялое сокращение происходит примерно через 150 мс после пика. Тетанус наступает при довольно низкой частоте пиков. Следовательно, гладкая мускулатура постоянно находится в состоянии более или менее сильного сокращения (тонуса). Потенциал действия гладкомышечных клеток некоторых органов имеет плато, аналогичное таковому у сердечного потенциала действия.

Существуют два типа гладкой мускулатуры (А). Клетки однородной гладкомышечной ткани электрически сопряжены друг с другом щелевыми контактами. В таких органах, как желудок, кишечник, желчный пузырь, мочевой пузырь, мочеточники, матка и в некоторых типах кровеносных сосудов, т. е. там, где присутствует этот тип гладкомышечной ткани, стимулы передаются от клетки к клетке. Стимулы генерируются автономно изнутри гладкой мускулатуры (частично клетками-водителями ритма). Другими словами, стимул не зависит от иннервации и во многих случаях является спонтанным (миогенный тонус). Второй тип, неоднородная гладкомышечная ткань, характеризуется тем, что межклеточные взаимодействия там осуществляются в основном при помощи стимулов, передаваемых вегетативной нервной системой (нейрогенный тонус). Это происходит в таких структурах, как артериолы, семенные канальцы, радужная оболочка глаза, ресничное тело, мышцы у корней волос. Поскольку между этими гладкомышечными клетками обычно нет щелевых контактов, стимуляция остается локальной, как в двигательных единицах скелетной мышцы.

Следующие факторы ведут к снижению тонуса: снижение концентрации Са 2+ в цитоплазме ниже 10-6 моль/л (Б7), фосфатазная активность (Б8), а также активность протеинкиназы С, когда она фосфорилирует другое положение легкой цепи миозина (Б9).

При регистрации зависимости «длина-сила» для гладкой мышцы выявляется постоянное снижение мышечной силы, в то время как длина мышцы остается постоянной. Это свойство мышцы называется пластичностью.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *