Что определяет коэффициент вязкости жидкости
Вязкость жидкости
Вязкость жидкости – это свойство реальных жидкостей оказывать сопротивление касательным усилиям (внутреннему трению) в потоке. Вязкость жидкости не может быть обнаружена при покое жидкости, так как она проявляется только при её движении. Для правильной оценки таких гидравлических сопротивлений, возникающих при движении жидкости, необходимо прежде всего установить законы внутреннего трения жидкости и составить ясное представление о механизме самого движения.
Содержание статьи
Физический смысл вязкости
Для понятия физической сущности такого понятия как вязкость жидкости рассмотрим пример. Пусть есть две параллельные пластинки А и В. В пространство между ними заключена жидкость: нижняя пластинка неподвижна, а верхняя пластинка движется с некоторой постоянной скоростью υ1
Как при этом показывает опыт, слои жидкости, непосредственно прилегающие к пластинкам (так называемые прилипшие слои), будут иметь одинаковые с ним скорости, т.е. слой, прилегающий к нижней пластинке А, будет находиться в покое, а слой, примыкающий к верхней пластинке В, будет двигаться со скоростью υ1.
Промежуточные слои жидкости будут скользить друг по другу, причем их скорости будут пропорциональны расстояниям от нижней пластинки.
Ещё Ньютоном было высказано предположение, которое вскоре подтвердилось опытом, что силы сопротивления, возникающие при таком скольжении слоев, пропорциональны площади соприкосновения слоев и скорости скольжения. Если взять площадь соприкосновения равной единице, это положение можно записать в виде
где τ – сила сопротивления, отнесенная к единице площади, или напряжение трения
μ – коэффициент пропорциональности, зависящий от рода жидкости и называемый коэффициентом абсолютной вязкости или просто абсолютной вязкостью жидкости.
Величину dυ/dy – изменение скорости в направлении, нормальном к направлению самой скорости, называют скоростью скольжения.
Таким образом вязкость жидкости – это физическое свойство жидкости, характеризующее их сопротивление скольжению или сдвигу
Вязкость кинематическая, динамическая и абсолютная
Теперь определимся с различными понятиям вязкости:
Динамическая вязкость. Единицей измерения этой вязкости является паскаль в секунду (Па*с). Физический смысл состоит в снижении давления в единицу времени. Динамическая вязкость характеризует сопротивление жидкости (или газа) смещению одного слоя относительно другого.
Динамическая вязкость зависит от температуры. Она уменьшается при повышении температуры и увеличивается при повышении давления.
Кинематическая вязкость. Единицей измерения является Стокс. Кинематическая вязкость получается как отношение динамической вязкости к плотности конкретного вещества.
Определение кинематической вязкости производится в классическом случае измерением времени вытекания определенного объема жидкости через калиброванное отверстие при воздействии силы тяжести
Абсолютная вязкость получается при умножении кинематической вязкости на плотность. В международной системе единиц абсолютная вязкость измеряется в Н*с/м2 – эту единицу называют Пуазейлем.
Коэффициент вязкости жидкости
В гидравлике часто используют величину, получаемую в результате деления абсолютной вязкости на плотность. Эту величину называют коэффициентом кинематической вязкости жидкости или просто кинематической вязкостью и обозначают буквой ν. Таким образом кинематическая вязкость жидкости
где ρ – плотность жидкости.
Единицей измерения кинематической вязкости жидкости в международной и технической системах единиц служит величина м2/с.
В физической системе единиц кинематическая вязкость имеет единицу измерения см 2 /с и называется Стоксом(Ст).
Вязкость некоторых жидкостей
Жидкость | t, °С | ν, Ст |
Вода | 0 | 0,0178 |
Вода | 20 | 0,0101 |
Вода | 100 | 0,0028 |
Бензин | 18 | 0,0065 |
Спирт винный | 18 | 0,0133 |
Керосин | 18 | 0,0250 |
Глицерин | 20 | 8,7 |
Ртуть | 0 | 0,00125 |
Величину, обратную коэффициенту абсолютной вязкости жидкости, называют текучестью
Как показывают многочисленные эксперименты и наблюдения, вязкость жидкости уменьшается с увеличением температуры. Для различных жидкостей зависимость вязкости от температуры получается различной.
Поэтому, при практических расчетах к выбору значения коэффициента вязкости следует подходить очень осторожно. В каждом отдельном случае целесообразно брать за основу специальные лабораторные исследования.
Вязкость жидкостей, как установлено из опытов, зависит так же и от давления. Вязкость возрастает при увеличении давления. Исключение в этом случае является вода, для которой при температуре до 32 градусов Цельсия с увеличением давления вязкость уменьшается.
Что касается газов, то зависимость вязкости от давления, так же как и от температуры, очень существенна. С увеличением давления кинематическая вязкость газов уменьшается, а с увеличением температуры, наоборот, увеличивается.
Методы измерения вязкости. Метод Стокса.
Область, посвященная измерению вязкости жидкости, называется вискозиметрия, а прибор для измерения вязкости называется вискозиметр.
Современные вискозиметры изготавливаются из прочных материалов, а при их производстве используются самые современные технологии, для обеспечение работы с высокой температурой и давлением без вреда для оборудования.
Существует следующие методы определения вязкости жидкости.
Капиллярный метод.
Сущность этого метода заключается в использовании сообщающихся сосудов. Два сосуда соединяются стеклянной трубкой известного диаметра и длины. Жидкость помещается в стеклянный канал и за определенный промежуток времени перетекает из одного сосуда в другой. Далее зная давление в первом сосуде и воспользовавшись для расчетов формулой Пуазейля определяется коэффициент вязкости.
Метод по Гессе.
Этот метод несколько сложнее предыдущего. Для его выполнения необходимо иметь две идентичные капиллярные установки. В первую помещают среду с заранее известным значением внутреннего трения, а во вторую – исследуемую жидкость. Затем замеряют время по первому методу на каждой из установок и составляя пропорцию между опытами находят интересующую вязкость.
Ротационный метод.
Для выполнения этого метода необходимо иметь конструкцию из двух цилиндров, причем один из них должен быть расположен внутри другого. В промежуток между сосудами помещают исследуемую жидкость, а затем придают скорость внутреннему цилиндру.
Жидкость вращается вместе с цилиндром со своей угловой скоростью. Разница в силе момента цилиндра и жидкости позволяет определить вязкость последней.
Метод Стокса
Для выполнения этого опыта потребуется вискозиметр Гепплера, который представляет из себя цилиндр, заполненный жидкостью.
Вначале делаются две пометки по высоте цилиндра и замеряют расстояние между ними. Затем шарик определенного радиуса помещается в жидкость. Шарик начинает погружаться в жидкость и проходит расстояние от одной метки до другой. Это время фиксируется. Определив скорость движения шарика затем вычисляют вязкость жидкости.
Видео по теме вязкости
Определение вязкости играет большую роль в промышленности, поскольку определяет конструкцию оборудования для различных сред. Например, оборудование для добычи, переработки и транспортировки нефти.
Как определить вязкость жидкости методом Стокса?
Формулу определения вязкости Стокс вывел ещё в 1851 году.
Он получил выражение, описывающее действие силы трения (лобового сопротивления) на круглый объект, движущийся в вязкой жидкости с небольшим числом Рейнольдса.
Чтобы понять, как определять вязкость жидкости методом Стокса необходимо узнать теоретическое описание процесса, вывод формулы и сам описание самого метода.
Всё это и конкретные методы описаны далее в статье.
Содержание статьи
Что такое вязкость
Сама по себе вязкость это свойство жидкости сопротивляться сдвигу слоев. Такой сдвиг выражается в том, что при относительном перемещении слоёв жидкости тот слой, что движется медленнее тормозит слой, который движется быстрее и наоборот.
Вязкость проявляется в наличии между молекулами жидкости сил притяжения, которые пытаются сдерживать движение слоев при перемещении одной части жидкости относительно другой.
По природе все жидкости являются вязкими, потому что между молекулами существуют силы притяжения и отталкивания. Если один слой жидкости вывести из равновесия и сдвигать его относительно другого с некоторой скоростью, то силы взаимного притяжения молекул будут пытаться тормозить это движение.
Движение тела в жидкой среде
Когда твердое тело попадает в жидкость, оно сталкивается с некоторым сопротивлением. Происхождение сил сопротивления жидкости в этом случае может быть объяснено двумя разными механизмами.
Если скорость движения твердого тела маленькая и за ним не образовывается завихрений, то силы сопротивления жидкости характеризуются только вязкостью.
В таком случае слои жидкости, которые прилегают к этому твердому телу, движутся вместе с ним. Но слои жидкости, граничащие с первыми слоями, тоже приходят в движения из-за сил молекулярного притяжения (сцепления).
Таким образом образуются силы, которые затормаживают относительное движение твердого тела в жидкости.
Завихрения вокруг твердого тела образуются из-за различия скоростей движения жидкости перед телом и за ним. При этом давление в стационарном потоке жидкости изменяется таким образом, что в области вихрей оно существенном меньше.
Разность давлений в областях перед твердым телом и за ним создает противоположную по направлению движения силу лобового сопротивления жидкости. Эта сила тормозит движение твердого тела.
Сила сопротивления
В случае, когда движение твердого тела в жидкости происходит без образования вихрей, т.е. медленно, сила сопротивления образуется по первому из двух описанных механизмов.
Для тел круглой формы, согласно формуле Стокса, сила сопротивления будет равна:
где μ – вязкость жидкости;
r – радиус шарика;
υ – скорость равномерного движения шарика.
Условие использования формулы
Существует несколько ограничений для применения формулы Стокса.
1. вязкая среда не ограничена стенками и находится в покое
2. скольжений на границах с твердым телом нет
3. движение жидкости ламинарное
4. радиус круглого тела намного больше, чем длина среднего пробега молекул жидкой среды
Формула вязкости
Рассмотрим конкретный случай, когда на шар, движущийся в жидкости действуют три силы:
FT – сила тяжести;
FA – сила Архимеда (выталкивающая сила);
TC – сила лобового сопротивления.
Для круглого шарика сила тяжести будет:
где r –радиус шара;
ρ – плотность шара;
ρ0 – плотность жидкости;
g – ускорение свободного падения;
υ – скорость равномерного движения шарика;
μ – вязкость жидкости.
В жидкости выталкивающая сила и сила тяжести постоянны. Сила лобового сопротивления пропорциональна скорости движения шарика и на первых этапах она существенно меньше силы тяжести.
При дальнейшем движении шарика наступает момент, когда все три силы уравновешиваются и тогда:
или подставляя формулы
таким образом, определение коэффициента вязкости жидкости методом Стокса сводится к формуле
Определение вязкости методом Стокса
Для того чтобы определить вязкость методом Стокса используют высокий сосуд цилиндрической формы.
На сосуд наносят метки А и В. Такие метки располагаются на заведомо известном расстоянии l друг от друга.
Затем в сосуд наливают исследуемую жидкость выше верхней метки А на 4 – 5 сантиметров. Это необходимо для того, чтобы во время прохождения шариком первой метки его скорость можно было считать установившейся.
Далее шарик бросают в сосуд и секундомером определяют время за которое он проход расстояние от метки А до метки В.
Учитывая, что скорость это отношения длины пути ко времени, т.е.:
и заменяя радиус шарика его диаметром d и определяет коэффициент вязкости жидкости методом стокса
Указанная выше формула применимо в тех случаях, когда шар падает в безграничной среде. Если он падает вдоль оси трубки диаметром R0 (как в этом случае) необходимо ввести поправки на радиус сосуда.
При падении шара радиусом r в трубе радиусом R0 и высотой h формула будет выглядеть
Исходя из всего вышесказанного получаем, что определение вязкости жидкости методом Стокса требует значения таких параметров, как:
плотность материала шарика;
плотность жидкости;
радиус шарика;
радиус сосуда;
скорость движения шарика.
Видео про методы определения вязкости
Вязкость – это важная характеристика жидкой среды. Её необходимо учитывать при перекачке жидкостей и газов по трубопроводам, смазке машин и механизмов, разливке расплавленных металлов.
Для определения вязкости используют специальные приборы вискозиметры и специальные методы определения. Каждый из методов определения вязкости характеризуется своим набором условий применения.
Но независимо от метода общими остаются:
1. результат измерение не должен зависеть от линейных размеров вискозиметра.
2. не должно быть пристеночного скольжения жидкости.
3. поток жидкости в используемом вискозиметре должен быть ламинарным.
Гидродинамика. Плотность и вязкость жидкости.
В большинстве случаев, при снижении температуры плотность растет, и все же в природе существуют вещества, чья плотность ведёт себя абсолютно противоположным образом, к примеру, вода, бронза и чугун. Так, плотность воды будет иметь наибольшую величину при 4°C и уменьшается как с ростом, так и со снижением температуры относительно этой величины.
При смене агрегатного состояния плотность вещества меняется скачкообразно: плотность возрастает при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Опять же эта закономерность не свойственная воде, кремнию, германию и некоторым другим веществам, поскольку их плотность при переходе в твердую фазу наоборот будет становиться меньше.
Динамический коэффициент вязкости воды в значительной степени зависит от температуры, но почти не зависит от давления. Величина указанного коэффициента для пресной воды, полученная расчетным путем для t, °С = 0° С, μ = 1,793·103 Па·с. Для вычисления динамического коэффициента вязкости употребляют эмпирическую формулу Пуазейля:
μ = 0,000183/(1 + 0,0337t + 0,000221t2),
причем t является температурой воды.
Не лишним будет выделить, что во многие расчетные формулы входит отношение динамического коэффициента вязкости μ к плотности жидкости ρ, такое соотношение принято обозначать как кинематический коэффициент вязкости (кинематическая вязкость):
Значения коэффициентов вязкости существенно уменьшаются с ростом температуры. Очевидно, что указанные коэффициенты вязкости отличаются для различных жидкостей. По практическому опыту известно, что вязкость масла больше, чем вязкость воды.
Вязкость жидкости. Методы определения вязкости жидкости
В промышленности, научной деятельности часто необходимо вычислить коэффициент вязкости жидкости. Работа с обычными или дисперсными средами в виде аэрозолей, газовых эмульсий требует знаний о физических свойствах этих веществ.
Что такое вязкость жидкости?
Еще Ньютон положил начало такой науке, как реология. Эта отрасль занимается изучением сопротивления вещества при движении, т. е. вязкости.
В жидкостях и газах происходит непрерывное взаимодействие молекул. Они ударяются друг о друга, отталкиваются или просто пролетают мимо. В итоге слои вещества как бы взаимодействуют друг с другом, придавая скорость каждому из них. Явление подобного взаимодействия молекул жидкостей/газов и называется вязкостью, или внутренним трением.
Чтобы лучше рассмотреть этот процесс, необходимо продемонстрировать опыт с двумя пластинками, между которыми находится жидкая среда. Если двигать верхнюю пластинку, то «прилипший» к ней слой жидкости также начнет двигаться с определенной скоростью v1. Через короткий промежуток времени замечаем, что нижележащие слои жидкости также начинают двигаться по той же траектории со скоростью v2, v3…vn и т. д., причем v1>v2, v3…vn. Скорость самого нижнего из них остается равна нулю.
На примере газа такой опыт провести практически невозможно, т. к. силы взаимодействия молекул друг с другом очень малы, и визуально это зарегистрировать не удастся. Здесь тоже говорят о слоях, о скорости движения этих слоев, поэтому в газообразных средах также существует вязкость.
Ньютоновские и неньютоновские среды
Ньютоновская жидкость – это такая жидкость, вязкость которой можно высчитать с помощью формулы Ньютона.
К таким средам относятся вода и растворы. Коэффициент вязкости жидкости в таких средах может зависеть от таких факторов, как температура, давление или строение атома вещества, однако градиент скорости всегда останется неизменным.
Неньютоновские жидкости – это такие среды, в которых упомянутое выше значение может изменяться, а значит, формула Ньютона здесь действовать не будет. К таким веществам относятся все дисперсные среды (эмульсии, аэрозоли, суспензии). Сюда же относится и кровь. Об этом более подробно поговорим далее.
Кровь как внутренняя среда организма
Коэффициенты вязкости среды
Взаимодействие слоев среды друг на друга сказывается на характеристиках всей системы жидкости или газа. Вязкость – это один из примеров такого физического явления, как трение. Благодаря ей верхние и нижние слои среды постепенно выравнивают скорости своего тока, и в конечном итоге она приравнивается к нулю. Также вязкость можно характеризовать как сопротивление одного слоя среды другому.
Для описания таких явлений выделяют две качественные характеристики внутреннего трения:
Обе величины связаны уравнением υ = η / ρ, где ρ – плотность среды, υ – кинетическая вязкость, а η – динамическая вязкость.
Методы определения вязкости жидкости
Вискозиметрия – это измерение вязкости. На современном этапе развития науки найти значение вязкости жидкости практическим путем можно четырьмя способами:
1. Капиллярный метод. Для его проведения необходимо иметь два сосуда, соединенных стеклянным каналом небольшого диаметра известной длины. Также нужно знать значения давления в одном сосуде и в другом. Жидкость помещается в стеклянный канал, и за определенный промежуток времени она перетекает из одной колбы в другую.
Дальнейшие подсчеты производятся с помощью формулы Пуазейля для нахождения значения коэффициента вязкости жидкости.
На практике жидкие среды могут представлять собой раскаленные до 200-300 градусов смеси. Обычная стеклянная трубка в таких условиях просто бы деформировалась или даже лопнула, что недопустимо. Современные капиллярные вискозиметры собраны из качественного и стойкого материала, который легко переживает такие нагрузки.
2. Медицинский метод по Гессе. Чтобы рассчитать вязкость жидкости таким способом, необходимо иметь не одну, а две идентичные капиллярные установки. В одну из них помещают среду с заранее известным значением внутреннего трения, а в другую – исследуемую жидкость. Далее измеряют два значения времени и составляют пропорцию, по которой выходят на нужное число.
3. Ротационный метод. Для его проведения необходимо иметь конструкцию из двух соосных цилиндров. Это значит, что один из них должен быть внутри другого. В промежуток между ними заливают жидкость, а затем придают скорость внутреннему цилиндру. Эта угловая скорость также сообщается жидкости. Разница в силе момента позволяет вычислить вязкость среды.
4. Определение вязкости жидкости методом Стокса. Для проведения этого опыта необходимо иметь вискозиметр Гепплера, который представляет собой цилиндр, заполненный жидкостью. Перед началом эксперимента делают две пометки на цилиндре и измеряют длину между ними. Затем берут шарик определенного радиуса R и опускают его в жидкую среду. Чтобы определить скорость его падения, находят время передвижения объекта от одной метки до другой. Зная скорость движения шарика, можно вычислить вязкость жидкости.
Практическое применение вискозиметрам
Определение вязкости жидкости имеет большое практическое значение в нефтеперерабатывающей промышленности. При работе с многофазными, дисперсными средами важно знать их физические свойства, особенно внутреннее трение. Современные вискозиметры сделаны из прочных материалов, при их производстве задействуются передовые технологии. Все это в совокупности позволяет работать с высокой температурой и давлением без вреда для самого оборудования.
Вязкость жидкости играет большую роль в промышленности, потому что транспортировка, переработка и добыча, например, нефти зависят от значений внутреннего трения жидкостной смеси.
Какую роль играет вязкость в медицинском оборудовании?
Поступление газовой смеси через эндотрахеальную трубку зависит от внутреннего трения этого газа. Изменение значений вязкости среды здесь по-разному отражается на проникновении воздуха через аппарат и зависит от состава газовой смеси.
Введение лекарственных препаратов, вакцин через шприц тоже является ярким примером действия вязкости среды. Речь идет о перепадах давления на конце иголки при впрыскивании жидкости, хотя изначально полагали, что этим физическим явлением можно пренебречь. Возникновение высокого давления на наконечнике – это результат действия внутреннего трения.
Заключение
Вязкость среды – это одна из физических величин, которая имеет большое практическое применение. В лаборатории, промышленности, медицине – во всех этих сферах понятие внутреннего трения фигурирует очень часто. Работа простейшего лабораторного оборудования может зависеть от степени вязкости среды, которая используется для исследований. Даже перерабатывающая промышленность не обходится без знаний в области физики.