Что относится к гидробионтам
Гидробионты
Содержание
Определения
Гидробиология
Гидробиология — наука о жизни и биологических процессах в воде.
Промышленное использование гидробионтов
Промышленные и любительские водные промыслы занимаются гидробионтами. Дикая водная природа с давних времен является предметом воздействия хозяйственной деятельности человека.
Примечания
Полезное
Смотреть что такое «Гидробионты» в других словарях:
Гидробионты — (от лат. hydros вода и biоn живущий) водные организмы. Ср. аэробионты. Экологический словарь. Алма Ата: «Наука». Б.А. Быков. 1983 … Экологический словарь
Гидробионты — водные животные, растения и микроорганизмы, обитающие в морских и пресных водоемах. Источник: МОДЕЛЬНЫЙ ЗАКОН ОБ АКВАКУЛЬТУРЕ … Официальная терминология
гидробионты — (организмы, обитающие в воде) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN hydrobiontes … Справочник технического переводчика
гидробионты — 3.1.9 гидробионты: Все живые организмы, животные и растительные, развивающиеся и существующие в воде и донных отложениях водоемов и водотоков [1]. Источник: Р 52.24.763 2012: Оценка состояния пресноводных экосистем по комплексу химико… … Словарь-справочник терминов нормативно-технической документации
гидробионты — hidrobiontai statusas T sritis ekologija ir aplinkotyra apibrėžtis Vandenyje gyvenantys organizmai: augalai ir gyvūnai. atitikmenys: angl. aquatic organisms; water organisms vok. aquatische Organismen, m; Hydrobionten, m; Wasserbewohner, m;… … Ekologijos terminų aiškinamasis žodynas
Гидробионты — (от Гидро. и Бионт) организмы, обитающие в воде; см. Водные животные и Водные растения … Большая советская энциклопедия
Гидробионты — (от гидро и бионт) организмы, постоянные обитатели водной среды. Различают мариобионты (обитатели океана) и аквабионты (обитатели пресных вод) … Начала современного естествознания
гидробионты — гидроби онты, ов, ед. ч. онт, а … Русский орфографический словарь
Глава 13. Биологические показатели качества
13.1. Основные группы гидробионтов
Гидробионты – организмы, постоянно обитающие в водной среде. К гидробионтам также относятся организмы, живущие в воде часть жизненного цикла.
Разнообразие населения гидросферы нашей планеты (около 250 тыс. видов) заметно беднее населения суши – из-за огромного числа видов насекомых в наземных сообществах. Однако, если сравнение вести по крупным таксонам, получается иная картина. В гидросфере представлены все типы и, по подсчетам академика Л.А. Зенкевича, 90 % классов животных, подавляющее большинство (85 %) которых обитает только в воде.
Напомним, что к наиболее крупным экологическим зонам водоемов относятся их толща, или пелагиаль (pelagos – открытое море), дно с прилегающим к нему слоем воды, или бенталь (bentos – глубина), и поверхностный слой воды, граничащий с атмосферой, или нейсталь (nein – плавать).
Среди населения пелагиали различают представителей планктона, среди которых выделяется фито- и зоопланктон (planktos – парящий) и нектона (nektos – плавающий). К первым относятся формы, либо вовсе не способные к активным движениям, либо не способные противостоять потокам воды, переносящим их с места на место – водоросли, простейшие, рачки, коловратки и другие мелкие организмы. Своеобразной жизненной формой является криопланктон – население талой воды, образующейся под лучами солнца в трещинах льда и пустотах снега. Днем организмы криопланктона ведут активный образ жизни, а ночью вмерзают в лед. Некоторые из них при массовом развитии могут даже окрашивать снег или лед. Гидробионты, приспособленные к донному образу жизни, называются бентосом, который делится на фито- и зообентос.
К нектонным формам принадлежат крупные животные, двигательная активность которых достаточна для преодоления водных течений (рыбы, кальмары, млекопитающие).
Приспособления планктонных и нектонных организмов к пелагическому образу жизни сводятся прежде всего к обеспечению плавучести, т.е. предотвращению или замедлению погружения под действием силы тяжести.
Это может быть достигнуто за счет повышения трения о воду. Чем меньше тело, тем больше его удельная поверхность и больше трение. Поэтому наиболее характерная черта планктонных организмов – малые и микроскопические размеры.
Второй путь увеличения плавучести – уменьшение остаточной массы, т.е. разницы между массой организма и вытесненной им воды. Это может достигаться за счет повышения содержания воды в теле – ее количество у некоторых сальп, гребневиков, медуз достигает 99 %, благодаря чему их способность к пассивному передвижению становится практически безграничной.
У плавающих организмов происходит редукция тяжелых скелетных образований, например, у пелагических моллюсков (головоногих, крылоногих, киленогих 2 ) – раковины. У пелагических корненожек раковинка более пористая, чем у бентосных. Планктонные диатомовые водоросли отличаются от придонных более тонкими и слабее окремненными оболочками. У многих радиолярий кремниевые иглы становятся полыми. У многих плавающих черепах заметно редуцируются кости панциря.
Широко распространенный способ снижения плотности у гидробионтов – накопление жира. Богаты им радиолярии Spumellaria, ветвистоусые и веслоногие рачки. Жировые капли имеются в пелагической икре ряда рыб. Жир вместо тяжелого крахмала в качестве запасного питательного вещества накапливается у планктонных, диатомовых и зеленых водорослей. У некоторых, рыб, таких как гигантская акула (Cetorhinus maximus), луна-рыба (Mola mola), в теле так много жира, что они почти без всяких активных движений могут держаться у поверхности воды, где питаются планктоном. Часто накопление жира сопровождается и характерными изменениями в его составе. Например, у акул рода Centrophorus жировые отложения на 90 % представлены наиболее легким липидом – скваленом.
Эффективное средство повышения плавучести – газовые включения в цитоплазме или специальные воздушные полости. Газовые вакуоли есть у многих планктонных водорослей. У бурых водорослей рода Sargassum накопление газовых пузырей на талломах превратило их из донных в гипонейстонные (приповерхностные) формы. Газовый пузырек в своей цитоплазме имеют раковинные амебы, воздухоносные камеры есть в подошве плавающих вниз щупальцами медуз. Плавательный пузырь, наполненный газом, свойствен многим рыбам (но у глубоководных форм, в условиях больших давлений, плавательный пузырь часто заполняется липидами). Наибольшего развития воздухоносные полости достигают у ряда сифонофор, благодаря чему их тело 3 становится даже легче воды и сильно выступает из нее.
Другой ряд адаптаций пелагических организмов связан с характером их передвижения. Такой вид активного плавания осуществляется с помощью жгутиков, ресничек, изгибания тела, гребли конечностями и реактивным способом. Передвижение с помощью ресничек и жгутиков эффективно только при небольших размерах (0,05–0,2 мм) и потому наблюдается лишь у микроскопических организмов. Движение путем изгибания тела характерно для более крупных обитателей пелагиали. В одних случаях (пиявки, немертины) изгибания совершаются в вертикальной плоскости, в других – в горизонтальной (личинки насекомых, рыбы, змеи), в третьих – винтообразно (некоторые полихеты). Наибольшие скорости движения достигаются изгибанием заднего отдела тела в горизонтальной плоскости. Например, меч-рыба (Xiphias gladius) способна развивать скорость до 130 км/ч. Весьма эффективно плавание реактивным способом. Среди простейших оно свойственно, например, жгутиковому Medusochloris phiale и инфузории Craspedotella pileotus, тело которых имеет колоколообразную форму и при сокращении выбрасывает наполняющую его воду. Сокращая колокол, движутся медузы. Подобно колоколу медуз, работают щупальца с натянутой между ними перепонкой у голотурии Pelagothuria и головоногих моллюсков рода Cirrothauma. Особенно совершенно реактивное движение у ряда головоногих моллюсков, которых часто называют «живыми ракетами».
Для обеспечения быстроты движения у гидробионтов вырабатывается обтекаемая форма тела; высокой скорости движения способствуют выделение слизи, снижающее трение (рыбы, головоногие моллюски), и специфическое строение кожных покровов – сопротивление воды телу движущегося дельфина в несколько раз меньше, чем равновеликой модели такой же формы.
Тело плавающих животных, имеющих отрицательную плавучесть, как правило, более выпукло сверху, а у организмов с положительной плавучестью – снизу. В результате во время движения действует, дополнительная подъемная или соответственно заглубляющая сила, благодаря чему активно передвигающиеся животные почти не тратят энергии на поддержание своего положения в толще воды.
Активное передвижение в воде может также осуществляться за счет прыжков. К таким движениям способны многие коловратки, ракообразные, личинки насекомых, рыбы, млекопитающие. Во время прыжка скорость движения во много раз выше, чем при плавании. Например, коловратка Scaridium eudactylotum плавает со скоростью 0,25 мм/с, а совершая прыжок, достигает 6 мм/с. Рачки-эвфаузииды, обычно плавающие со скоростью не более 8 см/с, способны делать резкие прыжки в любом направлении. После быстрого броска планктонные организмы замирают, дезориентируя хищников.
Некоторые пелагические животные, разгоняясь в воде, выпрыгивают из нее, совершая планирующий полет в воздухе. Характерны частые прыжки из воды в воздух рачков «летающих копепод» Pontellidae – у черноморских форм такие прыжки могут достигать 15 см в высоту и 15–20 см в длину.
К полету способны многие головоногие моллюски и рыбы. Кальмар Stenoteuthis bartrami длиной 30–40 см, разогнавшись в воде, может пролетать над над морем более 50 м со скоростью около 50 км/ч. К такому полету он прибегает, спасаясь от хищников. Так же спасаются от них летучие рыбы (сем. Exocoetidae), обитающие в тропических и субтропических морях. Они разгоняются в воде до скорости 30 км/ч, резко увеличивают ее на поверхности при отрыве от воды – до 60–65 км/ч и пролетают 100–200 м, а иногда и до 400 м.
Наконец, третьей формой активного перемещения у водных организмов является скольжение. Среди пелагических организмов оно наблюдается у мелких форм, например у дитомовых водорослей, и обеспечивается контактом движущейся цитоплазмы с водой.
Трехмерность водной среды обитания позволяет выделять также способы перемещения организмов в вертикальной плоскости – всплытие и погружение. Активное движение такого рода за счет изменения плотности характерно для многих представителей фитопланктона и мелкого зоопланктона, реже оно встречается у крупных животных. Окружая себя микроскопическими пузырьками кислорода, выделяемого при фотосинтезе, водоросли всплывают, а сбросив с себя эти «поплавки», движутся вниз. Принципиально сходен с этим механизм вертикального перемещения водорослей за счет попеременного накапливания в клетках тяжелых или легких ионов, в результате чего происходит изменение плотности. Регулируя ее, водоросли удерживаются в горизонтах воды, благоприятных по освещенности и содержанию биогенных элементов. У мелких беспозвоночных изменение плотности и соответствующее перемещение по вертикали достигается образованием временных газовых камер, например вакуолизации цитоплазмы у многих простейших. Крупные организмы, имеющие постоянные газовые камеры, регулируют их объем и благодаря этому перемещаются вверх или вниз. Чрезвычайно распространено движение организмов вверх с помощью локомоторных органов, а вниз – под действием силы тяжести.
Помимо активного передвижения, в водных сообществах широко распространено пассивное перемещение организмов. Подвижность самой среды обитания (масс воды) позволяет гидробионтам широко использовать природные силы для расселения, смены биотопов, перемещения в поисках пищи, мест размножения и других целей, компенсируя таким путем недостаточность средств активного передвижения или просто экономя энергию. Естественно, что из обитателей пелагиали планктонные формы перемещаются за счет внешних сил в большем масштабе, чем нектонные.
В реках пассивно скатывающаяся молодь рыб использует течения для перемещения к устьям. Морские течения, обладающие большой протяженностью и высокой скоростью, способны перемещать растения и животных на тысячи километров. Например, личинки европейского угря (Anguilla anguilla), вышедшие из икры в центральной части Атлантического океана, с потоками течений Гольфстрим и Северо-Атлантического в течение 2,5–3 лет пассивно дрейфуют к берегам Европы, преодолевая расстояние в 7–8 тыс. км. Водами Гольфстрима тепловодные сифонофора Physophora hydrostatica и зеленая водоросль Halosphaera viridis заносятся до Лафотенских островов и Новой Земли. Личинки некоторых брюхоногих моллюсков и десятиногих раков с помощью течений могут пересекать океаны от берега к берегу.
Временно прикрепленные планктонные организмы могут перемещаться с кораблями, плавающими предметами, другими гидробионтами. Многие представители морского и пресноводного планктона могут вмерзать в лед и перемещаться вместе с ним. Интересно, что покоящиеся стадии планктонных организмов могут переноситься и воздушными течениями! Когда водоемы частично или полностью пересыхают, ветер, поднимая пыль с обсохшего грунта, переносит вместе с ней и их, обеспечивая расселение по другим водоемам.
Наряду с горизонтальными пассивными перемещениями у гидробионтов существуют и вертикальные, обусловленные выходом глубинных вод на поверхность, или погружением поверхностных вод в глубину. Наибольший размах вертикальных перемещений водных организмов токами воды наблюдается в умеренных и приполярных водах в зонах перемешивания водных масс.
Многим представителям планктона и нектона свойственны миграции – массовые перемещения, регулярно повторяющиеся во времени и пространстве. Такие перемещения могут совершаться и в горизонтальном, и в вертикальном направлениях – в те участки ареала, где в данное время условия наиболее благоприятны.
Массовые активные перемещения в горизонтальном направлении совершают, главным образом, представители нектона, особенно рыбы и млекопитающие. Миграции, направленные из открытого моря к его берегам и в реки, называются анадромными, а имеющие противоположное направление – катадромными. Горизонтальные миграции нектонных организмов могут достигать очень большой протяженности. Креветка Penaeus plebejus преодолевает расстояние до 1 тыс. км и более. Тихоокеанские лососи рода Oncorhynchus – нерка, чавыча, горбуша, кета и другие, идущие на нерест из океана в реки, проплывают 3–4 тыс. км. Путь в 7–8 тыс. км преодолевают взрослые угри, идущие на нерест из рек Европы в Саргассово море. Грандиозны миграции тунцов, некоторых китообразных. Покрывая огромные расстояния во время миграций, животные обнаруживают поразительные навигационные способности. Например, тихоокеанские лососи неизменно идут на нерест в реки, в которых появились на свет.
Планктонные организмы могут мигрировать и пассивным путем, используя, например, течения – как те же личинки угрей.
Многим водным организмам свойственны суточные вертикальные миграции. Размах их в морях обычно составляет 50–200 м и более, а в пресных водоемах с малопрозрачной водой может не превышать несколько десятков сантиметров. Особенно сложна картина суточных миграций у представителей зоопланктона, большинство которых в темное время суток концентрируется у поверхности, а днем – в более глубоких слоях. Своеобразны миграции глубоководного планктона, поднимающего на глубины 200–300 м ночью и опускающегося днем на многие сотни метров (иногда – наоборот). Экологическое значение таких миграций разнообразно и во многих случаях еще не ясно.
Помимо суточных, вертикальные миграции гидробионтов могут носить сезонный характер или быть связанными с изменением образа жизни в ходе индивидуального развития.
В бентали жизненные формы гидробионтов представлены бентосом – организмами, обитающими на поверхности грунта и в его толще (соответственно, эпи- и эндобентос) и перифитоном (peri – вокруг, phyton – растение) – совокупностью организмов, поселяющихся на различных предметах и телах других организмов.
Приспособления гидробионтов к бентосному и перифитонному образу жизни прежде всего сводятся к развитию средств удержания на твердом субстрате, защите от засыпания оседающей взвесью осадков, к выработке наиболее эффективных способов передвижения. Очень характерны для организмов бентоса и перифитона приспособления к временному переходу к пелагическому образу жизни, что обеспечивает этим малоподвижным формам возможность расселения.
Удержание на твердом субстрате достигается различными путями. Прикрепление к субстрату наблюдается у многих растений, простейших, губок, кишечнополостных, червей, моллюсков, ракообразных и других гидробионтов. Прикрепление может быть временным или постоянным, а по своему механизму – пневматическим (присасывательным), в виде сплошного прирастания, или корневидным – с помощью нитей. Присасывательное прикрепление наблюдается, например, у моллюсков Ancylus, пиявок, актиний. Сплошное прирастание может быть известковым (кораллы), хитиновым или рогоподобным (моллюски, усоногие раки). Прикрепление с помощью корней и ризоидов характерно для высших растений и многих водорослей (например, ламинарии). Прикрепление нитями биссуса свойственно ряду двустворчатых моллюсков (мидия, дрейссена).
Другая форма удержания – заглубление в субстрат: частичное или полное закапывание в грунт или внедрение в твердые породы путем их высверливания и протачивания. Закапываться способны многие моллюски, иглокожие, черви, личинки насекомых и даже некоторые рыбы. Например, некоторые морские угри выкапывают на песчаном дне норку, куда прячутся при опасности. К временному закапыванию в грунт приспособились также разные крабы, креветки, головоногие моллюски, рыбы (например, камбала). Внедряются в твердые субстраты, разрушая их механически или химически (растворение кислотами), некоторые губки, моллюски, иглокожие, ракообразные.
В качестве защиты от засыпания слоем осадков у бентосных организмов разных систематических групп конвергентно вырабатывается приподнятие над грунтом за счет соответствующей формы тела и вытягивания вверх в процессе роста. Наиболее распространенная форма тела прикрепленных донных организмов – конусообразная, воронковидная, грибообразная, во всех случаях более тонкая снизу (губки, одиночные кораллы, моллюски). У морских лилий имеется длинный стебелек, с помощью которого они прикрепляются к грунту, а стеклянные губки рода Euplectella имеют вид вытянутой вверх трубки. Наряду с вытягиванием вверх, защита от засыпания взвесью у прикрепленных организмов достигается поселением на субстратах, возвышающихся над дном. Прирастают к скалам и камням, различным предметам и организмам усоногие рачки, моллюски дрейссены, мшанки. Растения спасает от засыпания их быстрое нарастание.
По степени подвижности среди бентосных и перифитонных организмов выделяют формы бродячие (крабы, осьминоги, морские звезды), слабо перемещающиеся (моллюски, морские ежи) и прикрепленные (губки, мшанки, кораллы). В целом в этой группе способность к активным движениям выражена слабее, чем у пелагических организмов. Однако малая подвижность бентосных и перифитонных видов во взрослом состоянии обычно компенсируется высокой мобильностью их молоди, ведущей пелагический образ жизни.
Миграции вниз по течению ручьев и рек совершают многие ракообразные и личинки насекомых. Для этого они поднимаются в толщу воды и, проплыв некоторое расстояние, оседают на новом месте.
Наиболее значительные горизонтальные миграции во взрослом состоянии совершают крупные ракообразные. На расстояние до 200 км от прибрежья в открытое море перемещается осенью камчатский краб Paralithodes camtschtica, – а весной с мест зимовки он возвращается в прибрежные воды. Массовые миграции лангустов Panularis argus происходят осенью с началом штормов со скоростью 1 км/ч и длятся в течение нескольких дней. Мигрируя, лангусты образуют цепочки из десятков особей, следующих строго друг за другом, касаясь своими антеннами впереди идущего.
Ряд бентосных организмов совершает и вертикальные перемещения в толще грунта, которые носят суточный и сезонный характер и могут быть связаны с защитой от хищников, поисками пищи, обеспечением кислородом.
В нейстали обитают представители нейстона (nein – плавать) – микроскопические или мелкие формы, населяющие приповерхностный слой воды, и плейстона (pleusis – плавать) – организмы крупных или средних размеров, часть тела которых погружена в воду, а часть выступает над ней.
Среди нейстонных организмов также выделяют тех, кто обитает на поверхности водяной пленки – эпинейстон. В пресных водоемах это клопы-водомерки Gerris и Hydrometra, жуки-вертячки Cyrinus, мухи Ephydra; а на поверхности океанов многочисленны клопы-водомерки Halobates.
Совокупность организмов, населяющих верхний слой воды толщиной 5 см, называют гипонейстоном. Условия жизни в этом поверхностном слое достаточно сильно отличаются от остальной массы воды. Здесь поглощается до половины всей солнечной радиации, проникающей в воду, большая часть ультрафиолетовых и инфракрасных лучей. Здесь резко выражен перепад температур воды и атмосферы, здесь вследствие испарения и выпадения осадков варьирует содержание соли. А вот концентрация кислорода из-за контакта с воздухом неизменно высокая.
Для приповерхностного слоя воды характерна также высокая концентрация органических веществ, что создает благоприятные условия для питания нейстонных организмов. С одной стороны, на поверхность воды попадают трупы различных животных, летающих над водой, а также содержащая органику пыль, приносимая с суши. С другой – из глубин к поверхности всплывают остатки отмерших гидробионтов (так называемый антидождь трупов). Существенную роль в повышении концентрации органики играют также газовые пузырьки и пена – возникая в результате волнения воды, фотосинтеза, гниения и других причин, пузырьки газа адсорбируют органические вещества и транспортируют их в приповерхностный горизонт.
В составе гипонейстона преобладают гетеротрофные организмы – бактерии, простейшие, ракообразные, моллюски, насекомые, икра и молодь рыб и других гидробионтов. Интересно, что некоторые из них в качестве опоры используют нижнюю поверхность пленки воды (в пресных водах – моллюски Limnaea, Physa, рачки Scapholeberis и др.; в море – моллюски Hydrobia, Glaucus, Aeolis, личинки высших раков и др.).
Для представителей плейстона характерна двойственность адаптаций, соответствующая тому, что часть их тела находится в воде, а часть – в воздухе. У плейстонных растений устьица, например, образуются только на верхней стороне листовой пластинки, которая изогнута и покрыта восковым налетом, что обеспечивает несмачиваемость и предупреждает заливание устьиц.
Многие плейстонные организмы для своего движения используют ветер. Например, сифонофора физалия (Physalia aretusa) имеет крупный, до 30 см, пневматофор, окрашенный в ярко-голубой или красный цвет. Газ, наполняющий пневматофор, вырабатывается специальными газовыми железами, находящимися внутри пузыря, и по своему составу близок к атмосферному, но отличается повышенным содержанием азота и углекислого газа. Верхняя часть пневматофора имеет вырост в виде гребня (парус), который расположен несколько по диагонали и имеет слегка выгнутую S-образную форму. Благодаря косому расположения паруса физалия ассиметрична, причем у особей, обитающих по разные стороны экватора, асимметрия зеркальная. В северном полушарии, где экваториальное течение отклоняется к северу, ветер сносит физалий к югу, а в южном, где течение отклоняется к югу, – к северу. В результате физалии, все время передвигаясь под действием ветра и течений, не выходят за пределы своего ареала.
Некоторые рыбы, например парусник (Istiophorus platypterus), луна-рыба (Mola mola), переходя временно к плейстонному образу жизни, выставляют над поверхностью воды сильно развитый спинной плавник и медленно дрейфуют, используя для передвижения силу воздушных течений.
Природным водоемам свойствен определенный химический состав. Преобладают карбонаты, сульфаты, хлориды. В пресных водоемах концентрация солей не более 0,5 г/, в морях – от 12 до 35 г/л (промилле – десятые доли процента). При солености более 40 промилле водоем называют гипергалинным или пересоленным.
1) В пресной воде (гипотоническая среда) хорошо выражены процессы осморегуляции. Гидробионты вынуждены постоянно удалять проникающую в них воду, они гомойосмотичны (инфузории каждые 2–3 минуты «прокачивают» через себя количество воды, равное ее весу). В соленой воде (изотоническая среда) концентрация солей в телах и тканях гидробионтов одинакова (изотонична) с концентрацией солей, растворенных в воде – они пойкилоосмотичны. Поэтому у обитателей соленых водоемов осморегуляторные функции не развиты, и они не смогли заселить пресные водоемы.
2) Водные растения способны поглощать воду и питательные вещества из воды – «бульона», всей поверхностью, поэтому у них сильно расчленены листья и слабо развиты проводящие ткани и корни. Корни служат в основном для прикрепления к подводному субстрату. У большинства растений пресных водоемов есть корни.
Типично морские и типично пресноводные виды – стеногалинные, не переносят значительных изменений в солености воды. Эвригалинных видов немного. Они обычны в солоноватых водах (пресноводный судак, щука, лещ, кефаль, приморские лососи).
В воде кислород важнейший экологический фактор. Источник его – атмосфера и фотосинтезирующие растения. При перемешивании воды, особенно в проточных водоемах и при уменьшении температуры содержание кислорода возрастает. Некоторые рыбы очень чувствительны к дефициту кислорода (форель, гольян, хариус) и потому предпочитают холодные горные реки и ручьи. Другие рыбы (карась, сазан, плотва) неприхотливы к содержанию кислорода и могут жить на дне глубоких водоемов. Многие водяные насекомые, личинки комаров, легочные моллюски тоже толерантны к содержанию кислорода в воде, потому что они время от времени поднимаются к поверхности и заглатывают свежий воздух.
Углекислого газа в воде достаточно – почти в 700 раз больше, чем в воздухе. Он используется в фотосинтезе растений и идет на формирование известковых скелетных образований животных (раковины моллюсков, покровы ракообразных, каркасы радиолярий и др.).
В пресноводных водоемах кислотность воды, или концентрация водородных ионов, варьирует гораздо сильнее, чем в морских – от pH=3,7–4,7 (кислые) до pH=7,8 (щелочные). Кислотностью воды определяется во многом видовой состав растений гидробионтов. В кислых водах болот растут сфагновые мхи и живут в обилии раковинные корненожки, но нет моллюсков-беззубок (Unio), редко встречаются другие моллюски. В щелочной среде развиваются многие виды рдестов, элодея. Большинство пресноводных рыб живут в диапазоне pH от 5 до 9 и массово гибнут за пределами этих значений.
Кислотность морской воды убывает с глубиной.
Об экологической пластичности гидробионтов. Пресноводные растения и животные экологически более пластичны (эвритермны, эвригаленны), чем морские, обитатели прибрежных зон более пластичны (эвритермны), чем глубоководные. Есть виды, обладающие узкой экологической пластичностью по отношению к одному фактору (лотос – стенотермный вид, рачок артемия (Artimia solina) – стеногаленный) и широкой – по отношению к другим. Более пластичны организмы в отношении тех факторов, которые более изменчивы. И именно они распространены более широко (элодея, корненожки Cyphoderia ampulla). Зависит пластичность и от возраста и фазы развития.