Что определяет правило ленца

Определение и объяснение правила Ленца

Правило Ленца позволяет определять направление индукционного тока в контуре. Оно гласит: «направление индукционного тока всегда таково, что его действие ослабляет действие причины, вызывающей этот индукционный ток».

Если траектория движущейся заряженной частицы изменяется каким бы то ни было образом в результате взаимодействия частицы с магнитным полем, то эти изменения приводят к возникновению нового магнитного поля, прямо противоположного тому магнитному полю, которое вызвало эти изменения.

Что определяет правило ленца

Например, если взять подвешенное на нити небольшое кольцо из меди, и попытаться внести в него северным полюсом достаточно сильный магнит, то по мере приближения магнита к кольцу, кольцо начнет отталкиваться от магнита.

Если проделать то же самое с разомкнутым кольцом, то кольцо реагировать на магнит не станет, хотя ЭДС в нем наведется, однако поскольку кольцо не замкнуто, индукционного тока не будет, а значит и направление его определять незачем.

Что определяет правило ленца

Что на самом деле происходит здесь? Вдвигая магнит в целое кольцо — мы увеличиваем магнитный поток, пронизывающий замкнутый контур, и значит (поскольку согласно закону электромагнитной индукции Фарадея, генерируемая в кольце ЭДС пропорциональна скорости изменения магнитного потока) в кольце генерируется ЭДС.

А выдвигая магнит из кольца — мы тоже изменяем магнитный поток через кольцо, только теперь не увеличиваем его, а уменьшаем, и возникающая ЭДС снова будет пропорциональной скорости изменения магнитного потока, но направлена в противоположную сторону. Поскольку контур представляет собой замкнутое кольцо, то ЭДС конечно порождает в кольце замкнутый ток. А ток создает вокруг себя магнитное поле.

Направление линий индукции магнитного поля, порождаемого в кольце тока, можно определить по правилу буравчика, и они окажутся направлены именно так, чтобы препятствовать поведению линий индукции вносимого магнита: линии внешнего источника входят в кольцо, из кольца, соответственно, — выходят, линии внешнего источника покидают кольцо, в кольцо, соответственно, — направляются.

Правило Ленца в трансформаторе

Теперь вспомним как в соответствии с правилом Ленца ведет себя нагруженный сетевой трансформатор. Допустим, в первичной обмотке трансформатора ток нарастает, следовательно в сердечнике магнитное поле увеличивается. Увеличивается магнитный поток, пронизывающий вторичную обмотку трансформатора.

Что определяет правило ленца

Поскольку вторичная обмотка трансформатора замкнута через нагрузку, то генерируемая в ней ЭДС породит индукционный ток, который создаст свое собственное магнитное поле вторичной обмотки. Направление этого магнитного поля будет таковым, чтобы ослаблять магнитное поле первичной обмотки. А значит ток в первичной обмотке будет увеличиваться (поскольку увеличение нагрузки во вторичной обмотке эквивалентно уменьшению индуктивности первичной обмотки трансформатора, а значит — понижению импеданса трансформатора для сети). И сеть станет совершать работу в первичной обмотке трансформатора, величина которой будет зависеть от нагрузки во вторичной обмотке.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Источник

Правило Ленца

теория по физике 🧲 магнетизм

Если присоединить катушку, в которой возникает индукционный ток, к гальванометру, можно обнаружить, что направление этого тока зависит от того, приближается ли магнит к катушке, или удаляется от нее. Причем возникающий индукционный ток взаимодействует с магнитом — притягивает или отталкивает его.

Катушка с протекающей по ней током подобна магниту с двумя полюсами — северным и южным. Направление индукционного тока определяет, какой конец катушки играет роль северного полюса, из которого выходят линии магнитной индукции. В каких случаях катушка будет притягивать магнит, а в каких отталкивать, можно предсказать, опираясь на закон сохранения энергии.

Взаимодействие индукционного тока с магнитом

Если магнит приближать к катушке, то в ней появится индукционный ток такого направления, что магнит обязательно отталкивается. Для сближения магнита и катушки при этом нужно совершить положительную работу. Катушка становится подобной магниту, обращенному одноименным полюсом к приближающемуся к ней магниту. Одноименные же полюсы отталкиваются. При удалении магнита, наоборот, в катушке возникает ток такого направления, чтобы появилась притягивающая магнит сила.

Представьте, что все было бы иначе. Тогда при введении магнита в катушку он сам бы устремлялся в нее. Это противоречит закону сохранения энергии, так как при этом увеличилась бы кинетическая энергия при одновременном возникновении индукционного тока, который также затрачивает часть энергии. Кинетическая энергия и энергия тока в этом случае возникали бы из ничего, без затрат энергии, что невозможно.

Справедливость вывода можно подтвердить с помощью следующего опыта. Пусть на свободно вращающемся стержне закреплены два алюминиевых кольца: с разрезом и без разреза. Если поднести магнит к кольцу без разреза, оно будет отталкиваться. Если поднести его к кольцу с разрезом, ничего не произойдет. Это связано с тем, что в нем не возникает индукционный ток. Этому препятствует разрез. Но если отдалять магнит от кольца без разреза, то оно начнет притягиваться.

Что определяет правило ленца

Опыты показывают, что притягивание или отталкивание кольца с индукционным током зависит от того, удаляется магнит, или притягивается. А различаются они характером изменения линий магнитной индукции, пронизывающих поверхность, ограниченную кольцом. В первом случае (рис. а) магнитный поток увеличивается, во втором (рис. б) — уменьшается. То же самое можно наблюдать в опытах с магнитом и проводящей катушкой.

Что определяет правило ленца

Причем в первом случае линии индукции B’ магнитного поля, созданного возникшем в катушке индукционным током, выходят из верхнего конца катушки, та как катушка отталкивает магнит. Во втором же случае напротив, они входят в этот конец.

Правило Ленца

Описанные выше опыты позволяют делать вывод, что при увеличении магнитного потока через витки катушки индукционный ток имеет такое направление, что создаваемое им магнитное поле препятствует нарастанию магнитного потока через витки катушки. Если же магнитный поток через катушку ослабевает, то индукционный ток создает магнитное поле с такой индукцией, которая увеличивает магнитный поток через витки катушки.

Правило направления индукционного тока носит название правила Ленца.

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Применять правило Ленца для нахождения направления индукционного тока I i в контуре надо так:

Пример №1. Найти направление индукционного тока, возникающего в кольце во время приближения к нему магнита (см. рисунок).

Что определяет правило ленца

Линии магнитной индукции магнита обращены в сторону кольца, так как он направлен к нему северным полюсом. Так как магнит приближается к кольцу, магнитный поток увеличивается. Следовательно, кольцо отталкивается. Тогда оно обращено к магниту одноименным — северным — полюсом. Применим правило правой руки. Так как линии магнитной индукции выходят из северного полюса, направим к нему большой палец. Теперь четыре пальца руки покажут направление индукционного тока. В нашем случае он будет направлен против направления хода часовой стрелки.

Что определяет правило ленца

Что определяет правило ленцаМедное кольцо на горизонтальном коромысле поворачивается вокруг вертикальной оси ОВ под действием движущегося магнита С. Установите соответствие между направлением движения магнита, вращением коромысла с кольцом и направлением индукционного тока в кольце.

Что определяет правило ленцаК каждой позиции первого столбца подберите соответствующую позицию второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

МАГНИТПОВОРОТ КОРОМЫСЛА И ТОК В КОЛЬЦЕ
А)движется по направлению к кольцу, северный полюс обращён к кольцу1)коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт по часовой стрелке
Б)движется к кольцу, к кольцу обращён южный полюс2)коромысло с кольцом поворачивается, отталкиваясь от магнита, ток идёт против часовой стрелки
3)коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт по часовой стрелке
4)коромысло с кольцом поворачивается, притягиваясь к магниту, ток идёт против часовой стрелки

Алгоритм решения

Решение

Запишем правило Ленца:

Возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Следовательно, если поднести к кольцу магнит северным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется северный полюс. Используем правило правой руки и расположим большой палец правой руки так, чтобы он указывал в сторону северного полюса кольца с индукционным током. Тогда четыре пальца покажут направление этого тока. Следовательно, индукционный ток направлен по часовой стрелке.

Если поднести к кольцу магнит южным полюсом, линии магнитной индукции поля, образованного магнитом, будут направлены в сторону от кольца (т.к. они выходят из северного полюса). Тогда в кольце образуется такой ток, при котором с той стороны, с которой подносят магнит, тоже сформируется южный полюс. Используем правило правой руки и получим, что в этом случае индукционный ток будет направлен против часовой стрелки.

Так как магнит подносят к кольцу, а не отодвигают от него, то кольцо всегда будет отталкиваться, поскольку в нем возникают силы противодействия. Следовательно, позиции А соответствует строка 1, а позиции Б — строка 2.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Что определяет правило ленцаНа рисунке запечатлён тот момент демонстрации по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится вблизи сплошного металлического кольца. Если магнит выдвигать из алюминиевого кольца, то кольцо перемещается вслед за магнитом. Это движение кольца – результат действия

а) силы гравитационного взаимодействия между кольцом и магнитом

б) силы Ампера, действующей со стороны магнитного поля магнита на кольцо, по которому идёт индукционный ток

в) кулоновских (электростатических) сил, которые возникают при движении магнита относительно кольца

г) воздушных потоков, вызванных движением руки и магнита

Алгоритм решения

Решение

Гравитационные силы между магнитом и кольцом ничтожно малы при данных массах и расстояниях, поэтому они не могли вызвать притяжения кольца к магниту.

Кулоновские силы характеризуют силу электростатического взаимодействия зарядов. Поскольку магнит не имеет заряда, между ним и кольцом такие силы не возникают.

Металлическое кольцо достаточно тяжелое для того, чтобы заставить его стремительно двигаться вслед за магнитом.

Но вариант с силой Ампера подходит, так как сила Ампера — это сила, с которой действует магнитное поле на проводник с током. В момент, когда магнит двигают в стороны от кольца, магнитный поток, пронизывающий его, меняется. Это вызывает образование в кольце индукционного тока, который также порождает магнитное поле, противодействующее магнитному полю постоянного магнита.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Что определяет правило ленцаКатушка № «>№ 1 включена в электрическую цепь, состоящую из источника напряжения и реостата. Катушка № «>№ 2 помещена внутрь катушки № «>№ 1 и замкнута (см. рисунок).

Из приведённого ниже списка выберите два правильных утверждения, характеризующих процессы в цепи и катушках при перемещении ползунка реостата вправо.

А) Сила тока в катушке № 1 увеличивается.

Б) Вектор индукции магнитного поля, созданного катушкой № 1, всюду увеличивается.

В) Магнитный поток, пронизывающий катушку № 2, увеличивается.

Г) Вектор индукции магнитного поля, созданного катушкой № 2, в центре этой катушки направлен от наблюдателя.

Д) В катушке № 2 индукционный ток направлен по часовой стрелке.

Алгоритм решения

Решение

Согласно утверждению А, при перемещении ползунка реостата вправо сила тока в катушке №1 увеличивается. Перемещая ползунок реостата вправо, мы увеличиваем сопротивление. Следовательно, сила тока уменьшается. Утверждение А — неверно.

Согласно утверждению Б, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №1, всюду увеличивается. Так как сила тока уменьшается, вектор индукции магнитного поля ослабевает. Утверждение Б — неверно.

Согласно утверждению В, при перемещении ползунка реостата вправо магнитный поток, пронизывающий катушку №2, увеличивается. Так как магнитное поле ослабевает, будет уменьшаться и магнитный поток, пронизывающий катушку № 2. Утверждение В — неверно.

Согласно утверждению Г, при перемещении ползунка реостата вправо вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки направлен от наблюдателя. В катушке №1 ток течёт по часовой стрелке, и по правилу буравчика эта катушка будет создавать магнитное поле, направленное от наблюдателя. В силу того, что сила тока в цепи уменьшается, будет уменьшаться и магнитный поток, пронизывающий вторую катушку. При этом согласно правилу Ленца во второй катушке будет создаваться индукционный ток, который направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван. В этом случае вектор индукции магнитного поля, созданного катушкой №2, в центре этой катушки сонаправлен с внешним полем и направлен от наблюдателя. Утверждение Г — верно.

Согласно утверждению Д, при перемещении ползунка реостата вправо в катушке №2 индукционный ток направлен по часовой стрелке. По правилу правой руки, индукционный ток в катушке 2 направлен по часовой стрелке. Утверждение Д — верно.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник

Правило Ленца.

Правило Ленца (закон Ленца) было установлено Э. X. Ленцем в 1834 г. Оно уточняет закон электромагнитной индукции, открытый в 1831 г. М. Фарадеем. Правило Ленца определяет направление индукционного тока в замкнутом контуре при его движении во внешнем магнитном поле.

Направление индукционного тока всегда таково, что испытываемые им со стороны магнитно­го поля силы противодействуют движению контура, а создаваемый этим током магнитный поток Фi стремится компенсировать изменения внешнего магнитного потока Фe.

Закон Ленца является выражением закона сохранения энергии для электромагнитных яв­лений. Действительно, при движении замкнутого контура в магнитном поле за счет внешних сил необходимо выполнить некоторую работу против сил, возникающих в результате взаимодействия индуцированного тока с магнитным полем и направленных в сторону, противоположную движению.

Правило Ленца иллюстрируют рисунок:

Что определяет правило ленца

Если по­стоянный магнит вдвигать в катушку, замкнутую на гальванометр, индук­ционный ток в катушке будет иметь такое направление, которое создаст магнитное поле с вектором В’, направленным противоположно вектору индукции поля магнита В, т. е. будет выталкивать магнит из катушки или препятствовать его движению. При вытягивании магнита из катуш­ки, наоборот, поле, создаваемое индукционным током, будет притягивать катушку, т. е опять препятствовать его движению.

Для применения правила Ленца с целью определения направления индукционного тока Ie в контуре необходимо следовать таким рекомендациям.

1. Установить направление линий магнитной индукции Что определяет правило ленцавнешнего магнитного поля.

Источник

Правило Ленца

Что определяет правило ленца Что определяет правило ленца

Всего получено оценок: 208.

Всего получено оценок: 208.

Изменение магнитного поля, пронизывающего рамку с током, вызывает появление в ней электродвижущей силы (ЭДС), в рамке возникает ток. Направление этого тока определяется специальным правилом Ленца для закона электромагнитной индукции. Рассмотрим это правило.

Действие индукционного тока

Опыт Ленца

Для ответа на заданные вопросы проводится следующий опыт. На концах легко вращающегося коромысла закрепляются два проводящих кольца – одно сплошное, а другое с разрезом.

Что определяет правило ленцаРис. 1. Опыт демонстрирующий правило Ленца.

Теперь, если взять постоянный магнит и внести его в кольцо с разрезом – ничего не произойдет. Однако, если попытаться внести постоянный магнит в сплошное кольцо – коромысло начнет вращаться, уводя кольцо от магнита.

Данное явление можно объяснить только возникновением тока в сплошном кольце. Этот ток, в свою очередь, порождает новое магнитное поле, которое и начинает взаимодействовать с полем постоянного магнита. В кольце с разрезом ток не возникает, и взаимодействующего поля нет.

Правило Ленца

Проводя описанный опыт, русский физик Э.Ленц вывел правило, определяющее направление индуцированного тока в проводящем контуре.

индукционный ток, возникающий в замкнутом контуре направлен так, чтобы противодействовать причине, его вызывающей.

Применение правила Ленца для определения направления индукционного тока предусматривает следующие шаги.

Правило Ленца обуславливается законом сохранения энергии. Поскольку в контуре возникает ток, он совершает работу (вся она уходит на нагрев кольца), а эта работа может возникнуть только за счет сторонних сил. В опыте Ленца такими силами являются механические силы, вводящие магнит в кольцо, совершающие при этом работу.

Если для опыта Ленца взять сверхпроводящую пластину (при очень низких температурах), не имеющую сопротивления, и расположить магнит снизу, то индуцированная ЭДС создаст ток такой силы, что его магнитное поле не даст пластине приблизиться к магниту, пластина сможет парить в воздухе, над магнитом, не опускаясь вниз.

Что определяет правило ленца

Что мы узнали?

Индукционный ток, возникающий в контуре при изменении магнитного потока через контур, имеет такое направление, чтобы противодействовать причине, его вызывающей. Это правило называется Правилом Ленца для закона электромагнитной индукции.

Источник

Правило Ленца

Индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока.

В 1831 году английский физик Майкл Фарадей открыл то, что теперь называют законом электромагнитной индукции Фарадея, согласно которому изменение магнитного потока внутри проводящего контура возбуждает в этом контуре электрический ток даже при отсутствии в контуре источника питания. Оставленный Фарадеем открытым вопрос о направлении индукционного тока вскоре решил российский физик Эмилий Христианович Ленц.

Представьте себе замкнутый круговой токопроводящий контур без подключенной батареи или иного источника питания, в который северным полюсом начинают вводить магнит. Это приведет к увеличению магнитного потока, проходящего через контур, и, согласно закону Фарадея, в контуре возникнет индуцированный ток. Этот ток, в свою очередь, согласно закону Био—Савара будет генерировать магнитное поле, свойства которого ничем не отличаются от свойств поля обычного магнита с северным и южным полюсами. Ленцу как раз и удалось выяснить, что индуцированный ток будет направлен таким образом, что северный полюс генерируемого током магнитного поля будет ориентирован в сторону северного полюса вдвигаемого магнита. Поскольку между двумя северными полюсами магнитов действуют силы взаимного отталкивания, наведенный в контуре индукционный ток потечет именно в таком направлении, что будет противодействовать введению магнита в контур. И это лишь частный случай, а в обобщенной формулировке правило Ленца гласит, что индукционный ток всегда направлен так, чтобы противодействовать вызвавшей его первопричине.

Правило Ленца сегодня пытаются использовать в междугороднем пассажирском транспорте. Уже построены и испытываются опытные образцы поездов на так называемой магнитной подушке. Под днищем вагона такого поезда смонтированы мощные магниты, расположенные в считанных сантиметрах от стального полотна. При движении поезда магнитный поток, проходящий через контур полотна, постоянно меняется, и в нем возникают сильные индукционные токи, создающие мощное магнитное поле, отталкивающее магнитную подвеску поезда (аналогично тому, как возникают силы отталкивания между контуром и магнитом в вышеописанном опыте). Сила эта настолько велика, что, набрав некоторую скорость, поезд буквально отрывается от полотна на 10-15 сантиметров и, фактически, летит по воздуху. Поезда на магнитной подушке способны развивать скорость свыше 500 км/ч, что делает их идеальным средством междугороднего сообщения средней дальности.

Российский физик. Родился в Дерпте (ныне Тарту, Эстония), окончил Дерптский университет. Еще будучи студентом, участвовал в кругосветной геологической экспедиции. Преподавал в Петербургском университете, с 1836 года в качестве профессора. Ленц играл видную роль в российских научных кругах своего времени. Все основные научные исследования Ленца были направлены на изучение явлений электропроводности и электромагнетизма.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *