Что определяет единица грэй гр

Грей (единица измерения)

Грей (обозначение: Гр, Gy) — единица измерения поглощённой дозы ионизирующего излучения в Международной системе единиц (СИ). Поглощённая доза равна одному грею, если в результате поглощения ионизирующего излучения вещество получило один джоуль энергии в расчёте на один килограмм массы. Через другие единицы измерения СИ грей выражается следующим образом:

Единица названа в честь британского учёного Льюиса Грэя в 1975 году. Ранее широко использовалась (а иногда используется и до сих пор) внесистемная единица поглощённой дозы «рад».

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

КратныеДольные
величинаназваниеобозначениевеличинаназваниеобозначение
10 1 ГрдекагрейдаГрdaGy10 −1 ГрдецигрейдГрdGy
10 2 ГргектогрейгГрhGy10 −2 ГрсантигрейсГрcGy
10 3 ГркилогрейкГрkGy10 −3 ГрмиллигреймГрmGy
10 6 ГрмегагрейМГрMGy10 −6 ГрмикрогреймкГрµGy
10 9 ГргигагрейГГрGGy10 −9 ГрнаногрейнГрnGy
10 12 ГртерагрейТГрTGy10 −12 ГрпикогрейпГрpGy
10 15 ГрпетагрейПГрPGy10 −15 ГрфемтогрейфГрfGy
10 18 ГрэксагрейЭГрEGy10 −18 ГраттогрейаГрaGy
10 21 ГрзеттагрейЗГрZGy10 −21 ГрзептогрейзГрzGy
10 24 ГрйоттагрейИГрYGy10 −24 ГрйоктогрейиГрyGy
применять не рекомендуется

Ссылки

См. также

Полезное

Смотреть что такое «Грей (единица измерения)» в других словарях:

Зиверт (единица измерения) — Зиверт (обозначение: Зв, Sv) единица измерения эффективной и эквивалентной доз ионизирующего излучения в Международной системе единиц (СИ), используется с 1979 г. 1 зиверт это количество энергии, поглощённое килограммом… … Википедия

Беккерель (единица измерения) — У этого термина существуют и другие значения, см. Беккерель. Беккерель (обозначение: Бк, Bq) единица измерения активности радиоактивного источника в Международной системе единиц (СИ). Один беккерель определяется как активность источника, в… … Википедия

Ньютон (единица измерения) — У этого термина существуют и другие значения, см. Ньютон. Ньютон (обозначение: Н) единица измерения силы в Международной системе единиц (СИ). Принятое международное название newton (обозначение: N). Ньютон производная единица. Исходя из второго… … Википедия

Сименс (единица измерения) — У этого термина существуют и другие значения, см. Сименс. Сименс (русское обозначение: См; международное обозначение: S) единица измерения электрической проводимости в Международной системе единиц (СИ), величина обратная ому. Через другие… … Википедия

Паскаль (единица измерения) — У этого термина существуют и другие значения, см. Паскаль (значения). Паскаль (обозначение: Па, международное: Pa) единица измерения давления (механического напряжения) в Международной системе единиц (СИ). Паскаль равен давлению… … Википедия

Тесла (единица измерения) — У этого термина существуют и другие значения, см. Тесла. Тесла (русское обозначение: Тл; международное обозначение: T) единица измерения индукции магнитного поля в Международной системе единиц (СИ), численно равная индукции такого… … Википедия

Вебер (единица измерения) — У этого термина существуют и другие значения, см. Вебер. Вебер (обозначение: Вб, Wb) единица измерения магнитного потока в системе СИ. По определению, изменение магнитного потока через замкнутый контур со скоростью один вебер в секунду наводит в… … Википедия

Генри (единица измерения) — У этого термина существуют и другие значения, см. Генри. Генри (русское обозначение: Гн; международное: H) единица измерения индуктивности в Международной системе единиц (СИ). Цепь имеет индуктивность один генри, если изменение тока со скоростью… … Википедия

Герц (единица измерения) — У этого термина существуют и другие значения, см. Герц. Герц (русское обозначение: Гц, международное обозначение: Hz) единица измерения частоты периодических процессов (например, колебаний) в Международной системе единиц (СИ). Герц… … Википедия

Фарад (единица измерения) — Фарад (обозначение: Ф, F) единица измерения электрической ёмкости в системе СИ (ранее называлась фарада). 1 фарад равен электрической ёмкости конденсатора, при которой заряд 1 кулон создаёт между обкладками конденсатора напряжение 1 вольт. Ф =… … Википедия

Источник

Что определяет единица грэй гр

Что определяет единица грэй грЧто определяет единица грэй грЧто определяет единица грэй грЧто определяет единица грэй грЧто определяет единица грэй грЧто определяет единица грэй грЧто определяет единица грэй грЧто определяет единица грэй грЧто определяет единица грэй грЧто определяет единица грэй грЧто определяет единица грэй грЧто определяет единица грэй гр

Грей – единица поглощённой дозы ионизирующего излучения в Международной системе единиц (СИ). Имеет русское обозначение – Гр, международное – Gy.

Другие единицы измерения

Грей, как единица измерения:

Грей (грэй) – единица поглощённой дозы ионизирующего излучения в Международной системе единиц (СИ), названная в честь британского учёного Льюиса Грэя.

Грей является основной единицей измерения радиации.

Поглощённая доза равна одному грею, если в результате поглощения ионизирующего излучения вещество получило один джоуль энергии в расчёте на один килограмм массы.

В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы грей пишется со строчной буквы, а её обозначение – с заглавной (Гр). Такое написание обозначения сохраняется и в обозначениях других производных единиц, образованных с использованием грея.

Применение грея:

Грей применяется для измерения поглощенной дозы радиации.

Представление грея в других единицах измерения – формулы:

Перевод в другие единицы измерения:

1 Гр = 1 Зв (для излучений с коэффициентом качества, равным 1,0)*.

Кратные и дольные единицы:

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

Источник

Грэй (единица измерения)

Поглощенная доза равна одному грэю, если, в результате поглощения ионизирующего излучения, вещество получило один джоуль энергии в расчёте на один килограмм массы. Через другие единицы измерения СИ грэй выражается следующим образом:

Ранее широко использовалась (а иногда используется и до сих пор) внесистемная единица поглощённой дозы «рад».

Кратные и дольные единицы

Десятичные кратные и дольные единицы образуют с помощью стандартных приставок СИ.

КратныеДольные
величинаназваниеобозначениевеличинаназваниеобозначение
10 1 ГрдекагрэйдаГрdaGy10 −1 ГрдецигрэйдГрdGy
10 2 ГргектогрэйгГрhGy10 −2 ГрсантигрэйсГрcGy
10 3 ГркилогрэйкГрkGy10 −3 ГрмиллигрэймГрmGy
10 6 ГрмегагрэйМГрMGy10 −6 ГрмикрогрэймкГрµGy
10 9 ГргигагрэйГГрGGy10 −9 ГрнаногрэйнГрnGy
10 12 ГртерагрэйТГрTGy10 −12 ГрпикогрэйпГрpGy
10 15 ГрпетагрэйПГрPGy10 −15 ГрфемтогрэйфГрfGy
10 18 ГрэксагрэйЭГрEGy10 −18 ГраттогрэйаГрaGy
10 21 ГрзеттагрэйЗГрZGy10 −21 ГрзептогрэйзГрzGy
10 24 ГрйоттагрэйИГрYGy10 −24 ГрйоктогрэйиГрyGy
применять не рекомендуется

Ссылки

Полезное

Смотреть что такое «Грэй (единица измерения)» в других словарях:

Единица измерения Сименс — Сименс (обозначение: См, S) единица измерения электрической проводимости в системе СИ, величина обратная ому. До Второй мировой войны (в СССР до 1960 х годов) сименсом называлась единица электрического сопротивления, соответсвующая сопротивлению … Википедия

Свеча (единица измерения) — Кандела (обозначение: кд, cd) одна из семи основных единиц измерения системы СИ, равна силе света, испускаемого в заданном направлении источником монохроматического излучения частотой 540·1012 герц, энергетическая сила света которого в этом… … Википедия

Ватт (единица измерения) — О типе морских побережий см. Ватты Ватт (обозначение: Вт, W) в системе СИ единица измерения мощности. Различают механическую, тепловую и электрическую мощность: в механике 1 ватт равен мощности, при которой за 1 секунду времени совершается… … Википедия

Вольт (единица измерения) — Вольт (обозначение: В (рус.), V (лат.)) единица измерения электрического напряжения в системе СИ. Вольт равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт. Единица названа в честь… … Википедия

Джоуль (единица измерения) — Эта статья о единице измерения, статья об учёном физике: Джоуль, Джеймс Прескотт Джоуль (обозначение: Дж, J) единица измерения работы и энергии в системе СИ. Джоуль равен работе, совершаемой при перемещении точки приложения силы, равной одному… … Википедия

Катал (единица измерения) — Катал (обозначение: кат, kat) единица измерения активности катализатора в системе СИ. Если присутствие катализатора увеличивает скорость химической реакции на один моль в секунду, то активность данного количества данного катализатора равна одному … Википедия

Кулон (единица измерения) — Кулон (обозначение: Кл, C) единица измерения электрического заряда (количества электричества) в Международной системе единиц (СИ). Кулон равен количеству электричества, проходящего через поперечное сечение проводника при силе тока 1 А за время… … Википедия

Ом (единица измерения) — Ом (обозначение: Ом, Ω) единица измерения электрического сопротивления в СИ. Ом равен электрическому сопротивлению проводника, между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер. Хотя в Юникоде и присутствует… … Википедия

Люмен (единица измерения) — Люмен (лм, lm) единица измерения светового потока в СИ. Один люмен равен световому потоку, испускаемому точечным изотропным источником, c силой света, равной одной канделе, в телесный угол величиной в один стерадиан (1 лм = 1 кд × ср). Полный… … Википедия

Источник

Грей (единица измерения)

Поглощённая доза равна одному грею, если в результате поглощения ионизирующего излучения вещество получило один джоуль энергии в расчёте на один килограмм массы. Через другие единицы СИ грей выражается следующим образом:

Гр = Дж / кг = м² / с²Единица названа в честь британского учёного Льюиса Грэя в 1975 году. В соответствии с правилами СИ, касающимися производных единиц, названных по имени учёных, наименование единицы грей пишется со строчной буквы, а её обозначение «Гр» — с заглавной.

Ранее широко использовалась (а иногда используется и до сих пор) внесистемная единица поглощённой дозы «рад».

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Химические лазеры — разновидность газовых лазеров, в которых источником энергии служат химические реакции между компонентами рабочей среды. Химические лазеры непрерывного действия могут достигать высокого уровня мощности и используются в промышленности для резки и создания отверстий.

Метод я́дерного га́мма-резона́нса (Мёссбауэровская спектроскопия) основан на эффекте Мёссба́уэра, который заключается в резонансном поглощении без отдачи атомным ядром монохроматического γ-излучения, испускаемого радиоактивным источником. В абсорбционной мёссбауэровской спектроскопии (наиболее часто применяемой разновидности метода) образец-поглотитель просвечивается гамма-квантами, излучаемыми возбуждённым железом-57 (57Fe), иридием-191 (191Ir) или другим мёссбауэровским изотопом. За поглотителем.

Источник

«Взвешиваем» радиацию: о единицах измерения ионизирующего излучения

Если вы когда-нибудь искали в Гугле ответ на вопрос типа «безопасный уровень радиации», то вы наверняка сталкивались со множеством странных и непонятных терминов: кюри, рентгены, беккерели, зиверты, рады, греи и тому подобное. Попробуем разобраться в том, что они значат и как правильно трактовать те или иные цифры.

Что определяет единица грэй гр

Как мы уже говорили, радиация, или более научно, ионизирующее излучение как правило возникает в результате тех или иных ядерных реакций, чаще всего – распадов нестабильных атомных ядер. Соответственно, наиболее естественной единицей измерения радиоактивности является число распадов, которые происходят в определённом образце радиоактивного вещества в единицу времени.

Исторически первой единицей измерения активности является кюри (Ки). В образце с активностью 1 кюри в секунду происходит столько же распадов, сколько и в кусочке чистого радия весом в 1 грамм, то есть 370 миллиардов актов распада. В реальности с такой единицей работать не очень удобно, и поэтому позже, в 1975 году придумали другую единицу измерения активности: беккерель. Один беккерель (Бк) – это активность образца, в котором происходит ровно 1 распад в секунду. Соответственно, 1 Ки = 37000000000 Бк.

Кюри и беккерели характеризуют радиоактивные свойства конкретного образца радиоактивного вещества с присущей ему массой и химическим составом. Поэтому часто используют производные величины: скажем, активность изотопов обычно измеряют в беккерелях (кюри) на грамм (килограмм), загрязнённость радиацией воздуха или жидкости – в беккерелях на литр (кубометр), для определения загрязнённости площади используют беккерель на метр (километр) квадратный. Например, средняя радиоактивность чистого атмосферного воздуха составляет около 10 беккерелей на кубометр. То есть, в каждом кубометре воздухе ежесекундно происходит 10 распадов (в основном обусловленных наличием в нём некоторого количества радиоактивного газа радона)

Довольно популярной в литературе «единицей измерения» является так называемый банановый эквивалент: активность обычного банана, вызванная наличием в нём радиоактивного изотопа калий-40. Оказывается, что банан весом в 150 грамм содержит около 19 беккерелей активности.

Для сравнения, активность природного урана составляет около 37 000 беккерелей на грамм (или, соответственно, 37 миллионов беккерелей на килограмм). И это ещё немного: так, активность 1 грамма плутония-239 составляет 2,3 миллиарда беккерелей на грамм.

Однако если вы читали предыдущую статью, то вам должно быть понятно, что одними только беккерелями и кюри ограничиться не получится. Как мы там говорили, различные ядерные реакции порождают разные продукты, обладающие различной энергией. К примеру, распад вышеупомянутого калия-40 приводит к образованию бета-частиц с энергией порядка 1,5·10-19 джоуля. А вот в результате распада атома плутния-239 рождаются альфа-частицы с энергией 8·10-16 джоуля – в 5 000 раз больше. Так что распад распаду – рознь, и беккерель беккерелю – тоже.

Собственно, предыдущий абзац как бы сам наводит нас на мысль, что важно не только количество распадов в единицу времени, но и «энергоёмкость» каждого из таких распадов. И даже не энергоёмкость самих распадов, а то, какую энергию получившиеся частицы передают веществу, которое подвергается облучению – то есть, какую дозу получило подвергнутое ему вещество.

Сначала физики рассуждали таким образом. Мы же говорим об ионизирующем излучении? Ну, так давайте померяем, насколько хорошо оно ионизирует! Так придумали единицу под названием рентген – пожалуй, самую распиаренную «единицу измерения радиации» на постсоветском пространстве. Суть такова: 1 рентген – это такое радиоактивное излучение, которое воздействует на 1 кубический сантиметр сухого воздуха при 0 градусов Цельсия так, что в нём образуются заряженные частицы с общим зарядом 3,33564 на 10 в минус 10 степени кулона. Почему столько? А потому, что 3,33564 на 10 в минус 10 степени кулона – это 1 франклин, единица измерения заряда в популярной (ибо удобно) в некоторых областях физики системе единиц СГС. Аналог рентгена в привычной нам системе СИ – кулон на килограмм, равный примерно 3876 рентгенам.

Соответственно, для измерения мощности излучения использовали производную единицу – рентген в час.

Однако на практике рентген оказался не очень удобен по ряду причин, и решили пойти другим путём: ввели единицу под названием грей. 1 грей характеризует такое облучение, в результате которого вещество получает 1 джоуль энергии на каждый килограмм массы. В настоящее время именно грей, а не рентген, являются общепринятой единицей измерения воздействия излучения. Однако зачастую в литературе, в том числе справочной, можно столкнуться именно с величинами, выраженными в рентгенах. В этом случае следует помнить, что 1 грей для воздуха соответствует примерно 0,009 рентгена. Обычно на практике переводят рентгены в греи, просто деля их на 100: 100 рентген – 1 грей, 0,01 грея – 1 рентген.

Но и это ещё не всё. Для физиков посчитать количество переданной «мишени» энергии в принципе достаточно для того, чтобы считать поле измеренным. А вот у медиков и биологов, изучающих воздействие радиации на живые организмы, задача немного иная: им важно определить, какой вред получит организм, поймав ту или иную дозу радиации. И тут возникает проблема, о которой мы тоже говорили: разные виды излучения (альфа, бета, гамма, нейтроны и т.п.) вредят организму по-разному. Для того, чтобы это дело описать, вводят понятие относительной биологической эффективности излучения, причём под эффективностью здесь понимают способность данного вида облучения наносить вред живой ткани (разрушать клетки и т.п.). Например, поток альфа-частиц наносит организму примерно в 20 раз больший ущерб, чем поток гамма-квантов, передавший этому организму ту же энергию. Поэтому на стыке физики и биологии появляется понятие эквивалентной дозы облучения, измеряемой в зивертах. Это, грубо говоря, те же греи, но умноженные на специальный коэффициент («коэффициент качества»), экспериментально определённый для каждого вида излучения; за эталон (1) принято разрушительное воздействие фотонов (рентгеновских и гамма-квантов).

Для бета-частиц коэффициент качества оказывается также равен 1, для альфа-частиц – 20, для протонов – 2, для нейтронов – от 5 до 20 в зависимости от их энергии (скорости). Проще говоря, если биологический объект получил 0,1 грея гамма-излучения, 0,1 грея облучения альфа-частицами и 0,1 грея облучения медленными нейтронами, то поглощённая доза излучения составит 0,3 грея, а эквивалентная доза – 2,6 зиверта.

На практике, впрочем, в большинстве случаев поглощённую дозу облучения в греях и эквивалентную дозу в зивертах можно считать равной. Это связано с тем, что с нейтронными потоками у обывателя столкнуться шансов почти нет, а альфа-излучение и протоны из-за своей малой проникающей способности не пробиваются даже через внешний мёртвый слой кожи. Поэтому в расчёт при внешнем облучении идут преимущественно потоки бета и гамма-частиц, а для них, как мы говорили выше, коэффициент качества равен 1. В таком случае можно говорить, что 1 зиверт и 1 грей численно равны, но надо помнить, что так бывает не всегда.

Существует, впрочем, ещё один нюанс. Дело в том, что разные ткани по-разному реагируют на одну и ту же дозу облучения: наиболее уязвимы половые органы, тонкий кишечник и органы кроветворения; куда более устойчивы – головной мозг, кости и так далее. Так что в медицине вводят понятие эффективной дозы облучения, которая учитывает разницу в восприятии облучения разными типами тканей. Но это уже больше биология, чем физика, да и измеряется эффективная доза тоже в зивертах, так что в это мы углубляться не будем.

Давайте повторим для ясности: активность источника радиоактивного излучения измеряется в кюри или (чаще) беккерелях. В греях, реже – рентгенах измеряют физическое воздействие излучения, исходящего от этого источника на некую мишень, а в зивертах – аналогичное биологическое воздействие.

Конечно, между активностью источника и влиянием его излучения есть определённая связь, но простой «формулы перевода» беккерелей в зиверты нет и быть не может. Например, источник из цезия-137 с активностью излучения в 1 кюри на расстоянии метра от себя создаст излучение мощностью примерно в 0,004 грея/час. Для других изотопов эта цифра будет иной, но если очень надо прямо сейчас прикинуть на пальцах, то порядок чисел будет примерно таким.

При этом по мере удаления от источника мощность излучения будет убывать по формуле обратных квадратов: уже в 10 метрах она будет в 100 раз меньше.

Под фразой «радиационный фон составляет столько-то» следует понимать измеренную совокупную дозу излучения от всех источников, которую вы можете получить в данном месте за определённое время пребывания.

В литературе можно встретить и другие единицы измерения. Например, резефорд – устаревшая единица измерения активности источника, равная 1 миллиону беккерелей. Рад – «младший брат» грея, равный одной сотой от него. В советской литературе также встречается единица измерения «бэр», расшифровывается «биологический эквивалент рентгена» и соотносится с ним так же, как зиверт с греем. Как привести её к общему знаменателю с зивертом можно всё тем же способом: поделить примерно на 100.

В следующем материале мы поговорим о нормальных, повышенных, опасных и безопасных дозах радиации, о том, где вы с ними можете столкнуться и чего в этом смысле стоит бояться, а чего – не очень.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *