Что определяется углом между прорезями в дисках в опыте штерна
Понимание того, что в основе строения любого вещества лежит существование мельчайших частиц – атомов и молекул, находящихся в непрерывном движении и активном взаимодействии между собой, – возникло в XIX веке. В разработке молекулярно-кинетической теории на бумаге участвовали физики Рудольф Клаузиус, Людвиг Больцман и особенно Джеймс Максвелл. Вскоре последовали и подтверждающие её практические исследования. Важнейшим из них является опыт Штерна, проведенный в 1920 году.
Гений эксперимента
В биографии нобелевского лауреата по физике (1943 г.) Отто Штерна (1888-1969) есть период, когда он успешно занимался теоретическими разработками проблем термодинамики на основе постулатов квантовой механики. Руководителем его научной работы одно время был Альберт Эйнштейн. Подлинное уважение со стороны научной общественности ему принесла деятельность физика-экспериментатора. Он разработал уникальные приборы, опытным путём подтверждавшие и развивавшие теоретические выкладки.
Описание прибора
Эксперимент 1920 года, результатом которого стало доказательство распределения скоростей теплового движения молекул, был осуществлен с помощью технически несложной установки. Основой прибора послужили два коаксиальных (соосных) цилиндра разного диаметра, внутри которых путём откачки воздуха была создана область низкого давления. На общей оси расположена проволока из платины с тонким серебряным напылением. При подключении к концам проводника электрического тока происходит нагревание проволоки до температуры, превышающей точку плавления серебра. Возникает испарение атомов металла, которые начинают прямолинейное равномерное движение к внутренней поверхности маленького цилиндра.
В малом цилиндре прорезается узкая щель, сквозь которую атомы металла проникают внутрь большого. Внешний, наружный цилиндр имеет комнатную температуру, что обеспечивает быстрое охлаждение разогретых металлических частиц. Если цилиндры не вращаются, атомы «прилипают» к экрану и оседают напротив прорези в виде ровной посеребренной полоски. Опыт Штерна заключался в следующем: когда оба цилиндра начинали вращать с определенной угловой скоростью, образовывалась размытая полоска налета, смещенная в ту сторону, которая противоположна направлению вращения.
Измерение скорости молекулярного движения
Главный показатель, который сделал видимым опыт Штерна, — скорость молекул V. Было установлено, что средняя скорость, с которой двигаются при испарении атомы серебра при нагревании спирали до 1200 °C, – от 560 до 650 м/с.
Для измерения её Штерн получил все необходимые данные:
• t – время пролета атомов.
Результат, экспериментально полученный немецким физиком — V = S / U = L / V = UL / S — совпал со значениями, полученными в результате рассмотрения молекулярно-кинетической теории. Средняя скорость движения молекул серебра, определенная теоретически, была равна 584 м/с.
Закон распределения Максвелла
Кратко опыт Штерна можно определить как визуализацию распределения скорости теплового движения атомов и молекул. При осаждении серебра на стенках внешнего цилиндра, когда система находится в состоянии покоя, получалась полоска с достаточно четкими краями. При вращении цилиндров она выходила размытой.
Причина этого – различие в скорости движения атомов, испускаемых при испарении серебряного покрытия проволоки. Более быстрые частицы осаждались с меньшим смещением от прорези в малом цилиндре, а те, что двигались медленнее, успевали преодолеть большее расстояние. Соотношение скоростей укладывается в пропорцию, предсказанную вычислениями Максвелла. Кривая поперечного сечения полученного напыления совпадает по форме с графическим выражением формул, послуживших основой молекулярно-кинетической теории.
Теория, проверенная практикой
Большое значение, которое имеет экспериментальная физика, опыт Штерна показывает особенно наглядно. Умение найти способ доказательства правильности теоретических постулатов особенно ценно, когда предметом научных исследований становятся объекты, неразличимые невооруженным глазом.
Последующая история науки, когда физика вступила в фазу исследования строения атома в период поиска элементарных частиц, доказала это. Одним из пионеров нового течения был немецкий физик, гениальный экспериментатор Отто Штерн.
Опыт Штерна
Муниципальное общеобразовательное учреждение гимназия №1
Центрального района г. Волгограда
Урок физики по теме
Движение молекул. Опытное определение скоростей движения молекул
Подготовила: учитель физики высшей категории
«Физика – 10», рабочая тетрадь к данному учебнику и мультимедийное приложение к учебнику.
Опытное определение скоростей движения молекул
Понимание важнейших вопросов современной физики невозможно без некоторых, хотя бы самых элементарных представлений о статистических закономерностях. Рассмотрение газа как системы, состоящей из огромного числа частиц, позволяет в доступной форме дать представление о вероятности, статистическом характере закономерностей таких систем, о статистических распределениях, указывающих, с какой вероятностью частицы системы имеют то или иное значение параметров, определяющих их состояние, и на основе этого излагать основные положения классической теории газов. К одному из уроков, которые позволяют сформировать данное представление, относится представленный урок по УМК издательства «Дрофа»: учебник физики Н. С. Пурышева, Н. Е. Важеевская, Д. А. Исаев, рабочая тетрадь к данному учебнику и мультимедийное приложение к учебнику.
Данный урок можно провести в процессе изучения темы «Основы МКТ строения вещества» в 10 классе.
Новый материал урока позволяет углубить знания учащихся об основах кинетической теории газов и использовать его при решении задач на определение скоростей молекул различных газов.
Каждый этап урока сопровождается показом тематического слайда мультимедийного приложения и видеофрагментом.
Содержательная: ознакомить обучающихся с одним из методов определения скорости движения молекул – методом молекулярных пучков (с опытом Штерна);
Деятельностная: формирование у учащихся новых способов деятельности (умение задавать и отвечать на действенные вопросы; обсуждение проблемных ситуаций; умение оценивать свою деятельность и свои знания).
Обучающая: формирование умения анализировать, сравнивать, переносить знания в новые ситуации, планировать свою деятельность при построении ответа, выполнении заданий и поисковой деятельности через физические понятия (наиболее вероятная скорость, средняя скорость, средняя квадратичная скорость), активизировать мыслительную деятельность учащихся.
Воспитывающая: воспитание дисциплинированности при выполнении групповых заданий, создание условия для положительной мотивации при изучении физики, используя разнообразные приемы деятельности, сообщая интересные сведения; воспитывать чувство уважения к собеседнику, индивидуальной культуры общения.
Развивающая: развивать умения строить самостоятельные высказывания в устной речи на основе усвоенного учебного материала, развитие логического мышления, развитие умения единого математического подхода для количественного описания физических явлений на основе молекулярных представлений при решении задач.
Тип урока: урок изучения нового материала.
Методы обучения: эвристический, объяснительно – иллюстративный, проблемный, демонстрации и практические задания, решение задачи физического содержания.
уметь делать вывод на основе эксперимента;
вырабатывать правила дискуссии и соблюдать их;
понимать смысл обсуждаемых вопросов и проявлять интерес к данной теме.
Оборудование: прибор для демонстрации опыта Штерна;
компьютер и проектор для демонстрации презентации и видеофрагмента «Опыт Штерна».
Организационный этап (приветствие, проверка готовности к уроку, эмоционального настроя), (1 минута)
Этап постановки цели, задач урока и проблемы о способе измерения скорости молекул, (4 минуты)
Этап изучения нового учебного материала, показ слайдов презентации с комментариями учащихся, которая позволяет создать зрительное впечатление о теме, активизировать зрительную память (проверить уровень усвоения системы понятий по данной теме), (20минут)
Этап закрепления приобретенных знаний при решении задач (применение знаний на практике их вторичное осмысление), (8минут)
Этап обобщения и подведения итогов урока (дать анализ успешности овладения знаниями и способами деятельности), (4минуты)
Информация о домашнем задании (направлено на дальнейшее развитие знаний), (1минута)
Рефлексия, (2 минуты)
Деятельность учителя физики
Здравствуйте, ребята! Я рада приветствовать вас на уроке, на котором мы продолжим открывать страницы в познании классической теории газов. Впереди нас ждут интересные открытия. Поприветствуйте друг друга.
Целеполагание и мотивация.
На прошлом уроке мы познакомились с основными положениями молекулярно – кинетической теории идеального газа. Участвуя в непрерывном хаотическом движении, молекулы постоянно сталкиваются друг с другом, при этом число сталкивающихся частиц их скорости в каждый момент времени различны.
Как вы думаете, какая тема урока «ожидает» нас сегодня?
Да, действительно, цель, которую мы ставим сегодня перед собой: познакомимся с одним из методов определения скорости движения молекул – методом молекулярных пучков, предложенным немецким физиком Отто Штерном в 1920 году.
Открыли тетради, записали число и тему сегодняшнего урока: Движение молекул. Опытное определение скоростей движения молекул.
Вспомним, чему равна скорость теплового движения молекул?
Рассчитаем скорость молекул серебра А g при испарении с поверхности, T =1500К.
Напомню, скорость звука 330м/с, а скорость молекул серебра
588м/с, сравните.
Рассчитаем скорость молекул водорода Н2 при температуре, близкой к абсолютному нулю T=28К.
Для примера: скорость пассажирского самолета – 900м/с, скорость движения Луны вокруг Земли – 1000м/с.
А теперь поставите себя на место ученых 19 века, когда были получены эти данные, возникли сомнения в правильности самой кинетической теории. Ведь известно, что запахи распространяются довольно медленно: нужно время порядка десятков секунд, чтобы запах духов, пролитых в одном углу комнаты, распространяются до другого угла.
Поэтому возникает вопрос: какова на самом деле скорость молекул?
Когда запах духов распространяется, мешает ли что-то молекулам духов?
Как это влияет на скорость направленного движения молекул?
Рассчитаем скорость молекул водорода Н2 при температуре, близкой к комнатной T=293К.
А как же её измерить, определить её значение на практике? Давайте решим следующую задачу:
Пусть имеется 1 молекула. Нужно определить скорость свободного пробега молекул. Как движутся молекулы между столкновениями?
Пусть молекула проходит 1 метр, время найдем при скорости водорода 1911м/с, получилось 0,00052с.
Как видно время очень маленькое.
Возникает опять проблема!
Этап изучения нового учебного материала.
Решить эту проблему в школьных условиях невозможно, за нас это сделал в 1920 г Отто Штерн (1888-1970), заменив поступательное движение на вращательное.
Посмотрим небольшой видеофрагмент и после обсудим некоторые вопросы.
Что представляла установка, которой пользовался О. Штерн?
Кривые распределения молекул по скоростям имеют следующие особенности:
· они проходят через начало координат,
· асимптотически приближаются к оси абсцисс при бесконечно больших скоростях,
· асимметричны (слева от максимума кривые идут круче, чем справа).
То, что кривая распределения проходит через начало координат, означает, что неподвижных молекул в газе нет. Из того, что кривая при бесконечно больших скоростях асимптотически приближается к оси абсцисс, следует, что слишком большие скорости молекул маловероятны. Значение наиболее вероятной скорости движения молекул соответствует максимуму кривой распределения [16, C. 34].
Вид функции распределения молекул по скорости движения, которую Д. Максвелл определил теоретическим путем, качественно совпал с профилем налета атомов серебра на латунной пластинке в опыте О.Штерна.
Опыт О. Штерна (наряду с опытом Ж. Перрена) был первым прямым доказательством справедливости молекулярно-кинетической теории строения вещества. В настоящее время атомно-молекулярное учение подтверждено многочисленными опытами и является общепризнанным.
1. Большая советская энциклопедия. Т. 19.- М.: Советская энциклопедия, 1975.
5. Дуков, В. М. Исторические обзоры в курсе физики средней школы: пособие для учителе/ В.М. Дуков- М.: Просвещение, 1983.
6. Зисман, Г. А. Курс общей физики: Механика, молекулярная физика, колебания и волны. Т. 1./Г.А. Зисман, О.М. Тодес – М.: Наука, 1974.
9. Кудрявцев, П. С. История физики: учебное пособие для студентов пед. институтов – М.: УЧПЕДГИЗ, 1956.
11. Липсон, Г. Великие эксперименты в физике/ Г. Липсон; пер. с англ. И.Б. Виханского и В.А. Кузьмина; под. ред. канд. физ.-мат. наук В.И. Рыдника- М.: Мир,1972.
13. Мелешко, Л. О. Молекулярная физика введение в термодинамику/ Л.О. Мелешко – Минск: Высшая школа, 1977.
17. Розенбергер, Ф. История физики. Часть 1. История физики в древности и в средние века/ Ф. Розенбергер; пер. с нем. под ред. И. Сеченова, вновь проверенный и переработанный В.С. Гохманом – Л.:ОНТИГТТИ – 1934.
20. Храмов, Ю. А. Физики: биографический справочник. М.: ФИЗМАТГИЗ, 1983.
21. Эйнштейн, А. Брауновское движение: сб. ст./А. Эйнштейн, М. Смолуховский; под ред. Б. И. Давыдова – Л.: ОНТИНКТТП, 1936.
23. Элементарный учебник физики. Том 1.:учебное пособие. В 3 т.; Под ред. Г. С. Ландсберга – М.: ФИЗМАТЛИТ, 2000.
26. Галилей Г. Пробирных дел мастер – М., 1987.
4. Виртуальный фонд естественнонаучных и научно-технических эффектов «Эффективная физика»— http://www.effects.ru/
18. Портал фундаментального химического образования России
Что определяется углом между прорезями в дисках в опыте штерна
В 1922 году немецкие физики О. Штерн и В. Герлах поставили опыты, целью которых было измерение магнитных моментов Pm атомов различных химических элементов. Для химических элементов, образующих первую группу таблицы Менделеева и имеющих один валентный электрон, магнитный момент атома равен магнитному моменту валентного электрона, т.е. одного электрона.
Идея опыта заключалась в измерении силы, действующей на атом в сильно неоднородном магнитном поле. Неоднородность магнитного поля должна быть такова, чтобы она сказывалась на расстояниях порядка размера атома. Только при этом можно было получить силу, действующую на каждый атом в отдельности.
Схема опыта изображена на рис. 7.9. В колбе с вакуумом, 10 –5 мм рт. ст., нагревался серебряный шарик К, до температуры испарения.
Атомы серебра летели с тепловой скоростью около 100 м/с через щелевые диафрагмы В и, проходя резко неоднородное магнитное поле, попадали на фотопластинку А.
Если бы момент импульса атома (и его магнитный момент
) мог принимать произвольные ориентации в пространстве (т.е. в магнитном поле), то можно было ожидать непрерывного распределения попаданий атомов серебра на фотопластинку с большой плотностью попаданий в середине. Но на опыте были получены совершенно неожиданные результаты: на фотопластинке получились две резкие полосы – все атомы отклонялись в магнитном поле двояким образом, соответствующим лишь двум возможным ориентациям магнитного момента (рис. 7.10).
Этим доказывался квантовый характер магнитных моментов электронов. Количественный анализ показал, что проекция магнитного момента электрона равна магнетону Бора:
.
Таким образом, для атомов серебра Штерн и Герлах получили, что проекция магнитного момента атома (электрона) на направление магнитного поля численно равна магнетону Бора.
.
Опыты Штерна и Герлаха не только подтвердили пространственное квантование моментов импульсов в магнитном поле, но и дали экспериментальное подтверждение тому, что магнитные моменты электронов тоже состоят из некоторого числа «элементарных моментов», т.е. имеют дискретную природу. Единицей измерения магнитных моментов электронов и атомов является магнетон Бора (ħ – единица измерения механического момента импульса).
Кроме того, в этих опытах было обнаружено новое явление. Валентный электрон в основном состоянии атома серебра имеет орбитальное квантовое число l = 0 (s—состояние). Но при l = 0 (проекция момента импульса на направление внешнего поля равна нулю). Возник вопрос, пространственное квантование какого момента импульса обнаружилось в этих опытах и проекция какого магнитного момента равна магнетону Бора.
В 1925 г. студенты Геттингенского университета Гаудсмит и Уленбек предположили существование собственного механического момента импульса у электрона (спина) и, соответственно, собственного магнитного момента электрона Pms.
Введение понятия спина сразу объяснило ряд затруднений, имевшихся к тому времени в квантовой механике. И в первую очередь – результатов опытов Штерна и Герлаха.
Авторы дали такое толкование спина: электрон – вращающийся волчок. Но тогда следует, что «поверхность» волчка (электрона) должна вращаться с линейной скоростью, равной 300 с, где с – скорость света. От такого толкования спина пришлось отказаться.
В современном представлении – спин, как заряд и масса, есть свойство электрона.
П. Дирак впоследствии показал, что существование спина вытекает из решения релятивистского волнового уравнения Шредингера.
Из общих выводов квантовой механики следует, что спин должен быть квантован: , где s – спиновое квантовое число.
Аналогично, проекция спина на ось z (Lsz) (ось z совпадает с направлением внешнего магнитного поля) должна быть квантована и вектор может иметь (2s + 1) различных ориентаций в магнитном поле.
Из опытов Штерна и Герлаха следует, что таких ориентаций всего две: , а значит s = 1/2, т.е. спиновое квантовое число имеет только одно значение.
Для атомов первой группы, валентный электрон которых находится в s—состоянии (l = 0), момент импульса атома равен спину валентного электрона. Поэтому обнаруженное для таких атомов пространственное квантование момента импульса в магнитном поле является доказательством наличия у спина лишь двух ориентаций во внешнем поле. (Опыты с электронами в p—состоянии подтвердили этот вывод, хотя картина получилась более сложной) (желтая линия натрия – дуплет из-за наличия спина).
Численное значение спина электрона:
.
По аналогии с пространственным квантованием орбитального момента проекция спина
квантуется (аналогично, как
, то и
). Проекция спина на направление внешнего магнитного поля, являясь квантовой величиной, определяется выражением:
,
где – магнитное спиновое квантовое число,
, т.е. может принимать только два значения, что и наблюдается в опыте Штерна и Герлаха.
Итак, проекция спинового механического момента импульса на направление внешнего магнитного поля может принимать два значения:
Так как мы всегда имеем дело с проекциями, то говоря, что спин имеет две ориентации, имеем в виду две проекции.
Проекция спинового магнитного момента электрона на направление внешнего магнитного поля:
.
Отношение – спиновое гиромагнитное отношение.