Что определяет сопротивление проводника

Электрическое сопротивление проводников

Понятие об электрическом сопротивлении и проводимости

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Электронная теория так объясняет сущность электрического сопротивления металлических проводников. Свободные электроны при движении по проводнику бесчисленное количество раз встречают на своем пути атомы и другие электроны и, взаимодействуя с ними, неизбежно теряют часть своей энергии.

Электроны испытывают как бы сопротивление своему движению. Различные металлические проводники, имеющие различное атомное строение, оказывают различное сопротивление электрическому току.

Точно тем же объясняется сопротивление жидких проводников и газов прохождению электрического тока. Однако не следует забывать, что в этих веществах не электроны, а заряженные частицы молекул встречают сопротивление при своем движении.

Что определяет сопротивление проводника

За единицу электрического сопротивления принят ом.

Ом есть сопротивление столба ртути высотой 106,3 см с поперечным сечением 1 мм 2 при температуре 0° С.

Если, например, электрическое сопротивление проводника составляет 4 ом, то записывается это так: R = 4 ом или r = 4 ом.

Для измерения сопротивлений большой величины принята единица, называемая мегомом.

Один мегом равен одному миллиону ом.

Чем больше сопротивление проводника, тем хуже он проводит электрический ток, и, наоборот, чем меньше сопротивление проводника, тем легче электрическому току пройти через этот проводник.

Следовательно, для характеристики проводника (с точки зрения прохождения через него электрического тока) можно рассматривать не только его сопротивление, но и величину, обратную сопротивлению и называемую, проводимостью.

Что определяет сопротивление проводника

Электрической проводимостью называется способность материала пропускать через себя электрический ток.

Влияние материала проводника, его размеров и окружающей температуры на величину электрического сопротивления

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Что определяет сопротивление проводника

Что определяет сопротивление проводника

Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Чтобы лучше понять эту зависимость, представьте себе две пары сообщающихся сосудов, причем у одной пары сосудов соединяющая трубка тонкая, а у другой — толстая. Ясно, что при заполнении водой одного из сосудов (каждой пары) переход ее в другой сосуд по толстой трубке произойдет гораздо быстрее, чем по тонкой, т. е. толстая трубка окажет меньшее сопротивление течению воды. Точно так же и электрическому току легче пройти по толстому проводнику, чем по тонкому, т. е. первый оказывает ему меньшее сопротивление, чем второй.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника :

Площадь поперечного сечения круглого проводника вычисляется по формуле:

А так определяется длина проводника:

Эта формула дает возможность определить длину проводника, его сечение и удельное сопротивление, если известны остальные величины, входящие в формулу.

Если же необходимо определить площадь поперечного сечения проводника, то формулу приводят к следующему виду:

Преобразуя ту же формулу и решив равенство относительно р, найдем удельное сопротивление проводника:

Последней формулой приходится пользоваться в тех случаях, когда известны сопротивление и размеры проводника, а его материал неизвестен и к тому же трудно определим по внешнему виду. Для этого надо определить удельное сопротивление проводника и, пользуясь таблицей, найти материал, обладающий таким удельным сопротивлением.

Что определяет сопротивление проводника

Что определяет сопротивление проводникаЭлектронная теория строения вещества дает следующее объяснение увеличению сопротивления металлических проводников с повышением температуры.

При нагревании проводник получает тепловую энергию, которая неизбежно передается всем атомам вещества, в результате чего возрастает интенсивность их движения. Возросшее движение атомов создает большее сопротивление направленному движению свободных электронов, отчего и возрастает сопротивление проводника.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Закон Ома

Что определяет сопротивление проводника

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Сопротивление

Представьте, что есть труба, в которую затолкали камни. Вода, которая протекает по этой трубе, станет течь медленнее, потому что у нее появилось сопротивление. Точно также будет происходить с электрическим током.

Теперь сделаем «каменный участок» длиннее, то есть добавим еще камней. Воде будет еще сложнее течь.

Сделаем трубу шире, оставив количество камней тем же — воде полегчает, поток увеличится.

Теперь заменим шероховатые камни, которые мы набрали на стройке, на гладкие камушки из моря. Через них проходить тоже легче, а значит сопротивление уменьшается.

Электрический ток реагирует на эти параметры аналогичным образом: при удлинении проводника сопротивление увеличивается, при увеличении поперечного сечения (ширины) проводника сопротивление уменьшается, а если заменить материал — изменится в зависимости от материала.

Эту закономерность можно описать следующей формулой:

Сопротивление

R = ρ l/S

R — сопротивление [Ом]

l — длина проводника [м]

S — площадь поперечного сечения [мм^2]

ρ — удельное сопротивление [Ом*мм^2/м]

Единица измерения сопротивления — Ом. Названа в честь физика Георга Ома.

Площадь поперечного сечения проводника и удельное сопротивление содержат в своих единицах измерения мм^2. В таблице удельное сопротивление всегда дается в такой размерности, да и тонкий проводник проще измерять в мм^2. При умножении мм^2 сокращаются и мы получаем величину в СИ.

Но это не отменяет того, что каждую задачу нужно проверять на то, что там мм^2 в обеих величинах! Если это не так, то нужно свести не соответствующую величину к мм^2.

Таблица удельных сопротивлений различных материалов

Константан ( сплав Ni-Cu + Mn)

Нейзильбер (сплав меди цинка и никеля)

Никелин ( сплав меди и никеля)

Нихром ( сплав никеля хрома железы и марганца)

Резистор

Все реальные проводники имеют сопротивление, но его стараются сделать незначительным. В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.

Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.

Вот так резистор изображается на схемах:

Что определяет сопротивление проводника

В школьном курсе физики используют Европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.

Вот так резистор выглядит в естественной среде обитания:

Что определяет сопротивление проводника

Полосочки на нем показывают его сопротивление.

На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:

Что определяет сопротивление проводника

О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.

Реостат

Есть такие выключатели, которые крутишь, а они делают свет ярче-тусклее. В такой выключатель спрятан резистор с переменным сопротивлением — реостат.

Что определяет сопротивление проводника

Стрелка сверху — это ползунок. По сути, он отсекает ту часть резистора, которая находится от него справа. То есть, если мы двигаем ползунок вправо — мы увеличиваем длину резистора, а значит и сопротивление. И наоборот — двигаем влево и уменьшаем.

По формуле сопротивления это очень хорошо видно, так как длина проводника находится в числителе:

Сопротивление

R = ρ l/S

R — сопротивление [Ом]

l — длина проводника [м]

S — площадь поперечного сечения [мм^2]

ρ — удельное сопротивление [Ом*мм^2/м]

Закон Ома для участка цепи

С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.

Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. Эти реакции выделяют энергию, которая потом передается электрической цепи.

У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «-».

Что определяет сопротивление проводника

У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.

Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.

Математически его можно описать вот так:

Закон Ома для участка цепи

I = U/R

R — сопротивление [Ом]

Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.

Сила тока измеряется в Амперах, а подробнее о ней вы можете прочитать в нашей статье 😇

Давайте решим несколько задач на Закон Ома для участка цепи.

Задача раз

Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.

Решение:

Возьмем закон Ома для участка цепи:

Ответ: сила тока, проходящего через лампочку, равна 0,25 А

Давайте усложним задачу. И найдем силу тока, знаю все параметры для вычисления сопротивления и напряжение.

Задача два

Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм^2, а удельное сопротивление нити равно 1,05 Ом*мм^2/м.

Решение:

Сначала найдем сопротивление проводника.

Площадь дана в мм^2, а удельное сопротивления тоже содержит мм^2 в размерности.

Это значит, что можно подставлять значения без перевода в СИ:

R = 1,05*0,5/0,01 = 52,5 Ом

Теперь возьмем закон Ома для участка цепи:

Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А

А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.

Задача три

Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм^2, а сила тока в цепи — 8,8 А

Решение:

Возьмем закон Ома для участка цепи и выразим из него сопротивление:

Подставим значения и найдем сопротивление нити:

Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:

Подставим значения и получим:

ρ = 25*0,01/0,5 = 0,5 Ом*мм^2/м

Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.

Таблица удельных сопротивлений различных материалов

Константан ( сплав Ni-Cu + Mn)

Нейзильбер (сплав меди цинка и никеля)

Никелин ( сплав меди и никеля)

Нихром ( сплав никеля хрома железы и марганца)

Ответ: нить накаливания сделана из константана.

Закон Ома для полной цепи

Мы разобрались с законом Ома для участка цепи. А теперь давайте узнаем, что происходит, если цепь полная: у нее есть источник, проводники, резисторы и другие элементы.

В таком случае вводится Закон Ома для полной цепи: сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Так, стоп. Слишком много незнакомых слов — разбираемся по-порядку.

Что такое ЭДС и откуда она берется

ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.

Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.

Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.

В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:

Закон Ома для полной цепи

I = ε/(R + r)

R — сопротивление [Ом]

r — внутреннее сопротивление источника [Ом]

Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.

Решим задачу на полную цепь.

Задачка

Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом

Решение:

Возьмем закон Ома для полной цепи:

Ответ: сила тока в цепи равна 1 А.

Когда «сопротивление бесполезно»

Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.

А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.

Что определяет сопротивление проводника

Ток идет по пути наименьшего сопротивления.

Теперь давайте посмотрим на закон Ома для участка цепи еще раз.

Закон Ома для участка цепи

I = U/R

R — сопротивление [Ом]

Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.

Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.

Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.

Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.

Параллельное и последовательное соединение

Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.

Резисторы следуют друг за другом

Что определяет сопротивление проводника

Между резисторами есть два узла

Что определяет сопротивление проводника

Узел — это соединение трех и более проводников

Сила тока одинакова на всех резисторах

Сила тока, входящего в узел, равна сумме сил токов, выходящих из него

Общее напряжение цепи складывается из напряжений на каждом резисторе

Напряжение одинаково на всех резисторах

Общее сопротивление цепи складывается из сопротивлений каждого резистора

Общее сопротивление для бесконечного количества параллельно соединенных резисторов

1/R = 1/R1 + 1/R2 + … + 1/Rn

Общее сопротивление для двух параллельно соединенных резисторов

Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов

Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?

Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.

Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.

Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.

Решим несколько задач на последовательное и параллельное соединение.

Задачка раз

Найти общее сопротивление цепи.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом, R4 = 4 Ом.

Что определяет сопротивление проводника

Решение:

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + R2 + R3 + R4 = 1 + 2 + 3 + 4 = 10 Ом

Ответ: общее сопротивление цепи равно 10 Ом

Задачка два

Найти общее сопротивление цепи.

Что определяет сопротивление проводника

Решение:

Общее сопротивление при параллельном соединении рассчитывается по формуле:

R = (R1 * R2)/R1 + R2 = 4*2/4+2 = 4/3 = 1 ⅓ Ом

Ответ: общее сопротивление цепи равно 1 ⅓ Ом

Задачка три

Найти общее сопротивление цепи, состоящей из резистора и двух ламп.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом

Что определяет сопротивление проводника

Решение:

Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.

В данном случае соединение является смешанным. Лампы соеденены параллельно, а последовательно к ним подключен резистор.

Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:

Rламп = (R2 * R3)/R2 + R3 = 2*3/2+3 = 6/5 = 1,2 Ом

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + Rламп = 1 + 1,2 = 2,2 Ом

Ответ: общее сопротивление цепи равно 2,2 Ом.

Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи 💪.

Задачка четыре со звездочкой

К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. Найти внутреннее сопротивление аккумулятора.

Что определяет сопротивление проводника

Решение:

Найдем сначала сопротивление лампы.

Rлампы = R/2 = 10/2 = 5 Ом

Теперь найдем общее сопротивление двух параллельно соединенных резисторов.

Rрезисторов = (R * R)/R + R = R^2)/2R = R/2 = 10/2 = 5 Ом

И общее сопротивление цепи равно:

R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом

Выразим внутреннее сопротивление источника из закона Ома для полной цепи.

r = 12/0,5 — 10 = 14 Ом

Ответ: внутреннее сопротивление источника равно 14 Ом.

Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!

Источник

Сопротивление проводника

Сопротивление проводов

Что определяет сопротивление проводника

Электрическое сопротивление является основной характеристикой проводниковых материалов.

В зависимости от области применения проводника величина его сопротивления может играть как положительную, так и отрицательную роль в функционировании электротехнической системы.

Также, особенности применения проводника могут вызывать необходимость учёта дополнительных характеристик, влиянием которых в конкретном случае нельзя пренебрегать.

Природа сопротивления

Проводниками являются чистые металлы и их сплавы. В металле, фиксированные в единую «прочную» структуру атомы, обладают свободными электронами (так называемый «электронный газ»). Именно эти частицы в данном случае являются носителями заряда. Электроны находятся в постоянном беспорядочном движении от одного атома к другому.

При появлении электрического поля (подключении к концам металла источника напряжения) движение электронов в проводнике становится упорядоченным. Движущиеся электроны встречают на своём пути препятствия, вызванные особенностями молекулярной структуры проводника.

При столкновении со структурой носители заряда теряют свою энергию, отдавая её проводнику (нагревают его). Чем больше препятствий проводящая структура создаёт носителям заряда, тем выше сопротивление.

При увеличении поперечного сечения проводящей структуры для одного количества электронов «канал пропускания» станет шире, сопротивление уменьшится. Соответственно, при увеличении длины провода таких препятствий будет больше и сопротивление увеличится.

Таким образом, в базовую формулу для вычисления сопротивления входит длина провода, площадь поперечного сечения и некий коэффициент, связывающий эти размерные характеристики с электрическими величинами напряжения и тока (1).

Этот коэффициент называют удельным сопротивлением.

R= r*L/S (1)

Удельное сопротивление

Удельное сопротивление неизменно и является свойством вещества, из которого изготовлен проводник. Единицы измерения r — ом*м. Часто величину удельного сопротивления приводят в ом*мм кв./м. Это связанно с тем, что величина сечения наиболее часто применяемых кабелей является относительно малой и измеряется в мм кв. Приведём простой пример.

Задача №1. Длина медного провода L = 20 м, сечение S = 1.5 мм. кв. Рассчитать сопротивление провода.
Решение: удельное сопротивление медного провода r = 0.018 ом*мм. кв./м. Подставляя значения в формулу (1) получим R=0.24 ома.

Вычисляя сопротивление системы питания сопротивление одного провода нужно умножить на количество проводов.
Если вместо меди использовать алюминий с более высоким удельным сопротивлением (r = 0.028 ом*мм. кв./м), то сопротивление проводов соответственно возрастёт.

Для вышеприведенного примера сопротивление будет равно R = 0.373 ома (на 55 % больше). Медь и алюминий – основные материалы для проводов. Существуют металлы с меньшим удельным сопротивлением, чем удельное сопротивление меди, например серебро.

Однако его применение ограничено из-за очевидной дороговизны. В таблице ниже приведены сопротивления и другие основные характеристики проводниковых материалов.

Таблица – основные характеристики проводников

ПОИСК

Что определяет сопротивление проводника

Действие термометров сопротивления основано на изменении электрического сопротивления проводника в зависимости от температуры. Большинство чистых металлов при нагревании увеличивает свое электрическое сопротивление, а некоторые изменяют сопротивление в определенных температурных интервалах более или менее равномерно.

Таким образом, зная зависимость между изменением сопротивления проводника и температурой, можно но величине сопротивления определить температуру, до которой нагрет проводник. Для фиксации этого изменения сопротивления применяют вторичные приборы с температурной шкалой, работающие по той или иной схеме и отстоящие от термометров сопротивления на некотором расстоянии.

Между собой термометр сопротивления и вторичный прибор связаны электрическими проводами. [c.53]
Электрическое сопротивление проводника связано с удельным сопротивлением р уравнением [c.268]

В технической литературе удельное сопротивление часто выражается в ом мм 1м, т. а.

В собранном виде термометр сопротивления помещают в среду, где нужно измерить температуру. Определение температуры сводится к замеру сопротивления проводника определенной длины и определенного сечения. [c.115]

Электрическое сопротивление проводника определяется по формуле [c.367]

И пламенно-ионизационный детектор (ДИП). Принцип работы детектора по теплопроводности основан на изменении электрического сопротивления проводника в зависимости от теплопроводности окружающей среды. На рис. 3.4 показана схема измерительного моста детектора по теплопроводности.

Плечи моста, представляющие собой металлические нити, изготавливаемые из материала, электрическое сопротивление которого значительно зависит от температуры, в сравнительной и рабочей ячейках нагреваются постоянным электрическим током от батареи. От нитей происходит интенсивная теплоотдача газу. Температура нитей, а следовательно, и сопротивление зависят от природы газа.

Если через обе ячейки про.ходит газ одинакового состава, то выходной сигнал моста равен нулю. При изменении состава потока через одну из ячеек меняются характер теплоотдачи и температура соответствующего плеча, а следовательно, и сопротивление. Нарушается электрическое равновесие, между точками а и Ь возникает разность потенциалов, не компенсирующаяся дополнительным сопротивлением Я.

Эта разность регистрируется в виде сигнала, который усиливается и записывается регистратором в виде пика. [c.193]

Из формулы (202) следует, что величина омического сопротивления возрастает при индукционном нагреве с увеличением частоты тока вследствие того, что уменьшается тот объем (и сечение), по которому циркулируют вихревые токи.

Возрастание омического сопротивления эквивалентно усилению теплогенерации (теплогенерация определяется только активным сопротивлением). Чем больше частота тока, тем меньше глубина его проникновения, что получило название поверхностного или скин-эффекта.

Такое течение тока неизбежно связано с относительным перегревом поверхностных слоев тела. Так как величины р и недоступны для регулирования, то при конструировании печей варьировать можно только частотой тока /.

Резюмируя, можно охарактеризовать контактный способ как преодоление током сопротивления проводника в продольном направлении, тогда как при индукционном — в поперечном. [c.210]

За единицу удельного сопротивления обычно принимают сопротивление проводника длиной в 1 м и сечением в 1 мм [c.182]

Сопротивление проводника любого вида Я пропорционально его длине I и обратно пропорционально сечению х Н = р-1/з (р — удельное сопротивление, равное / при единичных длине и сечении проводника). [c.182]

Сопротивление проводника прямо пропорционально его длине I и обратно пропорционально поперечному сечению д [c.318]

Проводник, по которому течет электрический ток, представляет для него определенное сопротивление. За единицу сопротивления, хак известно, принят Ом, который представляет собой сопротивление проводника, между концами которого при силе тока 1 А возникает напряжение 1 В. [c.120]

Сопротивление проводника любого вида пропорционально его длине 1 и обратно пропорционально сечению 5 [c.59]

При сверхвысоких частотах проявляется много физических явлений, которые приводят к большим отличиям методов СВЧ от методов НЧ и ВЧ. Прежде всего здесь сильно проявляется поверхностный эффект, вследствие которого ток проходит не через всю толщу проводника, а только в его поверхностном слое.

Такие понятия, как сопротивление проводника, индуктивность и емкость, утрачивают свой обычный смысл и их невозможно отделить друг от друга. Поэтому теряет смысл использование эквивалентной электрической схемы замещения ячейки, которую было удобно применять для расчетов при низких и высоких частотах.

Измерительная ячейка представляет из себя систему с объемно распределенными параметрами, в которой исследуемый образец и измерительное устройство представляют собой одно целое. Кроме того, в измерительных системах СВЧ велико влияние паразитных параметров.

Поэтому в таких системах соединительные провода укорачивают до минимума и применяют хорошее экранирование. [c.268]

Общая электрическая проводимость является нестандартной величиной, поэтому практически используют удельную электрическую проводимость.

Электрическое сопротивление ом Ом Ом равен сопротивлению проводника, между концами которого при силе тока 1 А возникает напряжение 1 В [c.478]

Удельная электрическая проводимость х — величина, обратная удельному сопротивлению х= 1/р. Электрическое сопротивление проводника R связано с удельным сопротивлением р уравнением [c.270]

Удельное электрическое сопротивление — это сопротивление проводника длиной 1 м и площадью поперечного сечения 1 м оно-измеряется в Ом-м. [c.136]

Проводники I рода, или эл( Ктронопроводящие тела. К ним относятся металлы, их некоторые оксиды и углеродистые материалы. Прохождение тока в проводн1 ках I рода обеспечивается элект- юнамн. Удельное сопротивление проводников I рода лежит в интервале от 10 до 10 Ом-м, температурный коэффициент про- [c.102]

Таким путем в промышленности получают чистую меДь, пригодную для электротехнических целей. Для этого используют аноды, выплавляемые из черновой меди, которые подвергаются электролизу в кислых растворах сульфата меди. Катодами служат листы из чистой меди.

Катарометр. Принцип работы катарометра основан на изменении электрического сопротивления проводника в зависимости от теплопроводности окружающей среды (элю-ата). Катарометр надежен в работе и прост в изготовлении. [c.92]

Детектирование может быть интегральным и дифференциальным. При интегральном детектировании фиксируется общее количество компонентов (например, их общий объем). Вследствие малой чувствительности и инерционности интегральные детекторы применяют крайне редко.

Дифференциальное детектирование (более чувствительное) обеспечивает фиксацию концентрации компонентов.

Наиболее распространенными детекторами являются ка-тарометры (регистрируют изменение теплопроводности газов по изменению электрического сопротивления проводника), ионизационные детекторы (по току ионизации молекул газа под воздействием пламени или радиоактивного излучения), детекторы плотностн, или плотномеры (по плотности газа), пламенные детекторы (по температуре пламени, в котором сгорает элюат) и др. [c.178]

Это соотношение лежит в основе мостового метода измерений сопротивлений проводников если известны сопротивления трех плечей (Ri, Ra и R3) сбалансированного моста, то сопротивление четвертого (R ) легко рассчитать. [c.461]

Удельная электропроводность. Известно, что сопротивление проводника прямо пропорционально длине I и обратно пропорционально площади поперечного сечения S проводника [c.39]

При измерении сопротивления проводников 1-го рода в качестве источника напряжения используют обычно батарею постоянного тока, а в качестве нуль-инструмента — гальванометр постоянного тока.

Для растворов электролитов использование постоянного тока в мостовой схеме вызывает химические и концентрационные изменения на границе раствора электролита с поверхностью электродов, подводящих ток, в результате этого сопротивление проводника может заметно изменяться в процессе измерения. Поэтому в случае проводников 2-го рода в мостовых схемах применяют переменный ток (используя мост Кольрауша). Источником переменного напряжения обычно служит генератор переменного тока звуковой частоты, а нуль-инструментом— гальванометр переменного тока, осциллограф (до недавнего времени широко применяли низкоомный телефон). [c.461]

Следует упомянуть еше о методе измерения сопротивления проводников 2-го рода, основанном на использовании постоянного тока. По этому методу измеряют падение напряжений Аф1 и Дфл на двух сопротивлениях, включенных последовательно измеряемом сопротивлении раствора Ях и известном эталонном сопротивлении / В соответствии с законом Ома [c.464]

В качестве детектора чаще всего применяется катарометр, т. е. прибор, основанный на изменении электрического сопротивления проводника в зависимости от теплопроводности окружающей среды (элюента, газа-носителя, содержащего исследуемые компоненты). [c.55]

Электропроводность. Электропроводностью называют способность веществ проводить электрический ток. Электропроводность обозначает величину, обратную сопротивлению проводника тока [c.37]

Удельное электрическое сопротивление проводников изменяется от 10″ до 10 Ом-м. С повышением температуры оно увеличивается. Носителями заряда в них служат электроны. Валентная зона и зона проводимости электронной структуры метгиллов пересекаются (рис. 33.

1, проводник). Это позволяет электронам из валентной зоны при небольшом возбуждении переходить на молекулярные орбитали зоны проводимости, а это значит, что электрон с другой вероятностью появляется в той или иной точке компактного металла. [c.

Электропроводность электролитов обычно определяется при помощи мостовой схемы, используемой для измерения сопротивления проводников I рода.

В случае растворов электролитов применяют мосты, работающие на переменном токе, пак как прохождение постоянного тока через растворы приводит к значительным ошибкам, связанным с явлениями электролиза и поляризации (изменение состава ])аствора вблизи электродов, изменение состояния электродов, налолэлектродной поляризации на подаваемое папряженне н т. д.).

Необходимость применения переменного тока достаточно высокой частоты (для избежания указанных ошибок) усложняет измерительную схему. Кроме моста она содержит генератор неременного тока, а также специальные устройства для выпрямления тока перед прохождением его через нуль-инструмеи и для компенсации емкостных эффектов.

Современные установки по измерению электропроводности электролитов, и которых учтены все особенности проводников II рода, позволяют получать надежные результаты. [c.106]

Термометры сопротивленпя основаны на изменении сопротивления проводников при изменениях температуры.

Металлические проводники увеличивают сопротивление с повышением техмпературы и уменьшают — с понижением. Эти изменения строго обратимы, т. е. каждому значению температуры соответствует строго определенное сопротивление проводника. В термометре сопротивлеипя есть проволока (в виде большого числа витков), подключенная к измерительному прибору. Измерительный прибор по существу измеряет сопротивление проволоки-проводника. [c.142]

§ 4. Электрическое сопротивление и проводимость

Что определяет сопротивление проводника

Физическая природа электрического сопротивления. При движении свободных электронов в проводнике они сталкиваются на своем пути с положительными ионами 2 (см. рис. 10, а), атомами и молекулами вещества, из которого выполнен проводник, и передают им часть своей энергии.

При этом энергия движущихся электронов в результате столкновения их с атомами и молекулами частично выделяется и рассеивается в виде тепла, нагревающего проводник. Ввиду того что электроны, сталкиваясь с частицами проводника, преодолевают некоторое сопротивление движению, принято говорить, что проводники обладают электрическим сопротивлением.

Если сопротивление проводника мало, он сравнительно слабо нагревается током; если сопротивление велико, проводник может раскалиться. Провода, подводящие электрический ток к электрической плитке, почти не нагреваются, так как их сопротивление мало, а спираль плитки, обладающая большим сопротивлением, раскаляется докрасна.

Еще сильнее нагревается нить электрической лампы.
За единицу сопротивления принят ом. Сопротивлением 1 Ом обладает проводник, по которому проходит ток 1 А при разности потенциалов на его концах (напряжении), равной 1 В. Эталоном сопротивления 1 Ом служит столбик ртути длиной 106,3 см и площадью поперечного сечения 1 мм2 при температуре 0°С.

На практике часто сопротивления измеряют тысячами ом — килоомами(кОм) или миллионами ом — мегаомами (МОм). Сопротивление обозначают буквой R ( r ).

Проводимость. Всякий проводник можно характеризовать не только его сопротивлением, но и так называемой проводимостью — способностью проводить электрический ток. Проводимость есть величина, обратная сопротивлению. Единица проводимости называется сименсом (См). 1 См равен 1/1 Ом. Проводимость обозначают буквой G (g). Следовательно,

G = 1 / R (4)

Удельное электрическое сопротивление и проводимость. Атомы разных веществ оказывают прохождению электрического тока неодинаковое сопротивление. О способности отдельных веществ проводить электрический ток можно судить по их удельному электрическому сопротивлению р.

Удельная электрическая проводимость измеряется в сименсах на метр (См/м) (проводимость куба с ребром 1м). Часто удельное электрическое сопротивление выражают в ом-сантиметрах (Ом*см), а удельную электрическую проводимость — в сименсах на сантиметр (См/см). При этом 1 Ом*см = 10-2 Ом*м, а 1 См/см = 102 См/м.

Проводниковые материалы применяют, главным образом, в виде проволок, шин или лент, площадь поперечного сечения которых принято выражать в квадратных миллиметрах, а длину — в метрах.

Из металлов наиболее высокой электропроводностью обладают серебро и медь, так как структура их атомов позволяет легко пере­двигаться свободным электронам, затем следует золото, хром, алю­миний, марганец, вольфрам и т. д. Хуже проводят ток железо и сталь.

Чистые металлы всегда проводят электрический ток лучше, чем их сплавы. Поэтому в электротехнике используют преимущественно очень чистую медь, содержащую только 0,05 % примесей. И наобо­рот, в тех случаях, когда необходим материал с высоким сопротив­лением (для различных нагревательных приборов, реостатов и пр.), применяют специальные сплавы: константан, манганин, нихром, фех­раль.

Следует отметить, что в технике, кроме металлических проводников, используют и неметаллические. К таким проводникам относится, например, уголь, из которого изготовляют щетки электрических машин, электроды для прожекторов и пр. Проводниками электрического тока являются толща земли, живые ткани растений, животных и человека.

Проводят электрический ток сырое дерево и многие другие изоляционные материалы во влажном состоянии.
Электрическое сопротивление проводника зависит не только от материала проводника, но и его длины l и площади поперечного сечения s.

(Электрическое сопротивление подобно сопротивлению, оказываемому движению воды в трубе, которое зависит от площади сечения трубы и ее длины.)

Сопротивление прямолинейного проводника

Зависимость сопротивления от температуры. Электропроводность всех материалов зависит от их температуры.

В металлических проводниках при нагревании размах и скорость колебаний атомов в кристаллической решетке металла увеличиваются, вследствие чего возрастает и сопротивление, которое они оказывают потоку электро­нов.

При охлаждении происходит обратное явление: беспорядоч­ное колебательное движение атомов в узлах кристаллической решетки уменьшается, сопротивление их потоку электронов пони­жается и электропроводность проводника возрастает.

В природе, однако, имеются некоторые сплавы: фехраль, константан, манганин и др., у которых в определенном интервале температур электрическое сопротивление меняется сравнительно мало. Подобные сплавы применяют в технике для изготовления различных резисторов, используемых в электроизмерительных при­борах и некоторых аппаратах для компенсации влияния темпера­туры на их работу.

О степени изменения сопротивления проводников при измене­нии температуры судят по так называемому температурному ко­эффициенту сопротивления а. Этот коэффициент представляет собой относительное приращение сопротивления проводника при увеличении его температуры на 1 °С. В табл. 1 приведены значения температурного коэффициента сопротивления для наиболее приме­няемых проводниковых материалов.

Сопротивление металлического проводника Rt при любой тем­пературе t

где R0— сопротивление проводника при некоторой начальной темпера­туре t0 (обычно при + 20 °С), которое может быть подсчитано по формуле (5);

t— t0 — изменение температуры.

Свойство металлических проводников увеличивать свое сопро­тивление при нагревании часто используют в современной технике для измерения температуры. Например, при испытаниях тяговых двигателей после ремонта температуру нагрева их обмоток опре­деляют измерением их сопротивления в холодном состоянии и после работы под нагрузкой в течение установленного периода (обычно в течение 1 ч).

Исследуя свойства металлов при глубоком (очень сильном) охлаждении, ученые обнаружили замечательное явление: вблизи абсолютного нуля (— 273,16 °С) некоторые металлы почти пол­ностью утрачивают электрическое сопротивление.

Они становятся идеальными проводниками, способными длительное время пропус­кать ток по замкнутой цепи без всякого воздействия источника электрической энергии. Это явление названо сверхпроводимостью.

В настоящее время созданы опытные образцы линий электропере­дачи и электрических машин, в которых используется явление сверхпроводимости. Такие машины имеют значительно меньшие мас­су и габаритные размеры по сравнению с машинами общего назна­чения и работают с очень высоким коэффициентом полезного дей­ствия.

Линии электропередачи в этом случае можно выполнить из проводов с очень малой площадью поперечного сечения. В пер­спективе в электротехнике будет все больше и больше использо­ваться это явление.

Электрическое сопротивление

Что определяет сопротивление проводника

На рисунке 33 изображена электрическая цепь, в которую включена панель с разными проводниками. Эти проводники отличаются друг от друга материалом, а также длиной и площадью поперечного сечения. Подключая по очереди эти проводники и наблюдая за показаниями амперметра, можно заметить, что при одном и том же источнике тока сила тока в разных случаях оказывается различной.

С увеличением длины проводника и уменьшением его сечения сила тока в нем становится меньше. Уменьшается она и при замене никелиновой проволоки проволокой такой же длины и сечения, но изготовленной из нихрома. Это означает, что разные проводники оказывают различное противодействие току. Противодействие это возникает из-за столкновений носителей тока со встречными частицами вещества.

Физическая величина, характеризующая противодействие, оказываемое проводником электрическому току, обозначается буквой R и называется электрическим сопротивлением (или просто сопротивлением) проводника:

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который впервые ввел это понятие в физику. 1 Ом — это сопротивление такого проводника, в котором при напряжении 1 В сила тока равна 1 А. При сопротивлении 2 Ом сила тока при том же напряжении будет в 2 раза меньше, при сопротивлении 3 Ом — в 3 раза меньше и т. д.

На практике встречаются и другие единицы сопротивления, например килоом (кОм) и мегаом (МОм):

1 кОм= 1000 Ом, 1 МОм= 1 000 ООО Ом.

Сопротивление однородного проводника постоянного сечения зависит от материала проводника, его длины l и площади поперечного сечения S и может быть найдено по формуле

R = ρl/S (12.1)

где ρ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает сделанный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Из формулы (12.1) следует, что

Так как в СИ единицей сопротивления является 1 Ом, единицей площади 1 м2, а единицей длины 1 м, то единицей удельного сопротивления в СИ будет

1 Ом · м2/м, или 1 Ом · м.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (мм2). В этом случае более удобной единицей удельного сопротивления является Ом·мм2/м. Так как 1 мм2 = 0,000001 м2, то

1 Ом · мм2/м = 0,000001 Ом · м.

У разных веществ удельные сопротивления различны. Некоторые из них приведены в таблице 3.

Приведенные в этой таблице значения соответствуют температуре 20 °С. (С изменением температуры сопротивление вещества изменяется.) Например, удельное сопротивление железа равно 0,1 Ом · мм2/м. Это означает, что если изготовить из железа провод с площадью сечения 1 мм2 и длиной 1 м, то при температуре 20 °С он будет обладать сопротивлением 0,1 Ом.

Из таблицы 3 видно, что наименьшим удельным сопротивлением обладают серебро и медь. Значит, именно эти металлы являются наилучшими проводниками электричества.

Из той же таблицы видно, что, наоборот, такие вещества, как фарфор и эбонит, обладают очень большим удельным сопротивлением. Это и позволяет использовать их в качестве изоляторов.

. 1. Что характеризует и как обозначается электрическое сопротивление? 2. По какой формуле находится сопротивление проводника? 3. Как называется единица сопротивления? 4. Что показывает удельное сопротивление? Какой буквой оно обозначается? 5. В каких единицах измеряют удельное сопротивление? 6.

Имеются два проводника.

У какого из них больше сопротивление, если они: а) имеют одинаковую длину и площадь сечения, но один из них сделан из константана, а другой — из фехраля; б) сделаны из одного и того же вещества, имеют одинаковую толщину, но один из них в 2 раза длиннее другого; в) сделаны из одного и того же вещества, имеют одинаковую длину, но один из них в 2 раза тоньше другого? 7. Проводники, рассматриваемые в предыдущем вопросе, поочередно подключают к одному и тому же источнику тока. В каком случае сила тока будет больше, в каком меньше? Проведите сравнение для каждой пары рассматриваемых проводников.

Онлайн расчёт сопротивлений проводов. Площадь сечения проводов от мощности

Что определяет сопротивление проводника

РќР° первый взгляд может показаться, что эта статья РёР· рублики «Р­Р»РµРєС‚СЂРёРєСѓ РЅР° заметку».

РЎ РѕРґРЅРѕР№ стороны, Р° почему Р±С‹ Рё нет, СЃ РґСЂСѓРіРѕР№ — так ведь Рё нам, пытливым электронщикам, РёРЅРѕРіРґР° нужно рассчитать сопротивление обмотки катушки индуктивности, или самодельного РЅРёС…СЂРѕРјРѕРІРѕРіРѕ резистора, РґР° Рё чего СѓР¶ там греха таить — акустического кабеля для высококачественной звуковоспроизводящей аппаратуры. Формула тут совсем простая R = p*l/S, РіРґРµ l Рё S соответственно длина Рё площадь сечения РїСЂРѕРІРѕРґРЅРёРєР°, Р° p — удельное сопротивление материала, поэтому расчёты эти можно провести самостоятельно, вооружившись калькулятором Рё Ля-РјРёРЅРѕСЂРЅРѕР№ мыслью, что РІСЃРµ собранные данные надо привести Рє системе РЎР�. РќСѓ Р° для нормальных пацанов, решивших сберечь СЃРІРѕС‘ время Рё РЅРµ нервничать РїРѕ пустякам, нарисуем незамысловатую таблицу.

ТАБЛР�ЦА ДЛЯ РАСЧЁТА РЎРћРџР РћРўР�ВЛЕНР�РЇ ПРОВОДНР�РљРђ Страница получилась сиротливой, поэтому помещу-РєР° СЏ СЃСЋРґР° таблицу для желающих связать СЃРІРѕС‘ время СЃ прокладкой электропроводки, подключить мощный источник энергопотребления, либо просто посмотреть РІ глаза электрику Василию Рё, «РїРѕС…лёбывая РёР· котелка» задать справедливый РІРѕРїСЂРѕСЃ: «Рђ почему, собственно? Может разорить меня решил? Зачем РјРЅРµ тут четыре квадрата РёР· бескислородной меди для РґРІСѓС… лампочек Рё холодильника? Р�Р·-Р·Р° чего, собственно?» Р� расчёты эти РјС‹ СЃ вами сделаем РЅРµ РѕС‚ вольного Рё, даже РЅРµ РІ соответствии СЃ народной мудростью, гласящей, что «РЅРµРѕР±С…одимая площадь сечения РїСЂРѕРІРѕРґР° равна максимальному току, делённому РЅР° 10», Р° РІ строгом соответствии нормативными документами Минэнерго Р РѕСЃСЃРёРё РїРѕ правилам устройства электроустановок.

Правила эти игнорируют провода, сечением, меньшим 1,5 мм2. Проигнорирую их и я, а за компанию и алюминиевые, в силу их вопиющей архаичности.

РАСЧЁТ ПЛОЩАД� СЕЧЕН�Я ПРОВОДОВ В ЗАВ�С�МОСТ� ОТ МОЩНОСТ� НАГРУЗК� Потери в проводниках возникают из-за ненулевого значения их сопротивления, зависящего от длины провода.

Значения мощности этих потерь, выделяемых в виде тепла в окружающее пространство, приведены в таблице.

Р’ итоге Рє потребителю энергии РЅР° РґСЂСѓРіРѕРј конце РїСЂРѕРІРѕРґР° напряжение РґРѕС…РѕРґРёС‚ РІ несколько урезанном РІРёРґРµ — меньшим, чем РѕРЅРѕ было Сѓ источника.

�з таблицы видно, что к примеру, при напряжении в сети 220 В и 100 метровой длине провода, сечением 1,5мм2, напряжение на нагрузке, потребляющей 4 кВт, окажется не 220, а 199 В.

Хорошо, это или плохо? Для каких-то РїСЂРёР±РѕСЂРѕРІ — безразлично, какие-то работать Р±СѓРґСѓС‚, РЅРѕ РїСЂРё пониженной мощности, Р° какие-то взбрыкнут Рё пошлют Вас Рє едрене фене вместе СЃ вашими длинными проводами Рё умными таблицами. Поэтому Минэнерго — минэнергой, Р° собственная голова РЅРµ повредит РЅРё РїСЂРё каких обстоятельствах. Если ситуация складывается подобным примеру образом — прямая РґРѕСЂРѕРіР° Рє выбору РїСЂРѕРІРѕРґРѕРІ, большего сечения.

Сопротивление проводника и его зависимость от размеров, материалов и температуры

Что определяет сопротивление проводника

Любое тело, по которому протекает электрический ток, оказывает ему определенное сопротивление. Свойство материала проводника препятствовать прохождению через него электрического тока называется электрическим сопротивлением.

Сопротивление обозначается латинскими буквами R или r.

За единицу электрического сопротивления принят Ом.

Сопротивление различных проводников зависит от материала, из которого они изготовлены. Для характеристики электрического сопротивления различных материалов введено понятие так называемого удельного сопротивления.

Удельным сопротивлением называется сопротивление проводника длиной 1 м и площадью поперечного сечения 1 мм2. Удельное сопротивление обозначается буквой греческого алфавита ρ. Каждый материал, из которого изготовляется проводник, обладает своим удельным сопротивлением.

Сопротивление проводника прямо пропорционально его длине, т. е. чем длиннее проводник, тем больше его электрическое сопротивление.

Сопротивление проводника обратно пропорционально площади его поперечного сечения, т. е. чем толще проводник, тем его сопротивление меньше, и, наоборот, чем тоньше проводник, тем его сопротивление больше.

Электрическое сопротивление проводника равно удельному сопротивлению материала, из которого этот проводник сделан, умноженному на длину проводника и деленному на площадь площадь поперечного сечения проводника:

где — R — сопротивление проводника, ом, l — длина в проводника в м, S — площадь поперечного сечения проводника, мм2.

Еще одной причиной, влияющей на сопротивление проводников, являетсятемпература.

Установлено, что с повышением температуры сопротивление металлических проводников возрастает, а с понижением уменьшается. С понижением же температуры создаются лучшие условия для направленного движения электронов, и сопротивление проводника уменьшается. Этим объясняется интересное явление — сверхпроводимость металлов.

ЭДС источника тока. Закон Ома для полной цепи с ЭДС.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы Aст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника(ЭДС):

Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

Эта формула выражет закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Сопротивление r неоднородного участка можно рассматривать как внутреннее сопротивление источника тока.

63. Соединение проводников.

Проводники в электрических цепях могут соединяться последовательно и параллельно.

При последовательном соединении проводников сила тока во всех проводниках одинакова:

По закону Ома, напряжения U1 и U2 на проводниках равны

Общее напряжение U на обоих проводниках равно сумме напряжений U1 и U2:

U = U1 + U2 = I(R1 + R2) = IR,

где R – электрическое сопротивление всей цепи. Отсюда следует:

Сопротивление проводников. Удельное сопротивление

Что определяет сопротивление проводника

Как уже отмечалось, сила тока в цепи зависит не только от напряжения на концах участка, но также и от свойств проводника, включенного в цепь. Зависимость силы тока от свойств проводников объясняется тем, что разные проводники обладают различным электрическим сопротивлением.

Электрическое сопротивление R — физическая скалярная величина, характеризующая свойство проводника уменьшать скорость упорядоченного движения свободных носителей зарядов в проводнике. Обозначается сопротивление буквой R. В СИ единицей сопротивления проводника является ом (Ом).

1 Ом — сопротивление такого проводника, сила тока в котором равна 1 А при напряжении на нем 1 В.

Применяются и другие единицы: килоом (кОм), мегаом (МОм), миллиом (мОм): 1 кОм = 103 Ом; 1 МОм = 106 Ом; 1 мОм = 10-3 Ом.

Физическую величину G, обратную сопротивлению, называют электрической проводимостью

Единицей электрической проводимости в СИ является сименс: 1 См — это проводимость проводника сопротивлением 1 Ом.

Проводник содержит не только свободные заряженные частицы — электроны, но и нейтральные частицы и связанные заряды.

Все они участвуют в хаотическом тепловом движении, равновероятном в любых направлениях. При включении электрического поля под действием электрических сил будет преобладать направленное упорядоченное движение свободных зарядов, которые должны двигаться с ускорением и их скорость должна была бы со временем возрастать.

Но в проводниках свободные заряды движутся с некоторой постоянной средней скоростью. Следовательно, проводник оказывает сопротивление упорядоченному движению свободных зарядов, часть энергии этого движения передается проводнику, в результате чего повышается его внутренняя энергия.

Из-за движения свободных зарядов искажается даже идеальная кристаллическая решетка проводника, на искажениях кристаллической структуры рассеивается энергия упорядоченного движения свободных зарядов. Проводник оказывает сопротивление прохождению электрического тока.

Сопротивление проводника зависит от материала, из которого он изготовлен, длины проводника и площади поперечного сечения. Для проверки этой зависимости можно воспользоваться той же электрической схемой, что и для проверки закона Ома (рис.

2), включая в участок цепи MN различные по размерам проводники цилиндрической формы, изготовленные из одного и того же материала, а также из разных материалов.

Результаты эксперимента показали, что сопротивление проводника прямо пропорционально длине l проводника, обратно пропорционально площади S его поперечного сечения и зависит от рода вещества, из которого изготовлен проводник:

где — удельное сопротивление проводника.

Удельное сопротивление проводника — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника, изготовленного из данного вещества и имеющего длину 1 м и площадь поперечного сечения 1 м2, или сопротивлению куба с ребром 1 м. Единицей удельного сопротивления в СИ является ом-метр (Ом·м).

Удельное сопротивление металлического проводника зависит от

Наименьшим удельным сопротивлением обладает серебро и медь. Очень велико удельное сопротивление у сплава никеля, железа, хрома и марганца — «нихрома». Удельное сопротивление кристаллов металлов в значительной степени зависит от наличия в них примесей. Например, введение 1 % примеси марганца увеличивает удельное сопротивление меди в три раза.

Электрическое сопротивление | Электрознайка. Домашний Электромастер

Что определяет сопротивление проводника

Вещество (металл) из которого сделан проводник влияет на прохождение через него электрического тока и характеризуется с помощью такого понятия, как электрическое сопротивление.Электрическое сопротивление зависит от размеров проводника, его материала, температуры:

Вывод: чем длиннее проводник и меньше его сечение, тем больше его сопротивление и наоборот — чем провод короче и толще, тем сопротивление его меньше, а проводимость (способность пропускать эл. ток) его лучше.

Упрощенно, зависимость сопротивления проводника от температуры можно представить так: электроны, движущиеся вдоль проводника, сталкиваются с атомами и молекулами самого проводника и передают им свою энергию.

В результате проводник нагревается, тепловое, беспорядочное движение атомов и молекул увеличивается. Это еще больше тормозит основной поток электронов вдоль проводника.

Этим объясняется увеличение сопротивления проводника прохождению электрического тока при нагреве.

При нагреве или охлаждении проводников — металлов, сопротивление их соответственно увеличивается или уменьшается, из расчета 0,4 % на каждый 1 градус. Это свойство металлов используется при изготовлении датчиков температуры.

Полупроводники и электролиты имеют противоположное свойство, чем проводники — с увеличением температуры нагрева их сопротивление уменьшается.

За единицу измерения электрического сопротивления принят 1 Ом (в честь ученого Г.Ома). Сопротивлению в 1 Ом равен участок электрической цепи, по которому проходит ток в 1 Ампер при падении на нем напряжения в 1 Вольт,

Иногда пользуются величиной обратной электрическому сопротивлению. Это электрическая проводимость, обозначается буквой g или G – Сименс (в честь ученого Э.Сименса).

Электрической проводимостью называется способность вещества пропускать через себя электрический ток. Чем больше сопротивление R проводника, тем меньше его проводимость G и наоборот. 1 Ом = 1 Сим

1Сим = 1000мСим,
1Сим = 1000000мкСим.

Когда необходимо посчитать общее сопротивление последовательно соединенных проводников, то удобнее оперировать с Омами. если вычисляется общее сопротивление параллельно соединенных проводников, удобней считать в Симах, а потом преобразовать в Омы.

Наибольшей проводимостью обладают металлы: серебро, медь, алюминий и др., а также растворы солей, кислот и др.
Наименьшая проводимость (наибольшее сопротивление) у изоляторов: слюда, стекло, асбест, керамика и т.д…

Чтобы удобнее проводить расчеты электрического сопротивления проводников, изготовленных из различных металлов, ввели понятие удельного сопротивления проводника.
Сопротивление проводника длиной 1 метр, сечением 1 мм. кв. при температуре + 20 градусов, это будет удельное сопротивление проводника «p».

Удельные сопротивления проводников некоторых металлов приведены в таблице.

Из таблицы видно: из металлов, наилучшей проводимостью обладает серебро. Но оно очень дорого и в качестве проводников используется в исключительных случаях.

Медь и алюминий — наиболее распространенные материалы в электротехнике. Из них изготавливаются провода и кабели, электрические шины и пр. Вольфрам, константан, манганин используются в различных нагревательных приборах, при изготовлении проволочных резисторов.

Используя провода и кабели в электроустановках, необходимо учитывать их сечение, чтобы предотвратить их нагрев и, как правило, порчу изоляции, а также уменьшить падение напряжения и потерю мощности при передаче электрической энергии от источника до потребителя.

Ниже приведена таблица допустимых величин тока в проводнике в зависимости от его диаметра (сечения в мм.кв.), а так же сопротивление 1 метра провода, изготовленного из разных материалов.

Примеры расчето внекоторых электрических цепей можно посмотреть здесь.

Сопротивление проводников

Что определяет сопротивление проводника

by Andrey · 17.01.2015

Сопротивление проводников (или обратная величина — их проводимость) не есть величина постоянная, а может меняться в зависимости от физических условий, в которых находятся эти проводники, и прежде всего (для большинства проводников) — от температуры.

Сопротивление некоторых тел изменяется от воздействия магнитного поля, от механических воздействий, от действия световых лучей и т. п.

Сопротивление металлов увеличивается с увеличением температуры; сопротивление угля, металлических земель и электролитов с повышением температуры уменьшается.

С достаточным приближением в каком-нибудь интервале температур сопротивление металлического проводника может быть выражено через

а в первом приближении в пределах небольших изменений температур от 0 до 100 градусов Цельсия через

Таблица проводимости материалов

Температурный коэфициент удельного сопротивления, а для всех чистых металлов имеет величину, приблизительно равную тепловому коэфициенту расширения идеальных газов:

Это обстоятельство можно было бы формулировать и таким образом, что сопротивление проводника пропорционально его абсолютной температуре (измеряемой в градусах Кельвина). Действительно,

Особый интерес представляют сплавы. Если металлы, входящие в сплав, не растворяются друг в друге, т. е. если сплавы состоят из обособленных кристаллов этих металлов, то проводимость и кеэфициент проводимости могут быть подсчитаны по правилу смешения (например, кадмий — цинк).

Если же составные металлы растворяются друг в друге в любом соотношении, то сплавы имеют более высокие удельные сопротивления, чем их компоненты и очень низкий температурный коэфициент. Этим свойством пользуются при изготовлении материалов с высоким удельным сопротивлением, например, никелина, нихрома, манганина, константана и т. д. (см.

таблицу проводимости материалов) для реостатов, эталонов сопротивления и т. п.
Пониженная проводимость получается также от прибавления к меди фосфора или силиция, что делается для достижения большей механической прочности меди, например, при изготовлении телеграфных и телефонных проводов для воздушных линий.

При переходе из одного агрегатного состояния в другое, например, при плавлении, удельное сопротивление почти всех металлов и их температурный коэфициент увеличиваются (для сурьмы и висмута имеет место обратное явление).
В металлах, подверженных внешнему давлению, сопротивление с повышением давления за весьма малыми исключениями уменьшается.

То же, но в значительно большей степени, наблюдается для порошкообразных тел, например, для металлических или угольных порошков. Последним свойством пользуются в так называемых угольных микрофонах, где мембрана, колеблясь под действием звуков, давит на порошок и изменяет его сопротивление.

В отношении влияния магнитного поля на электрическое сопротивление металлов следует указать, что для так называемых ферромагнитных тел (железа, никеля, кобальта) наблюдается увеличение сопротивления, когда направление поля совпадает с направлением тока, и уменьшение сопротивления, когда магнитное поле перпендикулярно к направлению тока. Для диамагнитных тел, наиболее характерным из которых является висмут, при помещении их в магнитное поле имеет место весьма значительное повышение сопротивления (при увеличении напряженности поля) от 0 до 12500 А/см сопротивление висмута увеличивается на 75%. Этим свойством пользуются для измерения сильных магнитных полей

Проводимость в некоторых случаях зависит также от световых лучей, падающих на проводник. В этом отношении особенно выделяется так называемый серый селен, который может быть получен или в кристаллической модификации при медленном остывании (от 200 градусов Цельсия) или в металлической модификации при быстром охлаждении. Первая модификация наиболее светочувствительна.

Чем сильнее освещать селен, тем больше падает его сопротивление.

На этом влиянии световых лучей на селен, которое более всего проявляет в красной и жёлтой частях спектра, построены так называемые световые реле, которые, однако, обладают тем недостатком, что изменение проводимости наступает с некоторым запозданием и затем при длительном действии света, селен перестает реагировать на изменение силы света.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *