Что относится к большой группе мышц

Содержание

Мышцы [ править | править код ]

Что относится к большой группе мышц

Занятия бодибилдингом и пауэрлифтингом требуют знания элементарной анатомии и функционального назначения основных мышц, состав мышечных групп. Это необходимо для составления тренировочных программ и выполнения правильной техники в упражнениях. В данной статье мышцы будут рассмотрены по принадлежности к основным частям тела:

В каждой части тела выделяются мышечные группы. Особенно крупные мышцы, такие как бицепс или трицепс, рассмотрены отдельно.

Биохимические механизмы сокращения и работы мышц описаны в научных статьях:

Гистология мышц [ править | править код ]

Волокна скелетной мышцы (цветная сканирующая электронная микроскопия). Желтым цветом окрашена соединительная ткань (эндомизий).

Что относится к большой группе мышц

Анатомия и функция мышц [ править | править код ]

Мышцы позволяют организму человека совершать различные движения. В цитоплазме мышечных волокон (клеток мышечной ткани) находится большое количество специальных белков (актомиозина), благодаря которым возможно мышечное сокращение. В организме человека выделяют три вида мышечной ткани, различающихся по своим морфологическим и физиологическим свойствам.

Тело человека имеет 430 мышц, которые составляют 40-50% его массы и, таким образом, являются самой распространённой тканью человека (Cabri, 1999). Скелетные мышцы прикрепляются к костям скелета с помощью сухожилий, причём прикрепление мышц может быть прямым или непрямым. Мышечная ткань вместе со вспомогательными структурами (соединительнотканные оболочки — фасции, кровеносные сосуды, нервы, синовиальные сумки, влагалища сухожилий, нервно-мышечные веретена и рецепторы сухожилий) образует эффективную систему, гармонично передающую силу на опорно-двигательный аппарат. Благодаря своему строению скелетная мускулатура, с одной стороны, обеспечивает движения, а с другой — участвует в поддержании позы. При этом мышечная система выполняет и защитную функцию при действии внешних сил.

Физиология мышц [ править | править код ]

Характеристика и виды мышц [ править | править код ]

Что относится к большой группе мышц

Мышцы — органы тела человека, которые состоят из мышечной ткани, имеющей поперечно-полосатую структуру и способной сокращаться под влиянием нервных импульсов, что посылает мозг. Примерно на 85% мышцы состоят из воды. Именно благодаря мышечным сокращениям мы выполняем различные действия: двигаемся, говорим, дышим, производим более сложные движения, тренируемся. Масса мышц взрослого человека составляет примерно 42%.

Что относится к большой группе мышц

У новорожденных — чуть больше 20%. С возрастом масса мышц уменьшается до 30%.

Что относится к большой группе мышц

Нервная система, в свою очередь, обеспечивает связь головного и спинного мозга с мышцами. От исправной и слаженной работы цепи «мозг — нервная система — мышцы» зависит не только ваш внешний вид, но и правильное функционирование отдельных систем, органов и организма в целом.

Что относится к большой группе мышц

В теле человека более 600 мышц. Самая маленькая мышца расположена в ухе.

К крупным относятся большие ягодичные, мышцы ног и спины. К наиболее сильным — мышцы голени и жевательные.

Мышцы имеют разную форму.

Что относится к большой группе мышц

К примеру, веретенообразные приводят в движение конечности, а гладкие входят в состав внутренних органов. Широкие мышцы в виде мышечных пластов располагаются в области груди, живота и спины. Различаются они и по количеству головок: двуглавые, трёхглавые, четырёхглавые. Бицепс имеет 2 головки и называется двуглавой мышцей руки. Именно руки, поскольку и на ноге есть двуглавая мышца. И та, и другая относятся к мышцам-сгибателям. По особенностям движения мышцы можно разделить на сгибатели и разгибатели.

К четырёхглавым мышцам относится квадрицепс, который объединяет в себе несколько мышц передней поверхности бедра (латеральную, прямую, промежуточную, медиальную).

Трехглавая мышца-разгибатель (трицепс) разгибает руку в локтевом суставе, производя движение, противоположное сгибающему руку бицепсу. Это явление называется антагонизмом, а мышцы — антагонистами.

Во время выполнения базовых движений, таких как жимы штанги, приседания, тяги, в работу включается сразу несколько мышц. Это называется синергизмом, а мышцы — участники движения — синергистами.

Мышцы различаются по преобладанию белых и красных волокон. Разница в особенностях сокращения.

Это проще понять, представив курицу. Куриная грудка состоит в основном из белых волокон, бедро — из красных. На ногах эта птица ходит, почти не переставая, а мышцы груди ей нужны для короткого и взрывного усилия, например, взлететь на забор.

Что относится к большой группе мышц

Вот и получается, что красные волокна более выносливые, а белые — более сильные.

Для восстановления крупных мышц требуется больше времени, нежели для мелких. Это объясняется тем, что во время работы или тренировки они берут на себя большую нагрузку.

Что относится к большой группе мышц

Мышцы и скелет, к которому с помощью сухожилий они крепятся (потому и называются скелетными), вместе с генетическими особенностями и метаболизмом определяют форму или тип телосложения. Красивое и тренированное тело состоит из тренированных мышц. Они делают тело не только красивым, но и здоровым. Мышцы прикрепляются, как правило, к двум различным костям, образуя рычаг. Сокращение мышцы сопровождается её укорачиванием.

В упражнениях эта фаза называется позитивной, активной. Опускание веса, которое сопровождается растяжением мышцы,— негативная фаза.

Мышечные группы [ править | править код ]

Мышцы спины состоят из нескольких слоев. Они делятся на поверхностные 2 слоя и глубокие, имеют разное происхождение и строение.

К поверхностным мышцам относятся трапециевидная мышца, широчайшая мышца спины, поднимающая лопатку мышца, ромбовидные мышцы (большая и малая), верхняя и нижняя задняя зубчатая мышцы, ременные мышцы головы и шеи. Глубокие мышцы включают в себя мышцу, выпрямляющую позвоночник, поперечно-остистую мышцу, межостистые и межпоперечные мышцы, а также подзатылочную мышцу.

Мышцы таза одним концом прикрепляются к костям таза и позвоночного столба, другим — к бедренной кости в её верхней части. Группируясь вокруг тазобедренного сустава и бедренной кости, они образуют мощную мышечную массу бедра. Различают наружную и внутреннюю группы мышц. Наружная группа состоит из большой, средней и малой ягодичных мышц, напрягателя широкой фасции, квадратной мышцы бедра, нижней близнецовой и наружной запирательной мышцы. Внутренняя группа включает подвижно-поясничную мышцу, малую поясничную мышцу, грушевидную и внутреннюю запирательную мышцы.

Мышцы шеи в зависимости от расположения делятся на поверхностные, срединные и глубокие.

Что относится к большой группе мышц

К поверхностным относятся кивательная (грудино-ключичнососцевидная) и подкожная мышцы. К срединной группе — двухбрюшная, щитоподъязычная, челюстно-подъязычная и подбородочноподъязычная мышцы, а также лопаточно-подъязычная, грудино-подъязычная, грудинощитовидная и щитовидноподъязычная. В состав глубоких мышц шеи входят передняя, средняя и задняя лестничные мышцы, длинные мышцы шеи и головы, передняя прямая и латеральная прямая мышцы головы.

Мышцы груди делятся на поверхностные и глубокие. Поверхностные мышцы покрывают грудную клетку снаружи, прикрепляясь к костям пояса верхней конечности и плечевой кости. Глубокие мышцы — это и есть собственно мышцы грудной клетки.

К поверхностным относятся большая и малая грудные мышцы, подключичная мышца и передняя зубчатая мышца. Мышцы, образующие глубокий слой, включают наружные и внутренние межрёберные мышцы, подрёберные мышцы, поперечную мышцу груди и мышцы, поднимающие рёбра.

К мышцам груди относится и диафрагма — грудобрюшная перегородка. Она делит туловище на 2 полости: верхнюю (грудная полость) и нижнюю (полость живота). Диафрагма активно участвует в дыхании.

Мышцы живота по месту расположения делятся на мышцы переднебоковой и задней стенок живота.

Мышцы плеча (верхней конечности) образуют мощный слой вокруг плечевой кости. Мышцы передней группы — сгибатели, задней — разгибатели. Переднюю группу составляют 3 мышцы: двуглавая мышца плеча (бицепс) сгибает руку в локтевом суставе и поворачивает предплечье; клювовидно-плечевая мышца поднимает руку и приводит её к туловищу; плечевая мышца сгибает предплечье в локтевом суставе. В заднюю группу входят трёхглавая мышца плеча (трицепс) и локтевая мышца, которые разгибают предплечье.

Мышцы предплечья обеспечивают движение костей предплечья и кисти. Передняя группа мышц работает следующим образом. Круглый пронатор сгибает предплечье и вращает его, лучевой и локтевой сгибатели кисти сгибают её и участвуют во вращении кисти. Поверхностный сгибатель пальцев сгибает средние фаланги II—V пальцев, а глубокий сгибает дистальные фаланги II—V пальцев и всю кисть. Длинный сгибатель большого пальца кисти сгибает его дистальную фалангу. Квадратный пронатор вращает предплечье внутрь.

В задней группе мышц разгибатель пальцев разгибает их и кисть руки, разгибатель мизинца разгибает мизинец, а локтевой разгибатель запястья разгибает и приводит кисть. Супинатор вращает предплечье и участвует в разгибании руки в локтевом суставе. Длинная мышца отводит большой палец и всю кисть. Короткий разгибатель большого пальца кисти отводит его и разгибает проксимальную фалангу. Длинный разгибатель большого пальца кисти разгибает и отводит его, а разгибатель указательного пальца, соответственно, разгибает этот палец.

И, наконец, боковая группа мышц. Плечелучевая мышца сгибает предплечье, а длинный и короткий лучевые разгибатели запястья разгибают кисть и участвуют в её вращении.

Что относится к большой группе мышц

Мышцы бедра окружают бедренную кость со всех сторон. Различают переднюю, медиальную и заднюю группы мышц. Мышцы бедра — самые большие по размеру и обладают очень большой силой. Мышцы передней группы осуществляют сгибание в тазобедренном суставе и разгибание в коленном, мышцы задней группы — противоположное действие. Мышцы медиальной группы приводят бедро, мышцы таза его отводят. Латеральная (передняя) группа мышц бедра состоит из портняжной и четырёхглавой, медиальная (внутренняя поверхность бедра) включает гребешковую мышцу, длинную приводящую мышцу, тонкую мышцу, короткую и большую приводящие мышцы. Задняя группа включает всего 2 мышцы: двуглавую и полусухожильную.

Строение мышцы [ править | править код ]

Любая мышца состоит из пучков (поперечнополосатых) мышечных волокон. Эти параллельно расположенные волокна связываются рыхлой соединительной тканью в пучки первого порядка. Первичные пучки соединяются, образуя пучки второго порядка, и т.д. Мышечные пучки всех порядков объединяются соединительно-тканной оболочкой, составляя мышечное брюшко. Соединительно-тканные прослойки, находящиеся между мышечными пучками по краям мышечного брюшка, переходят в сухожильную часть мышцы. В мышце различают активно сокращающуюся часть — брюшко — и пассивную часть, с помощью которой она прикрепляется к костям, то есть сухожилие. Последнее состоит из плотной соединительной ткани. В большинстве случаев сухожилие расположено по обоим концам мышцы.

Таким образом, скелетная мышца состоит не только из поперечно-полосатой мышечной ткани, но и из различных видов соединительной ткани, нервной ткани, эндотелия и сосудов. Однако преобладает поперечнополосатая мышечная ткань, благодаря сократимости которой мышцы и являются органами сокращения, производя движения. Сила мышцы зависит от количества входящих в её состав мышечных волокон и определяется площадью физиологического поперечника. Другими словами, более толстая и массивная мышца генерирует большую силу.

Источник

Мышцы человека

Поднимите руку. Теперь сожмите кулак. Сделайте шаг. Правда, легко? Человек выполняет привычные действия практически не задумываясь. Около 700 мышц (от 639 до 850, согласно различным способам подсчета) позволяют человеку покорять Эверест, спускаться на морские глубины, рисовать, строить дома, петь и наблюдать за облаками.

Но скелетная мускулатура — далеко не все мускулы человеческого тела. Благодаря работе гладкой мускулатуры внутренних органов, по кишечнику идет перистальтическая волна, совершается вдох, сокращается, обеспечивая жизнь, самая важная мышца человеческого тела — сердце.

Определение мышц

Мышца (лат. muskulus) — орган тела человека и животных, образованный мышечной тканью. Мышечная ткань имеет сложное строение: клетки-миоциты и покрывающая их оболочка — эндомизий образуют отдельные мышечные пучки, которые, соединяясь вместе, образуют непосредственно мышцу, одетую для защиты в плащ из соединительной ткани или фасцию.

Что относится к большой группе мышц

Что относится к большой группе мышц

Мышцы тела человека можно поделить на:

Как видно из названия, скелетный тип мускулатуры крепится к костям скелета. Второе название — поперечно-полосатая (за счет поперечной исчерченности), которая видна при микроскопии.К этой группе относятся мышцы головы, конечностей и туловища. Движения их произвольные, т.е. человек может ими управлять. Эта группа мышц человека обеспечивает передвижение в пространстве, именно их с помощью тренировок можно развить или «накачать».

Гладкая мускулатура входит в состав внутренних органов — кишечника, мочевого пузыря, стенки сосудов, сердца. Благодаря ее сокращению повышается артериальное давление при стрессе или передвигается пищевой комок по желудочно-кишечному тракту.

Сердечная — характерна только для сердца, обеспечивает непрерывную циркуляцию крови в организме.

Что относится к большой группе мышц

Строение мышц человека

Единицей строения мышечной ткани является мышечное волокно. Даже отдельное мышечное волокно способно сокращаться, что свидетельствует о том, что мышечное волокно – это не только отдельная клетка, но и функционирующая физиологическая единица, способная выполнять определенное действие.

Отдельная мышечная клетка покрыта сарколеммой – прочной эластичной мембраной, которую обеспечивают белки коллаген и эластин. Эластичность сарколеммы позволяет мышечному волокну растягиваться, а некоторым людям проявлять чудеса гибкости – садиться на шпагат и выполнять другие трюки.

В сарколемме, как прутья в венике, плотно уложены нити миофибрилл, составленные из отдельных саркомеров. Толстые нити миозина и тонкие нити актина формируют многоядерную клетку, причем диаметр мышечного волокна – не строго фиксированная величина и может варьироваться в довольно большом диапазоне от 10 до 100 мкм. Актин, входящий в состав миоцита, — составная часть структуры цитоскелета и обладает способностью сокращаться. В состав актина входит 375 аминокислотных остатка, что составляет около 15% миоцита. Остальные 65 % мышечного белка представлены миозином. Две полипептидные цепочки из 2000 аминокислот формируют молекулу миозина. При взаимодействии актина и миозина формируется белковый комплекс — актомиозин.

Название мышц человека

Когда анатомы в Средние века начали темными ночами выкапывать трупы, чтобы изучить строение человеческого тела, встал вопрос о названиях мускулов. Ведь нужно было объяснить зевакам, которые собрались в анатомическом театре, что же ученый в данный момент кромсает остро заточенным ножом.

Ученые решили их называть либо по костям, к которым они крепятся (например, грудинно-ключично-сосцевидная мышца), либо по внешнему виду (например, широчайшая мышца спины или трапециевидная), либо по функции, которую они выполняют (длинный разгибатель пальцев). Некоторые мышцы имеют исторические названия. Например, портняжная названа так потому, что приводила в движение педаль швейной машины. Кстати, эта мышца — самая длинная в человеческом теле.

Источник

Что относится к большой группе мышц

Что относится к большой группе мышц

На протяжении многих лет изучение процессов синтеза белков в скелетных мышцах при выполнении различных физических нагрузок остаётся актуальной проблемой биохимии и физиологии. Мышцы и их силовые характеристики очень важная составляющая организма каждого спортсмена, которая позволяет достигать результатов. В связи с прогрессивным развитием спорта и вовлечением большого количества людей в физическую культуру, тема здоровья спортсменов становится все более актуальной, интересной и увлекательной. Учитывая существующую сильную корреляцию между площадью поперечного сечения мышц и мышечной силой, стремление увеличить мышечную массу тела есть у каждого человека, занимающегося спортом. Кроме этого, необходимо помнить, что преобладание мышечной массы в организме благоприятно влияет на метаболические процессы.

Скелетная мышца – одна из наиболее пластичных структур в организме млекопитающих. При повышенной активности и нагрузке часто происходит увеличение её размеров, объёмов миофибриллярного аппарата, повышение сократительных возможностей (силы, мощности). Процесс прироста мышечной массы зависит от различных факторов: наследственных, конституциональных, а также пола, возраста, метаболизма, гормонального фона. Кроме того, с приобретением опыта тренировок становится все труднее увеличить мышечную массу, поэтому важно понимать и активно использовать все возможные механизмы этого процесса.

Клетки поперечно-полосатой мускулатуры отличаются от гладкомышечных миоцитов. Клетки скелетных мышц образуют многоядерный синцитий, основное вещество которого формируют миофибриллы, состоящие из толстых и тонких миофиламентов. Первый тип образуют молекулярные единицы и миозин, а второй тип содержит тропомиозин с тропонином и F-актин. Многие авторы считают скелетную мускулатуру гетерогенной системой относительно устройства и выполняемых функций, несмотря на её строгую организацию. Данное свойство помогает мышцам соответствовать возлагаемой на них функции. Так путём изменения количества саркомеров и миофибрилл обеспечивается их функциональная реорганизация [1].

Работа мышц проявляется их сокращением, которое начинается с появления очага возбуждения на нейромышечных окончаниях. Наружная мембрана деполяризуется, открываются кальциевые каналы, и концентрация кальция внутри клетки возрастает. Ионы кальция связываются с тропонином, при этом конформируется тропониновый комплекс. Участки цепей миозина связываются с актином, что сопровождается высвобождением энергии вследствие расщепления АТФ до АДФ и остатка фосфорной кислоты. Угол между лёгкой и тяжёлой цепями миозина изменяется и актиновый филамент перемещается к центру саркомера, что приводит к изменению длины мышцы, её сокращению [1, 2].

Клетки скелетных мышц подразделяются на два типа:

А) Миосателлиты – взрослые стволовые клетки мышечной ткани. Представляют собой основу для обновления мышц и прироста их массы;

Б) Миосимпласты – формируют многоядерный синцитий. Сами по себе являются мышечными тубами с миофибриллами внутри, по периферии которых располагаются ядра.

Нагрузки, оказываемые на мышцы, и само мышечное сокращение имеют некую зависимость. Предполагается, что первое будет напрямую соответствовать второму. Это достигается за счёт усиления экспрессии генов сократительных белков и энзимов обменных процессов. Мышечная активность сопровождается количественными и качественными изменениями в миоцитах того типа, которые необходимы для наиболее эффективного осуществления выполняемой работы [2].

Мышечные волокна делятся на медленные (I тип) и быстрые (II тип). Оба этих типа имеют различный состав, включающий в себя сократительные белки, ферменты энергетического обмена и внутриклеточный кальций.

Увеличение силы мышц проявляется структурными перестройками, которые затрагивают нервную и мышечные системы. Изменения в нервной системе проявляются трансформацией величины кортикальных полей, которые регулируют выполнение определённого вида движения, влиянием на синхронизацию моторных единиц и на обучение определенных мышц, отвечающих за выполнение данного вида движений. Таким образом, наибольшая активность мышц наблюдается именно тогда, когда она необходима для достижения максимального эффекта (активность мышц агонистов при одновременной пассивности антагонистов). Также наблюдается изменение частоты и устойчивости генерируемых импульсов и порога возбудимости мотонейронов. Изменения в мышечной системе могут быть связаны с гипертрофией скелетных мышц (увеличение размеров мышечного волокна) и с их гиперплазией (увеличение количества миоцитов) [3].

Но прежде чем переходить к последним двум процессам, необходимо разобраться с изменениями, происходящими в самих мышцах. В момент выполнения работы миоцит подвергается действию физических и гуморальных факторов (пассивные механические силы, гипоксемия, факторы роста, и т.д.). Они являются причиной запуска путей передачи сигнала внутри клеток, опосредуя транскрипцию и трансляцию генов, ответственных за синтез белков [2]. Изменения данных путей сопровождаются реорганизацией мышечных волокон, точнее их типов.

Одним из основных исходных сигналов является повышенная концентрация кальция внутри клетки и кальцинейрина. Кальцинейрин дефосфорилирует факторы транскрипции – NFAT (nuclear factor of activated T-cells), которые находятся в фосфорилированном состоянии [4]. Данные факторы в дефосфорилированной форме активируют гены-мишени, что способствует перестроению быстрых волокон в медленные.

По мере приспособления мышц к нагрузкам изменяются и процессы метаболизма в них. Существуют различные параметры, влияющие на формирование адаптивных механизмов в миоцитах при выполнении работы. Важнейшим является гипоксия, которая, в свою очередь активирует ферментные системы (фумараза, цитратсинтаза, ЛДГ) и запускает работу факторов транскрипции (PGC1). При недостатке кислорода происходит активация одной изоформы семейства гипоксия-индуцированных факторов (HIF; hypoxia inducible factor), которая проникает в ядро, связывается с определенным участком ДНК и активирует гены, отвечающие за гликолиз, потребление кислорода и ангиогенез, увеличивая данные процессы. Некоторые гормоны также способны влиять на экспрессию генов в мышечных клетках. Это такие гормоны, как инсулин, гормон роста, которые вместе с кортизолом запускают катаболические реакции в условиях метаболического и энергетического истощения [3].

Стоит напомнить, что мышцы не являются постоянными клетками, а заменяются в течение жизни. Пролиферация необходима для предотвращения апоптоза клеток (регулируемый процесс клеточной гибели) и поддержания массы скелетных мышц. Это осуществляется через динамический баланс между синтезом белков в мышцах и их распадом. Мышечная гипертрофия возникает тогда, когда синтез белков превышает их распад.

Что же наблюдается при гипертрофии и гиперплазии мышечного волокна? При растяжении и сокращении мышц происходит образование факторов роста IGF и MGF, которые могут действовать как паракринно, так и аутокринно. С одной стороны, их действие проявляется в увеличении синтеза сократительных белков мышечных волокон. Основным участником данного механизма является фосфорилированная PKB [5]. Её активация начинается с влияния на мышцу нагрузки, которая приводит к синтезу гена, запускающего путь IGF/PI3K. В ткани имеется несколько изоформ, некоторые из них (IGF-1 и MGF), взаимодействуя с рецепторами приводят к конформационным изменениям. Через фосфорилирование ряда рецепторов и происходит активация PKB, способствующая развитию анаболических реакций [6].

С другой же стороны, происходит усиление пролиферации миосателлитов, их митотическая активность приводит к формированию новых клеток, а также сопровождается слиянием их с имеющимися мышечными волокнами или даёт возможность формировать новые. Миосателлиты расположены между базальной мембраной и сарколеммой. Покоящиеся клетки активируются непосредственно травмированием мышцы и в ответ на это начинают активно делиться и соединяться с частями поврежденного волокна. Под влиянием тяжёлой изнурительной работы происходит также активация данных клеток из-за образования многочисленных микротравм мышечного волокна. Вследствие этого наблюдается явление подобное процессам, происходящим при воспалении. В зону повреждения активно мигрируют нейтрофилы и макрофаги, которые активируют синтез ранее упомянутых факторов роста, регулирующих пролиферацию и дифференцировку миосателлитов. Мышечная гипертрофия отличается от мышечной гиперплазии. При гипертрофии мышц, увеличиваются сократительные элементы, и межклеточный матрикс расширяется для поддержки роста. Гиперплазия приводит к увеличению количества мышечных волокон. Гипертрофия сократительных элементов может происходить путем добавления саркомеров либо последовательно или параллельно.

В отечественной литературе не утихают споры о патогенетических аспектах мышечного роста. Чаще всего гипертрофию скелетных мышц человека рассматривают как их долговременную адаптацию к физическим нагрузкам различной направленности. Но существует понятие о кратковременной гипертрофии скелетных мышц – то есть изменение объема мышцы в результате одной силовой тренировки. Спортсмены, выступающие в соревнованиях по бодибилдингу или бодифитнесу хорошо знают, что объем мышц можно немного увеличить за счет собственной крови и осмотического давления, если использовать специальный метод тренировки – пампинг.

Неоспоримым является факт увеличения объёма мышечных волокон. Это так называемая миофибриллярная гипертрофия, при которой происходит изменение объёма миофибрилл и плотность их укладки. Механизм связан с увеличением количества саркомеров в миофибриллах. Значительная роль при этом отводится активированным клеткам-сателлитам. Миогенные стволовые клетки начинают пролифелировать, а затем сливаются с существующими клетками или взаимодействуют между собой для формирования новых мышечных волокон. Этот механизм актуален при восстановлении травмированных клеток и при спортивной гипертрофии.

Существует множество данных, доказывающих идущий параллельно с этим процесс увеличения объёма несократительной части мышцы – саркоплазматическая гипертрофия. Это тонкие перестройки на биохимическом уровне клетки, а так же увеличение количества митохондрий. Многие авторы считают, что трансформации в саркоплазме повышают выносливость мышц. Ряд исследователей утверждает, что увеличение различных неконтрактильных элементов и жидкости действительно может привести к приросту мышечной массы, но без сопутствующего увеличения силы. Саркоплазматическая гипертрофия достигается специальными тренировками и часто описывается как нефункциональная. Однако ряд специалистов предполагают, что отек мышечных волокон вызывает увеличение синтеза белка и таким образом способствует росту сократительной ткани.

Эти процессы редко бывают сбалансированными и зависят от характера и интенсивности нагрузки. В скелетных мышцах при этом синтез мышечных белков преобладает над их распадом. Причиной такого метаболизма сторонники гипотезы ацидоза считают накопление молочной кислоты. С точки зрения другой теории – временная гипоксия запускает реперфузию мышц и активирует деление клеток-сателлитов. Последнее время широкое распространение получила гипотеза механического повреждения мышечных волокон. Микроразрывы сократительных белков и повреждения саркоплазмы сопровождается увеличением концентрации ионов кальция, что и стимулирует пролиферацию сателлитов.

Из этого следует, что механизмы мышечной гипертрофии известны и неоспоримы. Очень дискутабельным остается вопрос о наличии процесса гиперплазии мышц. Большинство авторов сходится во мнении, что увеличение количества мышечных волокон у человека не доказано, но при этом описывается возможность получения гиперплазии мышц в экспериментальных условиях у животных (млекопитающих и птиц). Некоторые исследователи допускают частичное увеличения числа волокон. На основании проведенного мета-анализа экспериментальных работ отмечено, что количество мышечных элементов увеличилось в экспериментах на птицах значительнее, чем при использовании в качестве подопытных млекопитающих. Примечательно также, что эффект гиперплазии наблюдался там, где использовались постоянные растяжения, а не упражнения, сочетающие его с расслаблением. Ряд исследователей (Kraemer, William J. и MacDougall J.) утверждают, что этот механизм может осуществляться под влиянием силовых тренировок. Однако доказательств увеличения мышечных волокон у людей недостаточно. Длительных исследований (более года) добровольцев и спортсменов не проводилось. Высказывается мнение, что это слишком короткий период для этого процесса. Гиперплазия подтверждается в биопсийном материале, а погрешность этого метода составляет около 10 %, что делает результат очень сомнительным.

Общее число волокон предопределяется генетически и практически не меняется в течение жизни без применения специальных стимуляторов. Российские ученые подтверждают, что вклад гиперплазии в процесс увеличения объема мышц составляет не более 5 % и, как правило, потенцирован использованием анаболических стероидов. Также гиперплазию могут вызывать блокаторы миостатина. Гормон роста при этом не вызывает гиперплазии.

Таким образом, при мышечной работе происходит множество процессов на разных уровнях. Начиная с изменений интенсивности обменных процессов и заканчивая изменениями механизмов нервной и гуморальной регуляции. Реорганизация мышц, лежащая в основе этих процессов, приводит к изменению многочисленных характеристик деятельности спортсменов.

Проанализировав все данные и изучив все возможные гипотезы, становится очевидным, что в увеличении мышечных волокон играют некую роль всё-таки два процесса. Первый – гипертрофия с ёе подвидами для сократительной и несократительной части мышцы (миофибриллярная и саркоплазматическая), которая, по мнению многих исследователей, занимает основополагающую роль. И второй это гиперплазия с её минимальным, но существенным вкладом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *