Что окрашивает эозин и в какой цвет
Окраска гематоксилином и эозином
Окраска гематоксилином и эозином (окраска гематоксилин-эозином) — один из самых распространённых методов окраски в гистологии. Широко используется в медицинской диагностике, в частности в онкологии для окраски ткани, полученной при биопсии.
Окраска включает использование основного красителя гематоксилина, окрашивающего базофильные клеточные структуры ярко-синим цветом, и спиртового кислого красителя эозина Y, окрашивающего эозинофильные структуры клетки красно-розовым цветом. Базофильные структуры, как правило, это те, которые содержат нуклеиновые кислоты (ДНК и РНК): клеточное ядро, рибосомы и РНК-богатые участки цитоплазмы. Эозинофильные структуры содержат внутри- и внеклеточные белки, например, тельца Леви. Цитоплазма является эозинофильной средой. Эритроциты всегда прокрашиваются ярко-красным цветом.
Техника окраски гематоксилин-эозином
Некоторые структуры плохо прокрашиваются гематоксилином и эозином (как правило гидрофобные) и требуют иных методов окраски. Например, участки клеток, богатые липидами и миелином, остаются неокрашенными: адипоциты, миелиновая оболочка аксонов нейронов, мембрана аппарата Гольджи и др.
См. также
Ссылки
Полезное
Смотреть что такое «Окраска гематоксилином и эозином» в других словарях:
Окраска гематоксилин—эозин — Гистологический образец лёгочной ткани человека, окрашенный гематоксилин эозином. Окраска гематоксилин эозин (окраска гематоксилином и эозином) является одним из самых распространённых методов гистологии. Широко используется в медицинской… … Википедия
Туберкулёз о́рганов дыха́ния — Туберкулез органов дыхания. Органы дыхания при туберкулезе (Туберкулёз органов дыхания) поражаются наиболее часто. В соответствии с принятой в нашей стране клинической классификацией туберкулеза различают следующие формы Т. о. д.: первичный… … Медицинская энциклопедия
Сердце — I Сердце Сердце (лат. соr, греч. cardia) полый фиброзно мышечный орган, который, функционируя как насос, обеспечивает движение крови а системе кровообращения. Анатомия Сердце находится в переднем средостении (Средостение) в Перикарде между… … Медицинская энциклопедия
Лейко́зы — (leucoscs; греч. leukos белый + ōsis; синоним лейкемия) заболевания опухолевой природы, протекающие с вытеснением нормальных ростков кроветворения: опухоль возникает из кроветворных клеток костного мозга. Заболеваемость Л. неодинакова в различных … Медицинская энциклопедия
Пневмония — I Пневмония (pneumonia; греч. pneumon легкое) инфекционное воспаление легочной ткани, поражающее все структуры легких с обязательным вовлечением альвеол. Неинфекционные воспалительные процессы в легочной ткани, возникающие под влиянием вредных… … Медицинская энциклопедия
Туберкулёз внелёгочный — Туберкулез внелегочный условное понятие, объединяющее формы туберкулеза любой локализации, кроме легких и других органов дыхания. В соответствии с клинической классификацией туберкулеза (Туберкулёз), принятой в нашей стране, к Т. в. относят… … Медицинская энциклопедия
Плацента — I Плацента (лат. placenta лепешка; синоним детское место) развивающийся в полости матки во время беременности орган, осуществляющий связь между организмом матери и плодом. В плаценте происходят сложные биологические процессы, обеспечивающие… … Медицинская энциклопедия
Забрюшинное пространство — I Забрюшинное пространство (spatium retroperitoneale; синоним ретроперитонеальное пространство) клетчаточное пространство, расположенное между задней частью париетальной брюшины и внутрибрюшной фасцией; простирается от диафрагмы до малого таза. В … Медицинская энциклопедия
Матка — I Матка Матка (uterus, metra) непарный мышечный полый орган, в котором происходят имплантация и развитие зародыша; расположен в полости малого таза женщины. Органогенез Развитие М. во внутриутробном периоде начинается при длине плода около 65 мм … Медицинская энциклопедия
Мокрота — I Мокрота (sputum) выделяемый при отхаркивании патологически измененный трахеобронхиальный секрет с примесью слюны и секрета слизистой оболочки носа и придаточных (околоносовых) пазух. В норме трахеобронхиальный секрет состоит из слизи,… … Медицинская энциклопедия
Окраска гематоксилин—эозин
Окраска гематоксилин—эозин (окраска гематоксилином и эозином) является одним из самых распространённых методов гистологии. Широко используется в медицинской диагностики, в частности в онкологии для окраски ткани, полученной при биопсии.
Окраска включает использование основного красителя гематоксилина, окрашивающего базофильные клеточные структуры ярко-синим цветом, и спиртового кислого красителя эозина Y, окрашивающего эозинофильные структуры клетки красно-розовым цветом. Базофильные структуры, как правило, это те, которые содержат нуклеиновые кислоты (ДНК и РНК): клеточное ядро, рибосомы и РНК-богатые участки цитоплазмы. Эозинофильные структуры содержат внутри- и внеклеточные белки, например, тельца Леви. Цитоплазма является эозинофильной средой. Эритроциты всегда прокрашиваются ярко-красным цветом.
Таким образом, терминология базофильная и эозинофильная структура связана с аффинностью к соответствующим красителям и не связана с кислотностью среды.
Некоторые структуры плохо прокрашиваются гематоксилином и эозином (как правило гидрофобные) и требуют иных методов окраски. Например, участки клеток, богатые липидами и миелином остаются неокрашенными: адипоциты, миелиновая оболочка аксонов нейронов, мембрана аппарата Гольджи и др.
Смотреть что такое «Окраска гематоксилин—эозин» в других словарях:
Гематоксилин — Общие Систематическое наименование цис (+) 7,11b дигидробенз[b]индено[1, 2 d]пиран 3,4,6a,9,10(6H) пентол Химическ … Википедия
Эозин Y — Общие Систематическое наименование 2 (2,4,5,7 тетрабромо 6 оксидо 3 окс … Википедия
Эозин — Y … Википедия
ОКРАСКА — (микроорганизмов). Мазок на предметном или покровном стекле высушивается на воздухе; высушивание над пламенем не рекомендуется, допускается лишь помещение препарата вблизи пламени. Высушенный препарат фиксируется троекратным проведением через… … Большая медицинская энциклопедия
Кожа — У этого термина существуют и другие значения, см. Кожа (значения). О коже как материале см. Кожевенное производство, Кожаные изделия, Художественная обработка кожи. Кожа наружный покров организма позвоночных, защищающий тело от широкого… … Википедия
Радиальная глия — … Википедия
Список паразитов человека — Паразиты человека это паразиты, заражению которыми подвержен человек. Общее определение слова «паразит» касается не только многоклеточных и простейших, живущих за счёт своего хозяина и во вред последнему, но также вирусов, бактерий и грибов … Википедия
ГИСТОЛОГИЧЕСКАЯ ТЕХНИКА — ГИСТОЛОГИЧЕСКАЯ ТЕХНИКА. Содержание: Методика гистологич. исследований. 242 Теоретические основы Г. т. 246 Гистохимия. 253 Краски, употребляемые в Г. т. 258 Гистологическая техник а техника изучения… … Большая медицинская энциклопедия
КРАСКИ — КРАСКИ, химич. вещества, обладающие свойством окрашивать другие предметы в свой или другой цвет непосредственно или с помощью другого хим. соединения протравы. Широкое применение К., надо полагать, вызывается инстинктивным стремле нием человека к … Большая медицинская энциклопедия
Окраска гематоксилином и эозином
Окраска включает использование основного красителя гематоксилина, окрашивающего базофильные клеточные структуры ярко-синим цветом, и спиртового кислого красителя эозина Y, окрашивающего эозинофильные структуры клетки красно-розовым цветом. Базофильные структуры, как правило, это те, которые содержат нуклеиновые кислоты (ДНК и РНК): клеточное ядро, рибосомы и РНК-богатые участки цитоплазмы. Эозинофильные структуры содержат внутри- и внеклеточные белки, например, тельца Леви. Цитоплазма является эозинофильной средой. Эритроциты всегда прокрашиваются ярко-красным цветом.
Связанные понятия
Поликетидсинтазы (ПКС, англ. Polyketide synthase, КФ 6.4) — ферменты или мультиферментные комплексы, синтезирующие поликетиды (вторичные метаболиты, такие как антибиотики, токсины или статины). Поликетидсинтазы обнаружены у бактерий, грибов, животных и растений и имеют большое сходство с синтазами жирных кислот в организации и механизме биосинтеза. Как правило, гены синтазы определённого поликетида входят в один оперон (у бактерий) или в один кластер (у эукариот).
Эстрогеновые рецепторы (ЭР) представляют собой группу белков, находящихся внутри клеток. Они являются рецепторами, которые активируются эстрогенами (например, 17β-эстрадиолом). Существуют два класса эстрогеновых рецепторов: ядерные рецепторы эстрогена (ЭРα и ЭРβ), которые являются членами семейства ядерных рецепторов внутриклеточных рецепторов, и мембранные рецепторы эстрогена (мЭРs) (ГПЭР (ГПР30), ЭР-X и Гк-мЭР), которые в основном являются Г-белковыми рецепторами.
660нм), другая — дальний красный (λ
730нм). Поглотив свет, фитохром переходит из одной формы в другую. Этот пигмент играет важную роль в ряде процессов, таких как цветение и прорастание семян.
Не следует путать с гликанами.Глюкан представляет собой молекулу полисахарида из мономеров D-глюкозы (в отличие от гликанов, где мономером может являться не только D-глюкоза), связанных гликозидными связями.
Обоня́тельные реце́пторы — рецепторы, существующие в клеточных мембранах обонятельных нейронов и отвечающие за обнаружение молекул запаха.
Окраска гематоксилин-эозин
Окраска ГЭ — это обязательный этап для любого гистологического исследования. По препаратам, окрашенным этим методом, можно поставить большинство гистологических диагнозов, увидеть основные структуры и составляющие исследуемого объекта.
Прежде чем окрасить препарат, нужно сначала высушить его и обезводить.
Высушивание стекла с парафиновым срезом
— выловить срез на стекло и оставить при комнатной температуре до утра
— вертикально высушить срез на стекле в термостате 60оС в
течение 1 часа
— поместить для сушки в нагревательный отсек стейнера
— поместить срез в водяную баню, выловить на стекло и
подогреть над пламенем спиртовки (или феном)
— горизонтально подогреть на нагревательном столике.
После того, как срез высушен, можно приступить к окраске.
Общие этапы для удаления парафина перед окраской. Депарафинирование
Депарафинирование должно осуществляться при температуре не ниже 20оС, иначе парафин очень плохо удаляется из срезов и блокирует участки, подлежащие окрашиванию.
Окраска
Гематоксилин
Бывает 2 типов: прогрессивный, который не требует последующего
извлечения избытка красителя, и регрессивный, который красит избытком красителся с последующей его отмывкой.
Прогрессивный окрашивает от 3 и до 20 минут (в зависимости
от длительности использования и чистоты красителя).
Регрессивный до 10 сек и до 5 минут (можно дольше).
После каждого красителя применяют проточную воду 1-5-10
минут (выполняет роль подсинивающего буфера).
После регрессивного гематоксилина ставится проточная вода на 1 мин,
далее — дифференцирующие растворы (солянокислый спирт
0.25-1% на 70-96% этаноле или 0.25-0.5% водная соляная
кислота). Количество погружений стекол в раствор
устанавливается опытным путем с последующим контролем
под микроскопом. После — промывка в 2 сменах проточной
воды по 1 минуте в каждой, затем третья смена проточной
воды от 3 мин и более, до того, как все ядра клеток станут
синими.
Необходимо фильтровать любой гематоксилин после работы и доливать до уровня свежим.
Подсинивание можно выполнять с помощью подсинивающих
растворов.
— промывочный буфер для ИГХ (PBST или TBST)
— мраморная крошка в проточной воде.
Менее эффективные подсинивающие агенты — раствор аммиака или пары аммиака. При обработке этими реактивами срезы могут слезть со стёкол.
Далее стекла помещают в дистиллированную или
деоинзированную воду. Лучше сделать 2 смены по 2 минуты, чтобы
удалить остатки подсинивающих буферов — они извлекают
окраску эозином.
Окраска эозином возможна красителями, содержащими разный
процент эозина на основе спирта, воды или вода+спирт (оптимальный вариант).
Время окраски эозином от 10 сек до 3 мин. После стекла переносят в
дистиллированную воду для отмывки избытка эозина или в спирт, если используется спиртовой раствор красителя.
Избыток эозина можно отмыть опусканием стекла последовательно в
спирт-воду-спирт до тех пор, пока не будет достигнут
желаемый оттенок. При этом нужно помнить, что последующими
спиртами может быть извлечено еще какое-то количество
эозина. Длительность этапов отмывки определяется экспериментально и контролируется визуально под микроскопом.
Эозин, как и гематоксилин, необходимо ежедневно фильтровать, доливая до уровня свежим раствором.
Обезвоживание. После эозина идут 3-4 смены этанола или изопропанола по 2 мин каждая. Первая смена выливается через 60-8-100 стекол, или при помутнении. Остальные переставляются на одну позицию влево, так, чтобы последняя получилась свежая.
Просветление. Происходит посредством 2 смен ксилола по 1 минуте.
Карбол-ксилол совершенно лишний в этом процессе при
условии своевременной замены реактивов.
Протоколы окраски ГЭ
Ручной протокол
Ксилол 3 мин
Ксилол 3 мин
Ксилол 3 мин
Этанол (ИПА) 2 мин
Этанол (ИПА) 2 мин
Этанол (ИПА) 2 мин
Дистиллированная вода 2 мин
Гематоксилин 3-20 мин (в зависимости от типа)
Проточная вода 2 мин
Дифференцирующий раствор 10 сек — 1 мин (для регрессивного; время зависит от типа раствора)
Проточная вода 3-5 мин или
подсинивающий раствор
(можно дольше — до синих ядер)
Дистиллированная вода 2 смены по 2 мин
Эозин 10 сек — 3мин
Дистиллированная вода 1 минута или дольше
Этанол (ИПА) 3 мин
Этанол (ИПА) 3 мин
Этанол (ИПА) 3 мин
Этанол (ИПА) 3 мин
Ксилол 1 минута
Ксилол 1 минута (или дольше, если необходимо).
Общее время процесса: 44 мин — 60 мин.
Для окраски в стейнерах протокол может быть похожим, но не каждый стейнер имеет столько станций для реагентов. Иногда полностью соблюсти вышеописанный протокол не представляется возможным, поэтому приходится жертвовать этапами с дистиллированной водой и дифференцировкой, а также сокращать этапы с этанолом и ксилолом. В этом случае необходимо чаще менять ксилолы и спирты, а также красители, т.к. увеличивается их расход, что, кстати, влияет на себестоимость исследования.
Очень желательно на рабочем месте для окраски иметь работоспособный микроскоп с малым увеличением (10х).
Контролируйте вашу окраску перед подачей стекол патологам!
Применение дополнительных гистологических методов окраски в доклинических исследованиях
Я.А. Гущин, руководитель отдела гистологии и патоморфологии, ORCID 0000-0002-7656-991Х
188663, Россия, Ленинградская обл., Всеволожский р-н, г.п. Кузьмоловский, ул. Заводская, д. 3, корп. 245
Резюме
В клинической практике и при фармакологических исследованиях микроскопический анализ является неотъемлемой частью изучения, как нормального строения тканей, так и патологически измененных органов. Один из основных этапов подготовки материала к гистологическому исследованию – визуализация, которая достигается окрашиванием структур тканей красителями. Чаще применяют обзорную окраску гематоксилином и эозином, которой недостаточно для раскрытия полной картины процесса. Поэтому необходимо использовать ряд дополнительных окрасок. Часть из них можно применять как обзорные и заменить ими классические гематоксилин и эозин, например окраски по Ван Гизону или трихром по Маллори. Большая часть окрасок более специфична, и они служат для выявления конкретных структур или химических соединений в клетках и тканях. Это позволяет получить значительный объем информации, что облегчает понимание течения как нормальных, так и патологических процессов. Методики выявления мукополисахаридов альциановым синим применяются при исследовании желудочно-кишечного тракта и дыхательной системы. ШИК-реакция необходима в диагностике болезней накопления, ряда онкологических процессов и грибковых инфекций. «Жировые красители», прежде всего судан III и шарлах красный, используются повсеместно при исследовании дистрофических заболеваний и атеросклероза. Краситель Oil Red O применим для макроскопической оценки площади атеросклеротического поражения аорты. Конго красный незаменим для обнаружения амилоида. Рассмриваются специализированные окраски, направленные на диагностику повреждений миокарда (ГОФП-методика и применение солей тетразолия) для визуализации площади поражения сердечной мышцы и головного мозга.
В данном обзоре рассматривается ряд гистологических окрасок, некоторые особенности их применения, а также механизмы взаимодействия краситель–субстрат в тканях. Данные методы можно, а часто и необходимо использовать при гистологической работе. Исследователям при планировании следует учитывать возможность их применения, что поможет выявлять, а также всесторонне изучать патологические процессы, моделируемые в доклинических исследованиях.
Введение
Неотъемлемая часть доклинических исследований – патоморфологическое изучение экспериментальных животных, сначала макроскопическое – органов и систем органов, а в последующем микроскопическое – отдельных органов и тканей. Именно гистологическое исследование позволяет более точно определить патологические процессы, выявить ткани-мишени, механизм и степень их повреждения. Основным этапом подготовки материала к гистологическому исследованию является визуализация, которая достигается окрашиванием структур тканей красителями. Цель окрашивания – более четкое выделение различных компонентов клеток и тканей [2].
Общие механизмы окрашивания тканей и клеточных структур
Существует много классификаций красителей; их делят в зависимости от их химической природы [3], в зависимости от реакции с субстратом на субстантивные (прямые) и адъективные (непрямые) [4, 5]. Однако чаще применяют деление на основные или базофильные (ядерные), кислые или ацидофильные (цитоплазматические), нейтральные и флюорохромы [2, 3]. По механизму действия красителя со структурами тканей и клеток выделяют ионное взаимодействие, слабые электрические взаимодействия, ковалентное связывание, взаимодействие с металлами и др.
Ионное взаимодействие – самое распространенное и сильное, но оно чувствительно к pH среды и концентрации солей. Так, например, катионные красители при pH 5 будут окрашивать почти все структуры, поскольку карбоксильные группы белков хорошо ионизированы, при pH 4 окрашиванию подвергаются ядра клеток и хрящевая ткань, а при pH 1 слабые фосфорно-кислые группы ДНК не ионизируются, и ядра будут плохо визуализированы. При увеличении концентрации солей в растворе, наблюдается конкуренция между ионами солей и ионами красителя за субстрат и окрашивание будет менее эффективно. Также при высоких концентрациях солей в растворе наблюдается агрегация частиц красителя в коллоидные частицы, что затрудняет их диффузию к субстрату и окрашивание также будет менее эффективно. Электронное взаимодействие слабее ионного, поэтому можно рассматривать 2 основных механизма – водородные связи, силы Ван дер Ваальса и гидрофобное связывание [6, 7].
Водородные связи обеспечивают прикрепление анионов красителей к незаряженным субстратам в тканях (например, целлюлоза с множеством ОН-групп и коллаген, богатый NH и NH2-групп). В водных растворах большая часть молекул кислорода и азота уже связаны с молекулами воды, и в данном случае взаимодействие обусловлено силами Ван дер Ваальса [6].
Гидрофобное окрашивание является следствием взаимодействия водородных связей молекул воды и агрегации гидрофобных участков молекул силами дисперсионного взаимодействия (силами Лондона), которые из области высокой концентрации (краситель) поступают в область низкой концентрации (клетки), где удерживаются слабыми силами Ван дер Ваальса [6, 7].
Хорошим примером ковалентных связей является реактив Шифа в реакциях PAS (Periodic acid – Schiff reaction), который взаимодействует с альдегидными группами, образуя окрашенный продукт [7]. Другой пример – образование ковалентных связей между органическими группировками и ионами металлов. Так, ализариновый красный образует в тканях хелатные комплексы с ионами кальция, а гематоксилин, являясь комплексом гематина с ионами алюминия, взаимодействует, вероятно, с амино- и гуанидино-группами ДНК в ядре, что и придает ему синий цвет [7].
Как видно существует много вариантов взаимодействия красителя с субстратом; они различаются специфичностью и условиями использования и служат для достижения своих, подчас узкоспециализированных, задач. Однако в рутинной гистологии главной и основной окраской остается методика с применением гематоксилина и эозина. Это простой, дешевый и повсеместно используемый метод, который имеет много модификаций и может применяться в большинстве случаев. Именно поэтому его еще называют обзорной окраской. Но подчас этого недостаточно и тогда необходимы дополнительные методы [8, 9], которые в значительной мере улучшат качество не только диагностики заболеваний, но и качество исследовательских работ с привлечением гистологических методов.
Рассмотрим ряд гистологических окрасок, некоторые особенности их применения, а также механизмы взаимодействия краситель-субстрат в тканях. Данные методики можно, а часто и необходимо, использовать при гистологической работе, а исследователям при планировании следует учитывать возможность их применения, что поможет выявлять, а также всесторонне изучать патологические процессы, моделируемые в доклинических исследованиях.
Окраска соединительной ткани. Окраска соединительной и мышечной тканей гематоксилин-пикрофуксином по методу Ван Гизона (рис. 1). Это второй наиболее часто используемый в гистологической практике метод. Им можно заменить окраску гематоксилин-эозином и применять как основной для получения обзорных препаратов, но все же чаще он дополняет исследование [10]. Этот метод имеет ряд преимуществ по сравнению с окраской гематоксилин-эозином, так как по-разному окрашивает различные ткани: соединительная ткань после окраски пикрофуксином имеет ярко-красный цвет, а все остальные ткани – буровато-желтый или желто-зеленый. Механизм действия основан на большем сродстве кислого фуксина к коллагену, что, с одной стороны, объясняется параллельной волокнистой организацией белка, открывающей большое количество пептидных групп, содержащих карбоксильные аминокислоты (аспарагиновую и глутаминовую), легко образовывающих водородные связи с красителем, а, с другой стороны, наличием ионных связей, которые могут быть нарушены обработкой ткани кислотами, т.е. дезаминированием белков. Цитоплазматическое окрашивание более характерно для пикриновой кислоты, поскольку она, за счет меньшего размера, имеет более высокую скорость диффузии в клетки, а также, являясь выраженным анионным красителем, проявляет более сильное ионное взаимодействие с положительно заряженными аминогруппами цитоплазматических белков [11] (рис. 2).
В качестве ядерной окраски можно использовать гематоксилин Майера, Эрлиха, но железный гематоксилин Вейгерта дает лучшую черную или буро-черную окраску ядер. Данный метод необходим при дифференцировке соединительной ткани от мышечной в случаях, когда их трудно различить на препаратах, окрашенных другими методами (например, при исследовании хронических заболеваний с развитием фиброза или при опухолевых процессах).
Некоторые особенности не позволили данному методу стать основным, например, необходимость контроля под микроскопом, поскольку пикрофуксин как дифференцирующее соединение, ослабляет интенсивность окраски гематоксилином, и если ядра приобретают бурый, а не черный цвет, то следует использовать более длительную экспозицию срезов в гематоксилине или меньшую в пикрофуксине [2]. Но более существенным недостатком является выцветание препаратов за счет потери окраски фуксинофильных коллагеновых волокон, а это значит, что препараты нельзя хранить длительное время [12].
Окраска эластических волокон фуксин-резорцином по Вейгерту. Окраска (рис. 3) позволяет выявить эластические волокна в тканях, что полезно при изучении заболеваний и патологических процессов, поражающих сосуды или, например кожу. Взаимодействие между эластином и красителем осуществляется за счет сложных эфирных групп, а также путем образования водородных связей между фенольными гидроксильными группами красителя и эластином [14] (рис. 4). При этом хлорид железа, используемый при окраске, с одной стороны, взаимодействуя с резорцином, дает насыщенный синий цвет, а, с другой, увеличивая насыщенность раствора солями, препятствует окрашиванию таких базофильных структур, как хроматин и рибосомы цитоплазмы, а значит повышает селективность метода [15]. Но специфичность метода все равно остается низкой, причем возможно окрашивание и других структур коллагена, а также базальных мембран. Поэтому для лучшей визуализации эластических волокон необходимо проводить тщательное дифференцирование под микроскопом в процессе окраски [13].
Есть возможность использовать данный метод в комбинации с окраской по Ван Гизону, что позволяет одновременно выявить также коллаген и окрашивать ядра. Тогда результатом будет следующая картина: ядра – черные, эластические волокна – от темно-синих до черного, коллагеновые волокна – оттенки красного, цитоплазма, гладкая и поперечнополосатая мышечная ткань, ороговевающий эпителий, нейроглия и эритроциты – желтые [2, 13].
Орсеин – еще один распространенный краситель, позволяющий выявить эластические волокна в тканях, прежде всего в сосудах (рис. 5, 6). Результат – эластические волокна – от темно-красных до коричневых [10, 11]. За счет окрашивания белков, связанных с медью, данная методика применяется для диагностики заболеваний накопления меди (болезнь Вильсона). Кроме того, связываясь с поверхностными антигенами вируса гепатита В, позволяет использовать краситель для визуализации пораженных клеток [16].
Механизм окрашивания до конца неясен. Возможно, краситель взаимодействует с эластином за счет образования в кислой среде водородных связей между фенольными группами орсеина, заряженными положительно, и отрицательно заряженными боковыми цепями белка, который отличается от коллагеновых волокон меньшим содержанием аргинина, гистидина и лизина и большим количеством нейтральных лейцина и валина. Кроме того, повышенное (до 90%) содержание неполярных аминокислот делает эластические волокна, в отличие от коллагеновых, малорастворимыми в большинстве органических и неорганических растворителей, что может быть применено для выделения компонентов ткани [17].
Трихром по Маллори. Дифференцировка коллагеновых волокон хорошо достигается при окраске по Ван Гизону, но другие компоненты ткани (фибрин, хрящевая и мышечная ткань, форменные элементы крови) окрашиваются хуже и не столь специфично, поэтому для более детальной одновременной визуализации можно использовать трихромные окраски, которые окрашивают компоненты тканей в 3 цвета (красный, желтый и синий) с их вариантами. Например, метод окрашивания по Маллори, включает в себя несколько компонентов: анилинового синего, фосфомолибденовую кислоту, пикриновую кислоту и фуксин [12] (рис. 7). Специфичность действия трихрома объясняется различной степенью сродства между его компонентами и макромолекулами соединительной ткани, которая из-за наличия большого числа основных групп ацидофильна и обладает высоким сродством к кислым красителям (пикриновая кислота и оранжевый G), но низким по отношению к слабым основным и амфотерным красителям (кислый фуксин и пунцовый фуксин). Фосфомолибденовая кислота как крупный гетерополианион легко и прочно связывается с катионными группами тканевых структур (волокна коллагена, клеточные мембраны), блокируя таким образом воздействие на них анилинового синего (основный краситель с частичными амфотерными свойствами) [10, 13, 16, 18] (рис. 8). Результат следующий: ядра – темно-коричневые; коллагеновые волокна – темно-синие; хрящ, кость, мукополисахариды, амилоид – оттенки синего; фиброглия, нейроглия, фибрин – красные; мышечная ткань, миелин и эритроциты – желтые; эластические волокна – розовые.
Данная окраска дает более яркие и выраженные результаты, если использовать для фиксации материала жидкость Ценкера, и перед окраской обработать срезы 3% раствором бихромата калия примерно в течение 20 мин [12].
Окраска мукоплисахаридов. Мукополисахариды – это полимерные углеводно-белковые комплексы, содержащиеся в соединительной ткани (хрящевой ткани, роговице) и в жидкостях (слизь, гепарин, синовиальная жидкость, стекловидное тело). В гистологии окраски на мукополисахариды применяются при изучении, прежде всего структур, выделяющих слизь – кишечника, бронхов, муцинозные опухоли, а также заболеваний хрящевой ткани.
Альциановый синий (рис. 9) по химической структуре является медьсодержащим фталоцианином, который образует прочную связь с полианионами мукополисахаридов, избирательно взаимодействуя с их карбоксильными группами и сульфогруппами [пирс]. Краситель под воздействием тетрабората натрия становится плохо растворимым синим пигментом, который хорошо визуализируется. На реакцию значительно влияет кислотность раствора, так альциановый синий рН 1,0 образует связи с мукополисахаридами с большим содержанием сульфо-групп, а альциановый синий рН 2,5 способен к окрашиванию всех кислых мукополисахаридов [2,13,16] (рис. 10). Это позволяет добиться селективного окрашивания кислых сиаломуцинов и сульфомуцинов бокаловидных клеток толстой кишки, в то время как нейтральный муцин желудка или желез Бруннера не реагируют с альциановым синим при рН 2,5 [16].
Результат окрашивания будет следующим – кислые мукополисахариды – бирюзово-голубые, хрящевая ткань – от пурпурного до темно синего.
Для выявления гликогена в нормальных и патологически измененных тканях используют ШИК-реакцию (Шифф-йодная кислота) (рис. 11). В данном случае йодная кислота окисляет и разрывает связи в соединениях, содержащих 2 смежные гликолевые группы, образуя диальдегид. Последний образует с серосодержащим фуксином из реактива Шиффа нерастворимое окрашенное соединение, сходное с основным фуксином [13, 17] (рис. 12).
В результате гликоген окрашивается в красные цвета. Таким образом, этот метод широко используется при изучении болезней накопления гликогена, ряда опухолевых заболеваний при которых происходит накопление муцина, грибковых поражений для визуализации клеточной стенки, а также для изучения лимфопролиферативных заболеваний для детализации патологических клеток крови.
Окраска жиров. Обнаружение липидов в клетках и тканях осуществляется группой жировых красителей под общим названием «Суданы» (Судан черный, Судан III, Судан IV и др.), а также нильблаусульфатом и осмиевой кислотой. Эти жирорастворимые вещества легко проникают в липидсодержащие структуры, и не взаимодействует с гидротированными белками (рис. 13, 14). Таким образом, процесс окрашивания липидов представляет собой не гидрофобное взаимодействие, а имеет чисто физический характер, что не позволяет проводить избирательное окрашивание отдельных липидов разного химического состава. Для этой цели перед проведением гистохимической реакции необходимо использовать методы экстракции отдельных групп липидов разными системами растворителей [7, 19,].
Наиболее часто применяют Судан III и шарлах красный. Они выявляют все жиры, липоиды и нейтральные жиры, интенсивно окрашивая их в оранжево-красный цвет. При этом следует помнить о существенных особенностях обработки материала. Прежде всего формалиновая фиксация не должна быть более 48 ч. После чего на замораживающем микротоме сразу изготавливают срезы, поскольку при обычной проводке эфир, ксилол и крепкие спирты растворяют и извлекают жиры из клеток в растворы, именно поэтому после окраски срезы нельзя обезвоживать и заключать обычным способом. Препараты заключают в глицерин или глицерин-желатин, которые не растворяют жиры и хорошо просветляют необезвоженный препарат, но при длительном хранении препаратов наблюдается выпадение Судана в осадок в виде красных кристаллов. Лучше использовать специальные монтирующие среды на водной основе [13, 20]. Несмотря на используемый метод заключения, краситель все равно быстро выцветает, поэтому желательно исследовать препараты вскоре после их изготовления [10, 20].
Стоит отметить метод окраски макропрепаратов при помощи Sudan Red 5B или масляный красный (Oil Red O), которые применяются для визуализации атеросклеротического повреждения сосудов. Oil Red O – это лизохромный диазокраситель, используемый для окрашивания нейтральных триглицеридов и липидов. Он окрашивает липиды в красный цвет с максимальным поглощением при 500–600 нм. На интиме аорты, после обработки красителем, можно обнаружить даже ранние стадии патологического процесса, поскольку жировые включения окрашиваются красным и хорошо визуализируются глазом [20] (рис. 15).
Окраска на амилоид. Для выявления скопления амилоида (патологический белково-полисахаридный комплекс, образующийся при хронических заболеваниях) в тканях наиболее простой и широко используемый краситель – конго красный (рис. 16). Данный краситель окрашивает белок в красный цвет. Кроме того, возможно изучение препаратов в поляризационном свете, при этом массы амилоида дают желто-зеленое свечение, однако рекомендуется заключение срезов в гуммиарабик для исключения свечения коллагеновых волокон [2, 21]. Прочное связывание амилоида с красителем не до конца изучено. Оно происходит таким образом: за счет водородных связей гидроксильных групп, с помощью положительно заряженных аминокислот и посредством полярных контактов [22] (рис. 17).
Специальные методы
Выявление повреждений миокарда по Ли (ГОФП-метод: гематоксилин – основной фуксин – пикриновая кислота). Liе и соавт. (1971) описали и дали название этому методу – «фуксиноррагический». Основной фуксин как катионный краситель взаимодействует с продуктами распада, высвобождаемых из саркоплазмы кардиомиоцитов (в частности с гликогеном), тем самым окрашивая их в красно- коричневый цвет. При этом интактные ткани остаются желто-коричневыми или бледно-зелеными, поскольку, как указано выше, хорошо воспринимают пикриновую кислоту (рис. 18, 19), тем самых создавая хороший контраст с поврежденными участками. ГОФП-метод эффективен для объективного выявления ишемизированных участков миокарда, причем при повреждении как коронарогенного, так и некоронарогенного генеза. Кроме того, опосредованно можно визуализировать соединительную ткань (например, рубцовая ткань после перенесенного инфаркта миокарда окрашивается в сиреневые оттенки, а эластические волокна становятся красными). Особенно эффективна методика на ранних этапах поражения сердечной мышцы, поскольку в поражённых кардиомиоцитах фуксинофильный субстрат появляется вначале вблизи ядра, затем распространяется по всей цитоплазме, а в дальнейшем и на большую часть мышечного волокна [12, 23]. Но впоследствии, когда мышечные волокна начинают разрушаться и рассасываться, фуксинофильный субстрат полностью исчезает, и окраска утрачивает свое значение [24].
Для макроскопической оценки площади ишемического повреждения тканей, а особенно миокарда и головного мозга, можно использовать соли тетразолия, в частности трифенилтетразолия хлорид (ТТХ) (рис. 20). Соли тетразолия, реагируя с дегидрогеназами (группы ферментов катализирующих окислительно-восстановительные реакции) восстанавливаются до окрашенных соединений – формазанов. Таким образом, в очаге повреждения высвобождается большое количество дегидрогеназ, которые при взаимодействии с тетразолием дают хорошо видимый глазом красный цвет (рис. 21). Реакция позволяет выявить ишемические повреждения на ранних донекротических стадиях патологического процесса [25, 26].
Заключение
В клинической практике и при фармакологических исследованиях микроскопический анализ – неотъемлемая часть изучения нормального строения тканей, а также патологически измененных органов. Приготовление гистологических препаратов включает в себя 5 этапов, каждый из которых важен и может повлиять на полученные результаты. Последний этап является – окрашивание, который обычно ограничен применением стандартной – обзорной окраски гематоксилином и эозином. Но для раскрытия более полной картины процесса необходимы дополнительные окраски; их можно применять как обзорные и заменить ими классические гематоксилин и эозин, например окраски по Ван Гизону или трихром по Маллори. Однако эти методы имеют ряд ограничений или трудоемки в исполнении, поэтому не получили широкого распространения и используются как дополнительные окраски для более детального анализа, в частности для изучения соединительной ткани и патологических процессов, связанных с фиброзом.
Большая часть окрасок более специфична, и их применение служит для выявления конкретных структур или химических соединений в клетках и тканях. Это позволяет получить значительный объем информации, что облегчает как понимание течения нормальных, так и патологических процессов. Так методики выявления мукополисахаридов альциановым синим широко применимы при исследовании желудочно-кишечного тракта и дыхательной системы, а ШИК-реакция незаменима в диагностике болезней накопления, ряда онкологических процессов и грибковых инфекций. Жировые красители, прежде всего Судан III и шарлах красный, используются повсеместно при исследовании дистрофических заболеваний и не в последнюю очередь атеросклероза, а методика применения красителя Oil Red O применима для макроскопической оценки площади атеросклеротического поражения аорты. Конго красный незаменим для обнаружения патологического белка амилоида, который образуется в тканях при аутоимунных и хронических заболеваниях – ревматоидном артрите, туберкулезе или нефропатии.
Кроме того, применяются специализированные окраски, направленные на диагностику повреждений миокарда. Выявить наиболее ранние признаки повреждения кардиомиоцитов позволяет ГОФП-методика. А при помощи солей тетразолия легко макроскопически визуализировать площадь поражения в тканях (не только в сердечной мышце, но и, например, в головном мозге).
В данном обзоре была рассмотрена только незначительная часть гистологических окрасок, их механизмы действия, химические реакции, позволяющие визуализировать микроскопические структуры тканей. Многие из этих методик нашли свое применение в практической деятельности лабораторий, при изучении эффективности и токсичности лекарственных средств. Конечно, существует еще множество красителей, методов, а также их сочетания. Все они могут быть использованы сами по себе, но скорее необходимо применять целый комплекс окрасок. Данный материал будет полезен как специалистам по планированию и проведению доклинических исследований на этапе подготовки к экспериментам, так и врачам-гистологам для понимания процессов, происходящих в тканях в момент окрашивания структур, что позволит выявлять ошибки и получать более объективный конечный результат.